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Abstract—In this work we present the Object Labeling Toolkit
(OLT), a set of software components publicly available for
helping in the management and labeling of sequential RGB-D
observations collected by a mobile robot. Such a robot can be
equipped with an arbitrary number of RGB-D devices, possibly
integrating other sensors (e.g. odometry, 2D laser scanners,
etc.). OLT first merges the robot observations to generate a
3D reconstruction of the scene from which object segmentation
and labeling is conveniently accomplished. The annotated labels
are automatically propagated by the toolkit to each RGB-D
observation in the collected sequence, providing a dense labeling
of both intensity and depth images. The resulting objects’ labels
can be exploited for many robotic oriented applications, including
high-level decision making, semantic mapping, or contextual
object recognition. Software components within OLT are highly
customizable and expandable, facilitating the integration of
already-developed algorithms. To illustrate the toolkit suitability,
we describe its application to robotic RGB-D sequences taken in
a home environment.

I. INTRODUCTION

A comprehensive dataset supposes a valuable benchmark
tool for tuning, testing, and comparing robotic algorithms and
systems in a convenient and fair way. Public datasets consisting
of intensity images [1]–[3] have largely helped researchers to
push ahead the state-of-the-art in object recognition or scene
interpretation. Nowadays, given the increasing number of ca-
pabilities and applications that are demanded to a mobile robot,
e.g. semantic mapping [4], high-level decision making [5], or
contextual object recognition [6]–[9], new particularly oriented
datasets are required.

RGB-D cameras have become a key source of information
for such robotic datasets. Although the sensory data of these
datasets may be conveniently gathered by the mobile robot
itself, human supervision is still needed to segment objects
and to label them, i.e. to add annotations over portions of the
observed data as belonging to a certain object class, e.g. floor,
table, lamp, etc. This is the motivation for the software toolkit
that we have developed and is described in this paper.

More specifically, we present the Object Labeling Toolkit
(OLT) to provide the robotic community with a tool to
efficiently label datasets compound of sequences of RGB-D
observations, gathered from an arbitrary number of RGB-D
sensors. For that, the toolkit builds a 3D reconstruction of
each RGB-D sequence within a given dataset, and allows the
user to graphically label objects within that reconstruction
(see Fig. 1). This ground truth annotations are automatically
propagated to all the RGB-D observations without requiring

Fig. 1. Example of a kitchen reconstructed from a sequence of RGB-D
observations within a robotic dataset. The appearing objects have been labeled
(colored boxes). Gray spheres stand for RGB-D sensor poses.

human supervision, resulting in a dense labeling of both
intensity and depth data.

OLT comprises a number of software components cov-
ering the following functionality: i) dataset pre-processing,
ii) localization of RGB-D observation poses, iii) 3D scene
reconstruction, iv) labeling of the reconstructed scene, and
v) automatic propagation of annotated labels (see Fig. 2).
Some of these functionalities can exploit additional infor-
mation coming from sensors usually present in a robotic
platform, e.g. the robot pose estimation computed from 2D
laser scans. All the components are highly customizable in
order to fit the particularities of robotic datasets, and can be
easily expandable to integrate other algorithms of interest. OLT
is publicly available under a GNU General Public License
at (http://mapir.isa.uma.es/work/object-labeling-toolkit), and it
resorts to the Mobile Robot Programing Toolkit (MRPT [10])
and the Point Cloud Library (PCL [11]) for point cloud regis-
tration and smoothing algorithms, and for data representation
and visualization purposes. Aiming to illustrate the toolkit
suitability, we show how it is employed for segmenting and
labeling a robotic dataset from a home environment, and also
describe its impact on the required processing time w.r.t. a
typical manual solution.

II. RELATED WORK

In general, RGB-D datasets providing labeled objects in-
formation can be grouped into: object-centric, single-view,
and sequential-view datasets. Object-centric datasets [12]–[15]
provide labeled RGB-D observations of isolated objects, a poorDraft version
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source of information for many robotic applications like scene
understanding or contextual object recognition. On the other
hand, single-view datasets [16]–[20], are compounded of la-
beled RGB-D observations of particular scenarios (e.g. a room
or an office). This information is richer from the point of view
of those applications, but data of the whole robot environment
is not available. Finally, sequential-view datasets [21], [22]
provide a sequence of labeled observations covering the whole
inspected workspace, which is the best suitable option for
testing trending robotic algorithms or systems. Unfortunately,
their number is quite limited mainly due to the arduous labor
that entails the data processing.

