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Abstract

This paper presents a novel approach that exploits semantic knowledge to
enhance the object recognition capability of autonomous robots. Semantic
knowledge is a rich source of information, naturally gathered from humans
(elicitation), which can encode both objects’ geometrical/appearance proper-
ties and contextual relations. This kind of information can be exploited in a
variety of robotics skills, especially for robots performing in human environ-
ments. In this paper we propose the use of semantic knowledge to eliminate
the need of collecting large datasets for the training stages required in typ-
ical recognition approaches. Concretely, semantic knowledge encoded in an
ontology is used to synthetically and effortless generate an arbitrary number
of training samples for tuning Probabilistic Graphical Models (PGMs). We
then employ these PGMs to classify patches extracted from 3D point clouds
gathered from office environments within the UMA-offices dataset, achieving
a ∼ 90% of recognition success, and from office and home scenes within the
NYU2 dataset, yielding a success of ∼ 81% and ∼ 69.5% respectively. Addi-
tionally, a comparison with state-of-the-art recognition methods also based
on graphical models has been carried out, revealing that our semantic-based
training approach can compete with, and even outperform, those trained
with a considerable number of real samples.
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Graphical Models, Autonomous Robots

1. Introduction

Object recognition is one of the key abilities of a mobile robot intended to
perform high-level tasks in human environments, where objects are usually
placed according to their functionality, e.g., tv-sets are in front of couches,
night tables are near beds, etc. As reported by other authors (Galleguillos
and Belongie, 2010), the exploitation of these contextual relations, that can
be seen as a form of semantic knowledge, can improve the performance of
traditional object recognition methods which only rely on sensorial features.

To illustrate the benefits of using semantics, let’s consider a robot coping
with the task of recognizing the objects placed in its surroundings. This may
become complex for a number of reasons, including the large number of pos-
sible object classes and features to extract, their similarity, etc. Suppose now
that the robot knows that it is in an office and has some semantic knowledge
related to that particular domain, for example the type of objects usually
present in a typical office environment and their contextual relations. This
simplifies the recognition problem, drastically reducing the range of possible
objects classes, and even more importantly, enabling the recognition system
to exploit particular object relations to gain in effectiveness and robustness.
For instance, an object that resembles an office table according to its geome-
try can be more confidently recognized as such if objects typically found near
it, e.g. a computer screen and/or a chair, are also detected and fulfill certain
contextual relations, for example, the computer screen is on the table and
the chair is close to it.

In this work we present a novel approach that exploits semantic knowl-
edge encoded by human elicitation to train Probabilistic Graphical Models
(PGMs) (Koller and Friedman, 2009) for object recognition. PGMs form a
machine learning framework that is widely applied to object recognition given
its capabilities for modelling both uncertainty and objects relations. These
systems need a vast amount of training data in order to reliably encode the
gist of the domain at hand, however, the gathering of that information is
an arduous, time-consuming, and – in some domains – not a tractable task.
To face this issue, we codify semantic knowledge by means of an ontology
(Uschold and Gruninger, 1996), which defines the domain object classes,
their properties, and their relations, and use it to generate training samples
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for a Conditional Random Field (CRF) (Koller and Friedman, 2009). These
training samples reify prototypal scenarios where objects are represented by
a set of geometric primitives, e.g., planar patches or bounding boxes, that
fulfill certain geometric properties and relations, like proximity, difference of
orientation, etc.

Aiming to show the performance of CRFs trained with the proposed ap-
proach, they have been integrated into an object recognition framework.
This framework operates by processing point clouds provided by a RGB-D
camera, in order to extract geometric primitives (see figure 1-a), which are
then recognized as belonging to a certain object class through an inference
process over the trained CRF. We have obtained promising results in office
and home environments, employing both planar patches and bounding boxes
as geometric primitives, though our methodology can be applied to other
scenarios and sensorial data types.

In the literature, PGMs are used, in general, to learn the properties of
the different object classes and their contextual relations using data from
previously collected datasets. In contrast, the work presented here drives
this learning phase by providing synthetic training samples extracted from
the semantic knowledge of the domain at hand. This knowledge can be
naturally provided by humans and encoded into an ontology, and exhibits
three advantages with respect to other related approaches:

• It eliminates the usually complex and high resource-consuming task
of collecting the large number of training samples required to tune an
accurate and comprehensive model of the domain.

• Ontologies are compact and human-readable knowledge representa-
tions. In that way, extending the problem with additional object classes
is just reduced to codify the knowledge about the new classes into the
ontology, generate synthetic samples considering the updated semantic
information, and train the CRF. This process can be completed in a few
minutes, in contrast to the time needed for gathering and processing
real data.

• The recognized objects are anchored to semantically defined concepts,
which is useful for robot high-level tasks like reasoning or task plan-
ning (Galindo and Saffiotti, 2013; Galindo et al., 2007; Coradeschi and
Saffiotti, 2003).
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We have conducted an evaluation of our work employing two datasets:
one from our facilities, called UMA-offices, which counts 25 office environ-
ments, and the NYU2 dataset (Silberman et al., 2012), from which we have
extracted 61 offices and 200 home scenes. The performance of CRFs trained
with our methodology have been also compared with two state-of-the-art
methods, namely i) a standard formulation of CRFs trained and tested with
real data (Koller and Friedman, 2009), and ii) the CRF presented in Xiong
and Huber (2010). The results show that our approach can compete with,
and even outperform, those trained with a considerable number of real sam-
ples.

In the next section we put our proposal in the context of other related
works. Section 3 introduces probabilistic graphical models applied to ob-
ject recognition, while in section 4 we present the proposed method to train
these models using semantic knowledge. In section 5, the evaluation results
of the method considering two datasets comprising office and home environ-
ments are shown, and a comparison with other state-of-the-art approaches is
presented. Finally, section 6 ends with some conclusions and future work.

2. Related work

Object recognition is a key topic in robotics and computer vision that,
in many cases, has been successfully addressed by only using the visual fea-
tures of isolated objects, i.e. without considering information from the rest
of the scene. Some remarkable examples are the Viola and Jones boosted
cascade of classifiers (Viola and Jones, 2001), the SIFT object recognition
algorithm (Lowe, 2004) or the Bag of Features (Nister and Stewenius, 2006)
models. However, the current trend also considers the exploitation of contex-
tual information between objects, aiming to improve the recognition results
(see Galleguillos and Belongie (2010)).

Throughout this section, we discuss related works on object recognition
systems that resort to graphical models or semantic knowledge to model
contextual information. Also, some works reporting different alternatives to
the utilization of ontologies as a source of semantic information for object
recognition are commented.

2.1. Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) (Koller and Friedman, 2009) is
one of the most resorted frameworks to manage contextual information. The
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earliest works using this tool for object recognition are based on intensity in-
formation of the scene, like (Xiang et al., 2010), where the context between
pixels in a given RGB image is modelled by a discriminative Conditional
Random Field (CRF). Another work also relying on intensity images is the
presented in Quattoni et al. (2004) that proposes a CRF framework which
incorporates hidden variables for part-based object recognition. The work
in Mottaghi et al. (2011) also builds part-based models of objects, and rep-
resents their interrelations with a PGM. More recent is the work presented
in Floros and Leibe (2012) which employs stereo intensity images in a CRF
formulation. Three-dimensional information from stereo enables the exploita-
tion of meaningful geometric properties of objects and relations. However,
stereo systems are unable to perform on surfaces/objects showing an uniform
intensity, which can negatively affect the recognition performance.

With the emergence of inexpensive 3D sensors, like Kinect, a new batch
of approaches have appeared leveraging the dense and relatively accurate
data provided by these devices. For example, the work presented in Anand
et al. (2013) builds a model isomorphic to a Markov Random Field (MRF)
according to the segmented regions from a scene point cloud and their rela-
tions. The authors did the tedious work of gathering information from 24
office and 28 home environments, and manually labelled the different object
classes. Interestingly, it is shown in Ren et al. (2012) that the accuracy of
a MRF in charge of assigning object classes to a set of superpixels increases
as the amount of available training data augments. In Valentin et al. (2013)
a meshed representation of the scene is built on the basis of a number of
depth estimates, and a CRF is defined to classify mesh faces. CRFs are also
used in Kahler and Reid (2013) and Xiong and Huber (2010), where Deci-
sion Tree Fields (Nowozin et al., 2011) and Regression Tree Fields (Jancsary
et al., 2012) are studied as a source of potentials for the PGM. The CRF
structure for representing the scenes in Xiong and Huber (2010) is similar
to the one presented here. In that work, a CRF is used to classify the main
components of a facility, namely clutters, walls, floors and ceilings.

All the methods mentioned above require the collection of large datasets
that adequately capture the variability of the domain, which can be a te-
dious, repetitive, and time-consuming task that consists of moving the robot
from one scene to another, gathering the data, and post-processing it accord-
ingly to the type of information expected by the training algorithms. The
claim of this work is the utilization of semantic knowledge codified into an
ontology as a valuable source of information for the generation of synthetic
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training samples that, being representative of the domain, also can capture
its variability.