RGB-D datasets carry out the tedious object labeling task in
different ways. Some works resort to Amazon Mechanical Turk
(AMT) to label their intensity images [16], [18], [19], usually
through a labeling tool like LabelMe [2], but this merely
divides the workload, and the annotated information still needs
to be thoroughly checked to fix incoherent labels. Another
approach is the manual labeling of key intensity frames from
a sequence, propagating these labels to the remaining RGB-D
observations [21], [22], but this is only suitable for sequences
with simple sensor trajectories, and additionally shows the
same limitations as the AMT option. There are also works
that reconstruct a 3D representation of the inspected scene
and annotate the objects appearing on it [17], but there is not
a labeling feedback to the RGB-D observations’ sequence(s).
Similar works to our approach are [12] and [15], where the
ground truth annotations over a reconstructed scene are also
propagated to the individual RGB-D observations employing
an ad-hoc software which, to the best of our knowledge, is
not publicly available. We contribute in this paper with an
open source solution conveniently divided into configurable
components, which provides the robotic community with a
number of functionalities towards an efficient labeling of
arbitrarily large collections of RGB-D data.

III. DATASET MANAGEMENT: OLT TOOLKIT

The Object Labeling Toolkit (OLT) is a set of software
components aimed to facilitate the management and processing
of robotic sequential-view datasets. Concretely, it provides
robotic researchers with the needed tools for achieving a dense
labeling of the objects appearing in each RGB-D observation
within a dataset sequence, aiming to drastically reduce the user
participation in the process. It has been designed to be flexible:
it handles datasets containing an arbitrary number of sensors
providing RGB-D and (optionally) 2D scans information, and
its components can be used independently according to the user
needs, or even occasionally expanded with the integration of
additional algorithms providing the same functionality.

Figure 2 shows an overview of the software components
within the toolkit and their interrelations. In a nutshell, the
labeling process of RGB-D data within a certain dataset
sequence starts with a pre-processing step, which sets the
extrinsic and intrinsic parameters of the sensors employed
during its gathering (Sec. III-A). Then, the sensor poses in a
global frame from where each RGB-D observation was taken
are computed through the alignment of their depth information
(Sec. III-C). This component can optionally employ a geo-
metric map built upon 2D laser observations from the same
dataset sequence (Sec. III-B). This permits the component to

Fig. 2. Components diagram showing their collaboration within the OLT
Toolkit. Gray boxes represent components provided by the toolbox, the green
box is a component supplied by the MRPT library, and yellow boxes stand
for persistent data. The reader is referred to the online version of this work
for references to colors.

perform a rough robot localization within the explored area,
hence giving a useful initial guess for such RGB-D sensor
poses’ computation. The resultant information is used to three-
dimensionally reconstruct the scene, and the goodness of such
a reconstruction can be visually inspected (Sec. III-D). The
reconstructed scene is then manually labeled by an human
operator (Sec. III-E), i.e. the objects appearing in the scene
are annotated with their belonging classes, e.g. floor, table,
book, etc. Finally, those annotated labels are propagated to
subsequent RGB-D observations (both intensity and depth
images) of the dataset making use of the computed sensor
poses (Sec. III-F). This labeling process can be repeated for an
arbitrary number of RGB-D sequences within a given dataset.
It is worth to mention that each toolkit component resorts to a
configuration file to easily fit their behavior to the requirements
of a given dataset.

The toolkit components are built upon two widely used
libraries: the Mobile Robot Programming Toolkit (MRPT [10]),
and the Point Cloud Library (PCL [11]). We resort to MRPT
to manage datasets into the Rawlog common robotics dataset
format, which are capable of handling any variety of robotic
sensor with precise timestamping1. This library also provides
efficient visualization tools and implementations of point cloud
registration algorithms. On the other hand, we rely on PCL to
incorporate point cloud smoothing and registering techniques.

1There exist a number of tools to convert datasets captured by other popular
middlewares to rawlogs, e.g. ROS (http://wiki.ros.org/mrpt rawlog).
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Fig. 3. In blue, geometric map of a bedroom built employing the 2D laser
scans within a sequence. In red, example of 2D laser scan aligned within
the geometric map. Black circles represent the robot localizations at the time
instants when the 2D laser scans where gathered, and green ones the computed
poses of the RGB-D sensor. The dataset sequence started at the room’s door.