2.2. Semantic Knowledge

In the literature, some alternatives to PGMs for object context modelling
have been also reported. For example, in Günther et al. (2013) a system
relying on an ontology plus rules defined into the Semantic Web Rule Lan-
guage (Horrocks et al., 2004) is used to generate object hypotheses. These
hypotheses are subsequently checked in a matching process with CAD mod-
els. Another example is Nüchter and Hertzberg (2008), where a constraint
network implemented in Prolog classifies the main structural surfaces, i.e.
walls, floors, ceilings and doors, using contextual relations like orthogonal,
parallel, above, etc. Nevertheless, these methodologies are unable to han-
dle uncertainty, and exhibit difficulties to leverage all the potential of the
contextual relations.

2.3. Alternative sources of information

Additionally to the use of semantic knowledge, other sources of infor-
mation can be also considered to codify and manage the knowledge from a
given domain. For example, in Zhou et al. (2012), a web mining knowledge
acquisition system is presented as a mechanism to obtain information about
the location of objects. In Fergus et al. (2005) the authors describe PGMs
that are trained with images from the Google’s image search engine. They
reported that the high percentage of low quality search results (e.g images
where the object of interest appears occluded or is missing, cartoons instead
of real objects, etc.) represents a serious drop in the recognition performance.
Knowledge bases, like ConceptNet (Speer and Havasi, 2013), and language
models, like TypeDM (Baroni and Lenci, 2010), have been also studied for
visual recognition tasks in Le et al. (2013), concluding that they can be in-
consistent with the expectation of the presence of objects in the real world
if insufficient objects and/or relations are included. Another example of ex-
ploitation of encoded information about objects’ relations is Kunze et al.
(2014), where the search of a given object is directed by a previously learnt
Gaussian Mixture Model (GMM).

In comparison with those methods, the codification of the domain knowl-
edge through human elicitation as presented in this work enables a truly and
effortless encoding of a large number of objects’ features and relations be-
tween them. Moreover, since the source of semantic information (a person or
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a group of people) is trustworthy, in contrast to online search or web mining-
engine based methodologies, there is less uncertainty about the validity of the
information being managed. This enables the use of such a semantic informa-
tion for generating training data which is well representative of the domain.
In addition, the use of an ontology to structure that knowledge permits the
robot to take advantage of it for other high level applications (Galindo et al.,
2008; Galindo and Saffiotti, 2013).

3. Scene Object Recognition through Conditional Random Fields

Conditional Random Fields (CRF) Koller and Friedman (2009) are a par-
ticular case of Probabilistic Graphical Models that relies on conditional prob-
ability distributions. When applied to object recognition, a CRF computes
the posterior P (y|x), where x = [x1, x2, ..., xn] are observations of elements
in the scene, and y = [y1, y2, . . . , yn] are random variables representing the
classes of these elements from the set L of the possible object classes. Fig-
ure 1-b shows an example where L = {computer screen, table, chair back,
chair rest, f loor, wall}.

The posterior P (y|x) can be calculated by computing the probability
of each possible assignation to the variables in y conditioned to x, which
can become unfeasible if the number of possible assignations is high. CRFs
overcome this issue by compactly encoding P (y|x) through a graph structure
that captures the dependence relations among random variables. Concretely,
a CRF factorizes P (y|x) over an undirected graph H = (V,E), where V is
a set of nodes, one per each random variable in y, and E is the set of edges
linking nodes that are contextually related. These relations are established
according to the semantics of the domain and the geometry of the scene. For
example, in the CRF structure of figure 1-c defined from the observations
in figure 1-a, the nodes y3 and y5 are linked due to the proximity in the
scene of their related observed planar patches ID3 and ID5. The intuition
behind this is that only the neighbors of an object will directly influence its
recognition, as stated by the Markov properties (Koller and Friedman, 2009).

According to the Hammersley-Clifford theorem (Koller and Friedman,
2009), the factorization of P (y|x) over a CRF can be expressed as a product
of factors. A factor is a function associated to a random variable or a set
of variables that represents a probability distribution over it/them. In this
work we consider two types of factors: unary and pairwise (see figure 1-c).
Unary factors encode knowledge about the properties of the object itself and
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Figure 1: a) Example of a scene segmented into planar patches (labeled with an ID and
delimited by yellow lines). b) Scene objects recognized by our method. c) Graphical model
built for the planar patches shown in a). Each patch is associated to a node y0, .., y5, whose
probabilistic distributions are conditioned to their respective patch observations x0, .., x5

(observation xi corresponds to patch ID i). Near patches are linked by an edge. The blue
box encapsules the scope of a particular unary factor, while the red one shows the scope of
a pairwise factor. d) The resultant graphical model after the execution of the recognition
method, when random variables take a value according to their most probable assignation.

therefore affect to single nodes. On the other hand, pairwise factors act over
connected variables, and encapsulate knowledge about the objects’ relations.
In other words, unary factors model how likely an object yi belongs to a
certain class in L based only on the observed properties xi, whereas pairwise
factors state the compatibility of an object assignation with respect to the
classes of its neighboring objects.

More concretely, we define an unary factor, denoted by U(·), as a linear
model:

U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlf(xi) (1)
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Table 1: Unary and pairwise features used in this work to characterize planar patches of
the scene.

id Unary features
l1 Centroid height from the floor.
l2 Orientation w.r.t. the horizontal.
l3 Area of its bounding box.
l4 Elongation.
id Pairwise features
i1 Perpendicularity.
i2 on/under relation.
i3 Vertical distance of centroids.
i4 Ratio between areas.
i5 Ratio between elongations.

where f(xi) computes a vector of features that characterizes the object xi, ωl
is a vector of weights for the class l obtained during the training phase, and
δ(yi = l) is the Kronecker delta function, which takes value 1 when yi = l
and 0 otherwise. Table 1-top shows the unary features used in this work. As
an example, let’s consider the planar patch ID 0 representing a computer
screen in figure 1, which corresponds to observation x0. In this case, the
outcome of the f(·) function is f(x0) = [1.06, 0, 0.17, 1.83], where 1.06 stands
for its centroid height, 0 its orientation, and so on.

On the other hand, we define the pairwise factor I(·) as:

I(yi, yj, xi, xj,θ) =
∑
l1∈L

∑
l2∈L

δ(yi = l1, yj = l2)θl1l2g(xi, xj) (2)

where the function g(xi, xj) computes pairwise features between the obser-
vations xi and xj, and θl1l2 is a vector of weights for the pair of classes l1 and
l2. Table 1-bottom enumerates the pairwise features used to characterize the
objects’ relations.

For convenience, the product of factors over the posterior probability P
can be expressed by means of log-linear models as:

P (y|x,ω,θ) =
1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (3)

where Z(·) is the normalizing partition function so∑
ξ(y) p(y|x,ω,θ) = 1, being ξ(y) an assignation to the variables in y, and

ε(·) the so-called energy function defined as:
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ε(y,x,ω,θ) =
∑
i∈V

U(yi, xi,ω) +
∑

(i,j)∈E

I(yi, yj, xi, xj,θ) (4)

3.1. Training the Model

Training a CRF consists of estimating the vectors of weights ω and θ
that maximize the likelihood function:

max
ω,θ

LP (ω,θ|D) = max
ω,θ

∏
d∈D

P (yd|xd,ω,θ) (5)

where D = {d1, d2, ..., dm} is a dataset composed of m training samples.
Each training sample contains the observations to be recognized xd labeled
with their ground truth object classes in yd. Solving equation 5 requires
the calculation of the partition function Z, which becomes computationally
intractable in practice. To overcome this problem, it is common to resort
to the pseudo-likellihood, instead (Koller and Friedman, 2009). It consist
of an alternative, tractable objective function for which the estimation of ω
and θ converges to those computed by the likelihood one if a sufficient large
number of samples is provided.

As commented, the training dataset must be comprehensively enough to
accurately capture the characteristics and variability of the domain. At this
point, the exploitation of semantic knowledge brings two interesting advan-
tages: (i) it provides synthetic training samples that naturally encode the
variability of the domain (as it is shown in section 4.2), and (ii) it eliminates
the task of gathering, processing and labelling sensorial data to generate a
sufficiently comprehensive dataset.

3.2. Inference

Given the observation of a scene, the graph H = (V,E) is built accord-
ing to the sensed elements x and the conditional dependencies between the
random variables y, as described above. Thereby, the recognition problem
consists of finding the assignation to the variables in y that maximizes the
posterior, that is:

ŷ = argmax
y
P (y|x,ω,θ)

= argmax
y

1

Z(x,ω,θ)
e−ε(y,x,ω,θ)

(6)
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Figure 2: Overview of the developed framework for object recognition. The shadowed
area delimitates the proposed components for the generation of training samples. Boxes
represent processes, whereas ovals are generated/consumed data.

Since the partition function does not depend on the assignations to y, we
can simplify this expression to:

ŷ = argmax
y

e−ε(y,x,ω,θ) (7)

This equation is known as the Maximun a Posteriori (MAP) query or
Most Probable Explanation (MPE). Although we avoid the computation of
the partition function, the exact computation of this query is still unfeasible,
as the number of possible configurations is exponential with the number of
nodes in V . To overcome this issue, we use the Iterated Conditional Modes
(ICM) algorithm (Besag, 1986).

As an illustrative example, figure 1-d displays the values taken by the
nodes of the graph in figure 1-c after the inference process, and figure 1-b
shows these results in the scene.