A. Dataset pre-processing

The first toolkit component sets the extrinsic and intrinsic
parameters of the sensors used to gather the dataset sequence
being processed. The extrinsic parameters refer to the position
of the sensors with respect to the robot centroid, and can be
retrieved in different ways [23], [24]. The intrinsic parameters
describe geometric and distortion properties of the sensors.
RGB-D devices show a different set of intrinsic parameters for
their intensity and depth cameras, including: focal length, prin-
cipal point coordinates, and radial and tangential distortions.
Also needed are extrinsic parameters to relate the position of
both cameras. The intrinsic parameters largely differ among
RGB-D devices, so it is recommended to calibrate them
through algorithms like [25]. Those extrinsic and intrinsic
parameters can be conveniently introduced into a configuration
file, and this component will set them throughout all the
contained observations within the dataset sequence.

This pre-processing step permits the user to effortlessly
change the sensor(s) calibration parameters within arbitrarily
large dataset sequences, enabling in this way the comparison of
the results yielded by the following toolkit components when
employing different calibration techniques/parameters.

B. 2D map building

The utilization of this component is optional, but it has
shown to improve the results obtained during the computation
of the RGB-D sensor poses (Sec. III-C). To employ it, the
dataset sequence must provide 2D laser observations from, at
least, one laser range scanner. These observations are then pro-
cessed by an ICP-based (Iterative Closest Point) technique [26]
within the icp-slam MRPT application in order to generate a
geometric map. Figure 3 shows an example of a map from a
bedroom built in our experiments.

C. Observation poses

This component aims to find the sensor poses from where
each RGB-D observation was taken within a 6D global frame
(3D position: x,y, and z, plus three attitude angles: yaw,

Fig. 4. Left, point clouds representing a bed-set and a pair of shoes
reconstructed employing the sensor poses yielded by the robot localization.
Right, the same objects reconstructed with the sensor poses refined with GICP.

pitch, and roll). This sensors’ localization can be performed
following any of these two approaches:

i) For each RGB-D observation oi gathered by a sensor
d, it is carried out an alignment process with the
observation oi−1 previously taken by the same device.
For that, it is employed a registration algorithm that
exploits their depth information in the form of point
clouds. This registration yields the rigid transforma-
tion Toi,oi−1

between the two sensor poses, from
which we can compute the sensor location where the
observation oi was taken:

Soi = Toi,oi−1
⊕ Ld (1)

where Ld stands for the pose of the sensor d on the
robot frame (i.e. its extrinsic parameters). The first
observation o1 from such a sensor is considered to be
taken with the robot in its initial position, i.e. at the
origin of the global frame.

ii) The second approach employs the 2D geometric map
from the previous component and the 2D laser ob-
servations to localize the robot within the global
frame by means of ICP. Then, the sensor poses for
each RGB-D observation oi are computed through the
interpolation of those robot localizations employing
their timestamps:

Roi = R1 ⊕ ((R2 	R1) · telapsed) (2)
Soi = Roi ⊕ Ld (3)

where R1 and R2 are the robot locations with times-
tamps just before (t− 1) and after (t+ 1) the oi one
(t), and telapsed = (t − (t − 1))/((t + 1) − (t − 1))
is a scalar value. In this case, the global coordinate
frame is specified by the geometric map. Optionally,
these locations can be refined through the approach
described in i) in a post-processing step (see Fig. 4).
Fig. 3 shows an example of robot locations and
RGB-D sensor poses from a bedroom sequence.

The toolkit user can choose between two different point
clouds registration algorithms: the ICP-3D method within the
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MRPT library, and the implementation of the Generalized-ICP
algorithm [27] from PCL. In addition to the sensor localization
and point clouds registration algorithms to be used, a number
of options can be selected from the component’s configuration
file:

• Point clouds smoothing. Depth observations from a
RGB-D device are prone to provide noisy measure-
ments over surfaces, effect that notoriously increases
with distance. This option permits to apply a smooth-
ing method to such depth information before operating
with them. Concretely, we rely on the implementation
of the Fast Bilateral Filter algorithm [28] within PCL.

• Memory utilization. This option enables an incre-
mental registration through the use of a memory of
observations, i.e. when a RGB-D observation taken at
time t from a certain sensor is being registered, all
the previous registered observations from all RGB-D
sensors are considered. This increases the quality
of the alignment results at the expense of a higher
computational/time cost.