4. Using Semantic Knowledge for Training

The proposed method for training PGMs according to semantic knowl-
edge follows a top-down methodology (see figure 2). The design starts with
the definition of an ontology for the knowledge domain at hand, e.g. an office
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environment, through human elicitation, stating the typical objects, their ge-
ometrical features, and relations. Then, the encoded semantic knowledge is
used for generating sets of synthetic samples, which replace the real datasets
required for training.

Once the PGM is trained, and aiming to show its performance, it is inte-
grated into an object recognition framework that works following a bottom-up
stance (see figure 2). During the robot operation, a plane-based mapping al-
gorithm (Fernandez-Moral et al., 2013) extracts planar patches, which are
characterized through a number of features, e.g., size, orientation, position
or contextual relations. These characterized planar patches feed the inference
process described in section 3.2.

The next section details the process for encoding the semantic knowledge
provided by human elicitation into an ontology, and then section 4.2 describes
its utilization for generating an arbitrary number of synthetic training sam-
ples.

4.1. Ontology Definition through Human Elicitation

An ontology is a representation of a conceptualization related to a knowl-
edge domain that consists of a number of concepts arranged hierarchically, re-
lations among them, and instances of concepts, also called individuals (Uschold
and Gruninger, 1996). For example, an office environment can be represented
by an ontology of concepts defining rooms and objects, e.g. meeting room,
office table or printer, and instantiations of such concepts, e.g. meeting
room-1, which refers to a particular meeting room. Ontologies also com-

prise relations among concepts like ‘‘Object has location Room’’, which
establishes that the instances of the concept Object are (can be) located
at a particular instance of Room. For instance, a possible relation can be
‘‘office table-2 has location meeting room-1’’. The ontologies used
in this work are defined by human elicitation, a process that enables the
exploitation of its experience and knowledge1 for setting the features and
relations among the domain concepts.

Figure 3-a) depicts part of the office ontology defined in our experiments.
The root concept is Object, with three subconcepts: Device, Furniture

and Building, which represents the objects that are typically found in office

1Please notice that the source of this information could be also a large number of
humans, i.e. crowd-sourcing.
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Figure 3: a) Hierarchy of concepts defined in the office ontology used in this work. b)
Definition of the Table top concept based on properties, relations and annotations.

environments. Notice that the person can vary the granularity of the defined
concepts, as it is the case of the concept Table that has been split into two
related concepts: Table top and Table side.

The geometrical properties considered by the human to describe these
concepts and their relations are enumerated in table 2. Such properties can
be interpreted as restrictions to be fulfilled by instances belonging to that
concepts. Additionally, they compound the minimum set of properties that
permits a human to distinguish between the object classes employed during
the method evaluation (see section 5). For example, figure 3-b) shows the
definition of the concept Table top, restricting the geometric features and
relations considered for a standard table top.

The geometric features defined over the concepts are useful to describe
the typical shape, size or relative position of their instances. However, not
all the instances of a particular concept have exactly the same appear-
ance in the real world. To quantify objects’ variability, the person may
also annotate the encoded restrictions with a discrete value from the set
RA = {null, veryLow, low, medium, high, veryHigh}. Thus, according to
the Table top definition given in 3-b), its height shows a low variability
around the established value of 0.7m, indicating that most tables share this
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Table 2: Properties defined into the ontology.

Name Meaning
has area Area of the object in m2.
has centroidHeight Height of the object centroid w.r.t. the floor in m.
has elongation Ratio between the object length in its two main directions.
has frequencyOfOccurrence How often an object appears in the studied environment.
has orientation Main orientation of the object.
is nearTo An object is near to other one.
is on An object is placed on another one.
is under An object is placed under another one.

typical height. The area, however, can largely vary from the averaged value,
i.e. 1m2, expressing the differences in size of the tables that can be found
in an office. Given that the same set of geometric features is employed for
describing all the concepts during the elicitation process, the time needed for
their definition scales linearly with the number of object classes. It is also
worth to mention that, although the definition of the objects’ variability by
means of elements of the set RA could seem subjective (i.e. dependant on
the person): the objectiveness can be increased through crowd-sourcing; the
crispy values from RA are relevant but not determinant during the generation
of synthetic data – see section 4.2.

Proximity restrictions between objects are also incorporated into the on-
tology with a value from the RA set, but with a different meaning. In this
case, it is indicated how frequently a particular relation holds. For instance,
the person establishes that a computer screen and a table top likely appear
close to each other by adding an annotation with the value veryHigh (see fig-
ure 3-right). Note that it is not needed to set the proximity relations among
all the considered object classes, which would lead to a quadratic increment
in the time spent in their definition, but just between the objects that are
more commonly encountered together. Thus, extending the previous exam-
ple, the person could avoid the definition of the relation between computer
screens and trash bins, since they seldom appear close in an office.

4.2. Generation of training samples

Upon the semantic knowledge encoded in the ontology, the system gener-
ates samples in the form of synthetic scenes following four steps (notice that
the stage presented here does not involve the human participation):

1. Inclusion of objects in the scene. The set of objects that appear in
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Concept has_frequency
OfOccurrence 

P(appearing) Sample 

Floor high 0.8 appearing 

Wall high 0.8 appearing 

Table_top veryHigh 0.9 appearing 

Table_side low 0.25 not_appe. 

Chair_back high 0.8 not_appe. 

Chair_seat medium 0.6 appearing 

Computer
_screen 

high 0.8 appearing 

is_nearTo Frequency P(near) Sample 

Floor null 0 not_near 

Wall high 0.75 near 

Chair_seat high 0.75 near 

Computer_s
creen 

veryHigh 0.9 near 

Figure 4: Left, example of discrete probability distributions built according to the
has frequencyOfOcurrece relation of each concept. These distributions determine which
objects are included into the synthetic scenario. Right, context creation for an object of
the class table top according to the objects included in the synthetic scenario.

the synthetic scene is selected according to the relations has frecuency-

OfOcurrence defined in the ontology. For that, we use a discrete prob-
ability distribution that establishes the likelihood of the presence of
each object. For example, following the Table top definition where
has frecuencyOfOcurrence=high, such a probability distribution can
be defined by the person as P (Table topappearing) = 0.8 and P (Table
topnotAppearing) = 0.2. Samples from these distributions are drawn,
yielding the set of objects included in the scene as illustrated in fig-
ure 4-left. In this example the objects included are: parts of the floor
and a wall, a table top, a chair seat and a computer screen.

2. Object characterization. The geometrical features of the objects
included in the synthetic scene in the previous step are reified according
to their concepts’ definitions in the ontology. To this end, a Gaussian
distribution, N(µ, σ), is considered for each defined concept and for
each defined geometric property, i.e. has area, has centroidHeight,
has elongation and has orientation, where the mean µ is the value
of that concept for that property in the ontology, and the standard
deviation σ is a quantification of the respective annotated variability.
For instance, for the has area property of the Table top concept, the
person implicitly encoded a Gaussian distribution with µ = 1 and a high
standard deviation, e.g. σ = 0.75. Then, samples drawn from these
distributions are used as features of the included objects (see figure 5-
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Figure 5: Top, samples drawn (red lines) from the probability distributions for an object
of the class Table top, built according to its geometrical restrictions and the annotated
variability in the ontology (see figure 3-b). Bottom, graphical model that results from the
objects included in figure 4-left and their generated relations.

top). These synthetic features are computed by the fs(li) function,
where li is the class of the included object i. This function replaces
f(xi) during the training phase (recall equation 1 in section 3).

3. Context creation. The contextual relations between the included
objects are established according to the is nearTo properties and their
frequency annotations. For example, if the scene contains a Table top

and a Chair backRest, they will be placed near one to another into
the synthetic scene with a high probability, as stated by the ontology.
Figure 4-right shows an example of the definition of the contextual
relations for a Table top object according to the objects previously
included in the scene (see figure 4-left), its is nearTo relations and
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their frequency annotations.

4. Context characterization. Different features for the relations estab-
lished in the previous step are computed, adding valuable contextual
information. Examples of these features are: difference between cen-
troid heights, perpendicularity, difference between areas, areas ratio,
difference between elongations, etc. To compute them, the information
produced in the objects characterization step is used. For example, if
a Table top with a height of 0.7 m. and a Chair backRest showing a
height of 0.32 m. are placed near in a synthetic scenario, their context
can be characterized with the difference between the heights of their
centroids: 0.38 m.
Two additional binary features are considered to establish that an ob-
ject is placed on or under other, according to the is on and is under

relations of the ontology. Notice that these features characterize the
context of a pair of objects that have been previously related in the
synthetic scenario according to their proximity.
The set of contextual features for objects (i, j) are yielded by the func-
tion gs(fi, fj), where fi = [fs(li), li], being fs(li) the features computed
in the object characterization step for object i, and li the class of that
object. This function replaces the g(xi, xj) one in equation 2 (section 3).

Figure 5-bottom shows the components of a synthetic scene produced by
the steps described above in the form of a graphical model, compound of
nodes representing the included objects, and edges stating their relations.
Notice that the characterization of a Table top illustrated in figure 5-top
is in fact carried out by fs(l2). As an example of context characterization,
let’s consider the context established by the objects wall (node y1) and
table top (node y2). Supposing that the contextual features employed are,
for instance, difference between centroid heights, perpendicularity, is on and
is under, then such a characterization is generated as gs(f1, f2) = [0.9, 1, 0, 0],
which sets that: their centroids are separated by a vertical distance of 0.9
m.; given that the wall is vertical and the table top is horizontal they are
perpendicular; any object is located on or under the other one.