• Key poses. When enabled, only observations taken
from considerably different robot poses are processed.
This is useful in cases where the robot speed during
the dataset gathering was too slow, so quite similar ob-
servations are collected. In the current implementation
two poses are considered different according to two
user defined parameters: minimum euclidean distance,
and minimum rotation angle difference. This option
relies on the robot locations yielded by the second
localization approach.

The output of this component is a dataset sequence with
the poses of the RGB-D observations set according to the their
yielded localization into the global frame.

D. Sequential visualization

The goal of the sequential visualization component is
twofold: first, it permits the user to visually inspect the results
of the RGB-D sensor poses localization, and second, it creates
a 3D reconstruction of the scene. Concretely, the colored
point clouds from the RGB-D observations are projected from
its local sensor frame to the global one. For that, given an
observation oi and its sensor pose Soi , each point Pj in its
point cloud is projected as follows:

Pj,G = Soi ⊕ Pj,L (4)

being Pj,L the point 3D coordinates in the sensor local
frame. Once the point clouds have been projected, they are
sequentially prompted to the user employing visualization tools
from MRPT, which in turn resorts to octrees and OpenGL.
The user can opt for a step by step visualization that adds
a new registered point cloud when any key is pushed, if
s/he needs to inspect the scene reconstruction in detail. Once
the reconstruction has been shown, it is created a scene file
containing the resultant colored point cloud map of the whole
scene (see first column in Fig. 6).

Fig. 5. Example of the four box visualization modes during the labeling of
the reconstructed scene.

E. Label reconstructed scene

The labeling of the reconstructed scene is performed by
manually fitting boxes to the objects appearing in it. We
have chosen boxes as the geometric primitives given their
easy operation and intuitive fit to objects showing different
shapes. Thus, for each object to be labeled in the scene,
the user creates and edits a box Bi by setting its position,
scale and rotation so the object is fully contained in it. When
such an editing is completed, each box can be annotated
with its ground truth class, e.g. table, chair, wall, book, etc,
conforming a box-label pair (Bi, labeli). It is also possible to
label the scene for instance object recognition purposes, i.e.
algorithms trying to recognize particular instances of objects
instead of their general category, by adding an identifier to
these annotations, e.g. book 1 or bed red. Complex objects
can be labeled employing multiple boxes. The box editing
operations, as well as the functionality described below, can
be conveniently performed by means of keyboard shortcuts.

In order to facilitate the labeling process, the user has
available a number of options: check at any moment a list
of the already inserted boxes, add an arbitrary number of
boxes, and edit/remove an existing box. Additionally, there
are four different box visualization modes: wireframe, solid,
solid with borders, and transparent solid with borders, which
have resulted extremely useful during our tests to visually
check the inner points for each box (see Fig. 5). When the
labeling is finished, the work done can be saved to a scene
file containing the initial reconstructed scene and the set
B = ((B0, label0), ..., (BN , labelN )) of inserted boxes along
with their labels, being N the number of objects appearing in
the scene (see second column in Fig. 6).

F. Labels propagation

The last component in the toolkit is in charge of propa-
gating the labels into the reconstructed scene to each RGB-D
observation within the dataset sequence. For that, given an
observation oi, for each point Pj in its point cloud represen-
tation it is checked in which boxes B0, ..., BN the point lies
inside. It is recalled that the point cloud of both the observation
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Fig. 6. First column, reconstructed scenes from the sequences within the dataset. Second column, labeled reconstructed scenes. Third-fifth columns, examples
of individual point clouds from RGB-D observations labeled by the propagation of the annotations within the reconstructed scenes.

and the labeled scene are in the same coordinate frame thanks
to the previous sensor pose localizations, so no additional
transformations are needed. Then, if a certain point Pj lies
inside a box Bk, for what we employ ray casting with the
boxes’ boundaries, it is annotated with the box associated label
(labelk). Since the correspondence between such a point and
the (x, y) coordinates of its associated pixel into the intensity
and depth images from oi are known, such images are also
annotated. Thus, they are labeled at once the point cloud,
the intensity image, and the depth image. The repetition of
this process for each RGB-D observation within the dataset
sequence completes the labeling pipeline.