5. Evaluation

In order to evaluate our approach, we have trained a number of CRFs
with synthetic data and assessed their suitability to recognize objects from: i)
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RGB-D camera 

Figure 6: The mobile robot Rhodon gathering 3D data within an office room.

office scenarios within the UMA-offices dataset (section 5.1), and ii) office and
home scenes within the NYU2 dataset (Silberman et al., 2012)(section 5.2).

5.1. Results with the UMA-offices dataset

The UMA-offices dataset was acquired with the mobile robot Rhodon,
equipped with a Kinect device mounted on a pan-tilt unit (see figure 6),
and entails 25 office environments from the University of Málaga. In the
experiments, seven object classes were considered: L = {floor, wall, table,
table side, chair back rest, chair seat and computer screen}, and the ground-
truth was provided by an human operator. It is worth to mention that the
person that carried out the human elicitation process in the experiments
(section 4.1) has worked in different office environments, but he did not visit
the offices from the gathered dataset.

In our implementation, we rely on the UGM library (Schmidt, 2015) for
training the CRF using the optimization of the pseudo-likelihood function
(see section 3.1). Concretely, a Quasi-Newton method with Limited-Memory
BFGS (Nocedal, 1980) is used, which is able to optimize complex objective
functions with a high number of parameters.

The performance of CRFs trained with the proposed method is assessed
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through the micro/macro precision/recall metrics (Anand et al., 2013) com-
puted for the results yielded by the recognition process. Briefly, the precision
of a given class of objects ci is defined as the percentage of objects recognized
as belonging to ci that really belong to that class. Let recognized(ci) be the
set of objects recognized as belonging to the class ci, gt(ci) the set of objects
of that class in the ground-truth, and | · | is the cardinality of a set, then the
precision of the classifier for the class ci is defined as:

precision(ci) =
|recognized(ci)

⋂
gt(ci)|

|recognized(ci)|
(8)

On the other hand, the recall of a class ci expresses the percentage of the
objects that belonging to ci are recognized as members of that class:

recall(ci) =
|recognized(ci)

⋂
gt(ci)|

|gt(ci)|
. (9)

Precision and recall are metrics associated to a single class. It is also of in-
terest to know the performance of the proposed method for all the considered
classes. This can be measured by adding the so-called macro/micro concepts.
Macro precision/recall represents the average value of the precision/recall for
a number of classes, and it is defined in the following way:

macro precision =

∑
i∈L precision(ci)

|L|
(10)

macro recall =

∑
i∈L recall(ci)

|L|
(11)

Finally, micro precision/recall represents the percentage of objects in the
dataset that are correctly recognized with independence of their belonging
class, that is:

micro precision(ci) =

∑
i∈L |recognized(ci)

⋂
gt(ci)|∑

i∈L |recognized(ci)|
(12)

micro recall(ci) =

∑
i∈L |recognized(ci)

⋂
gt(ci)|∑

i∈L |gt(ci)|
(13)

Since we assume that objects belong to a unique class, then
∑

i∈L |gt(ci)| =∑
i∈L |recognized(ci)|, and consequently the computation of both micro pre-

cision/ recall metrics gives the same value.
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Table 3: Results of the recognition process with different sets of pairwise features (con-
figurations) and methods for the UMA-offices dataset. For the convenience of the reader,
these features, previously listed in table 1, are: i1–Perpendicularity, i2–on/under relation,
i3–Vertical distance of centroids, i4–Ratio between areas, and i5–Ratio between elonga-
tions. The features employed in each configuration are: #1={None}, #2={i1, i2, i3},
#3={i1, i2, i3, i4}, and #4={i1, i2, i3, i4, i5}.

Configurations
Method Metric #1 #2 #3 #4

micro p./r. 81.82 90.91 86.06 84.85
CRF trained with synthetic data macro p. 80.17 89.25 84.91 81.82

macro r. 83.78 89.99 86.69 83.95
micro p./r. 83.19 87.50 86.65 84.47

CRF trained with real data macro p. 81.93 85.84 85.19 81.90
Koller and Friedman (2009) macro r. 82.76 86.36 85.72 82.46

In our experiments we have trained five CRFs using the same synthetic
dataset that comprises 1000 training samples including a total of 7170 objects
and 16700 relations among them. CRFs differ in the combination of the
selected pairwise features (configurations), aiming to analyze their suitability
to the given environment.