IV. TOOLKIT USAGE

This section aims to illustrate the usability of OLT, showing
its virtues for an effortless labeling of RGB-D sequences. For
that we have collected a home environment dataset employing
a Giraff commercial robot [29] enhanced with an RGB-D
device (Asus XTion Pro Live [30]), and a 2D laser scanner
(Hokuyo model URG-04LX-UG01 [31]). The robot was tele-
operated in two different sessions, fully inspecting a kitchen
in the first session, and a bedroom in the second one. Each
session produced a sequence of observations compound of data
from the two added sensors, summing up a total of 77 RGB-D
observations and 142 laser scans.

According to the functionality provided by the toolkit,
the dataset sequences were preprocessed to set the sensors’
calibration parameters (recall Sec. III-A), and the 2D laser
scans were used to build a geometric map for both, the kitchen
and the bedroom (see Sec. III-B). These maps were used to
localize within them the sensor poses from where the RGB-D
observations were taken. As it was explained in Sec. III-C,
those geometric maps are not an indispensable requirement for
such a localization, but they have shown to provide useful cues
for improving the registration of RGB-D observations. Once
localized, the RGB-D observations are registered, forming a
3D reconstruction of both scenes as it is shown in the first

column of Fig. 6 (recall Sec. III-D). These reconstructions are
then manually labeled by a human operator that disposes of
an intuitive list of options to fit boxes to the scene objects,
and annotates them with their respective belonging classes.
Notice that this is the unique point in the toolkit where human
intervention is needed. They were labeled in total 59 objects,
belonging to 39 different classes. The second column in Fig. 6
shows both labeled scenes. Finally, the annotated information
is automatically propagated to all the RGB-D observations
within the kitchen and bedroom sequences, resulting in an
efficient labeling of their intensity and depth images2. Fig. 6
shows a number of labeled point clouds.

Regarding the time spent in labeling, the human operator
needed 2 hours to annotate both the kitchen and the bed-
room scenes, spending on average 2 minutes per object. To
compare this with the labeling of all the RGB-D observations
individually, we followed the typical intensity image labeling
approach and annotated 5 non-consecutive observations from
each sequence, extrapolating the results to the whole dataset.
This yields a total of ∼3 hours needed for the labeling of the
kitchen sequence, and ∼7 hours for the bedroom, which clearly
illustrates the benefits of the toolkit utilization. When following
such a typical approach we found problems to accurately label
the objects’ boundaries, and with objects partially occluded
and with an unclear belonging class, drawbacks that are
mitigated with the utilization of the proposed toolkit.

It is worth to mention an advantage of the utilization of a
geometric map to localize sensor poses when sequences to be
labeled are gathered from the same places captured at different
times. In this case, the labeling performed for a sequence
can be loaded into the reconstructed scene of other sequence,
so only the boxes associated to moved/appearing/disappearing
objects have to be modified/added, resulting in an additional
time saving.

2Recall that each point in the point cloud is associated with a pixel from the
depth image, and given that this image and the intensity one are registered,
the labeling of both images from the point cloud is straightforward.
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V. CONCLUSION AND FUTURE WORK

In this work we have presented the Object Label-
ing Toolkit (OLT), a publicly available software solu-
tion for the management of arbitrary large robotic datasets
(http://mapir.isa.uma.es/work/object-labeling-toolkit). The ma-
jor goal of OLT is to provide the robotic community with
a tool to efficiently label objects appearing in a sequence of
RGB-D observations. It has been also presented the flexible,
highly customizable software components aiming to fit the
needs of particular robotic datasets. The toolkit can handle
different platform setups, i.e. datasets gathered by an arbitrary
number of RGB-D sensors, and even can profit from 2D laser
scanners, devices that are usually present in a mobile robot. We
have illustrated how OLT is applied to the labeling of a home
environment dataset, and show that it considerably decreases
the time needed by an human to complete such a task.

The toolkit is in constant development with the inclusion of
new features and functionalities. For example, we are study-
ing the incorporation of algorithms for a globally consistent
alignment of the RGB-D observations used to reconstruct
a scene. We also plan to integrate, in addition to boxes,
different geometric primitives to be used during the labeling
of the reconstructed scenes, e.g. spheres. OLT welcomes any
contribution from the robotics community.
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robot object recognition through the synergy of probabilistic graphical
models and semantic knowledge,” in European Conf. on Artificial
Intelligence. Workshop on Cognitive Robotics, 2014.

[8] Ruiz-Sarmiento, J.R., C. Galindo, and J. González-Jiménez, “UPGMpp:
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