The trained CRFs with synthetic data have been used to recognize the
objects from the UMA-offices dataset. The results of the recognition process
using the above metrics are shown in table 3. Observe that the achieved
micro precision/recall is above 81%, with a best value of 90.91% for the
configuration #2. Figure 8 shows some scene objects recognized with this
configuration, while figure 7-left illustrates its confusion matrix. Note that
in this case, the most challenging class to recognize is table side, since it
may not be clearly differentiated from other object classes like chair back.
Next, we highlight some meaningful comparisons and results of our approach

Comparison with state-of-the-art methods. We have compared the
results of our method with two state-of-the-art alternatives: i) a standard
formulation of a CRF trained and tested with real data (Koller and Friedman,
2009), and ii) the CRF presented in Xiong and Huber (2010). The results
for both recognition systems were obtained through a 5-fold cross-validation
and average process using the UMA-offices dataset. Such a process firstly
splits the 25 offices into 5 groups. Then, four of these groups are used for
training, and the remaining one for testing. This process is repeated five
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Figure 7: Left, confusion matrix that relates the ground truth to the recognition results
in the second configuration. Right, influence of the number of training samples on the
recognition success as it is measured by the F-measure.

times shifting the group used for testing, and finally the results are averaged.
Table 3 shows the results for the evaluation with the CRFs in Koller and
Friedman (2009), while the CRF with the configuration presented in Xiong
and Huber (2010) achieved a micro p./r. of 82.46%. These figures reveal
that CRFs trained with the proposed method can compete with, an even
outperform the results of the other two state-of-the-art alternatives.

How much does the context relations contribute to the recogni-
tion performance? We have trained a CRF that does not consider pairwise
factors, i.e., only taking into account the geometric properties of the planar
patches (unary factors). The recognition results of using this CRF corre-
spond to the first configuration in table 3, which shows a significantly lower
success than the other configurations exploiting contextual relations.

What pairwise features are more discriminative? Notice that, in
the results shown in table 3, the best ones are obtained when using perpen-
dicularity, on/under and centroid height difference relations (configuration
#2), whereas the inclusion of the area and elongation ratios (configurations
#3 and #4) deteriorates the method performance. This indicates that both
features have a low discriminant capability, influencing negatively to the
recognition process. It is important to underscore that this conclusion only
holds for systems employing the set of object classes L, so these contextual
features could be useful in other applications or domains relying on a different
set of object classes.
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Figure 8: Examples of scene object recognitions performed by our method. Left column,
observed scenes with the detected planar patches delimited by yellow lines. Right column,
recognition results of such scenes.

How much does the size of the training dataset affect the recog-
nition performance? Given that our method can generate an arbitrary
number of samples, we have trained several CRFs with datasets of different
sizes. To facilitate the comparison of their outcomes, the previous macro
precision/recall metrics has been combined through the computation of their
harmonic mean, also known as the F −measure. The harmonic mean, that
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mitigates the impact of large measures and increments the influence of small
values, is defined as follows:

F = 2 ∗ macro precision ∗macro recall
macro precision+macro recall

(14)

Figure 7 shows the results of such outcomes, where the F value increases
from the 66.68 obtained with 10 training samples up to 89.61 with 1000
samples. Notice that in this experiment the improvement reaches an upper
limit for 1000 samples. This result remarks the importance of using large
datasets to properly capture the variability of the domain as well as the
convenience of techniques to reduce the burden of data gathering.

Do the generated synthetic data capture actual object proper-
ties and relations? In order to test the validity of the synthetic data gen-
erated for training CRFs, that is, how well the elicited ontology and the pro-
posed method capture the real world, we have employed a CRF trained with
our approach for recognizing objects from both real and synthetic datasets.
Concretely, we have considered the CRF with configuration #2, the 25 offices
from the UMA-offices dataset, and 25 synthetic scenarios generated with the
approach described in section 4.2. The performance testing with the syn-
thetic dataset yielded a micro precision/recall of 91.85%, a macro precision
of 90.30%, and a macro recall of 90.39%. Note that these figures are similar
to those obtained for the real dataset (see table 3, configuration #2), which
reveals the suitability of both the ontology defined by the person and our
approach for the generation of synthetic scenarios through the exploitation
of semantic knowledge.

Computational performance. The training process, including the gen-
eration of synthetic samples, takes from 0.21 seconds when using 10 samples,
up to 39.62 seconds for 1500 in a PC with an Intel R©CoreTMi5 3330 micropro-
cessor at 3GHz and 8 GB DDR3 RAM memory at 1.6 GHz. Notice that the
training process is performed only once, and does not take place during the
robot operation. On the other hand, the inference process takes, on average,
less than 0.2 milliseconds, which enables its integration in object recognition
frameworks aiming to operate on-line.

Time saving using human elicitation plus synthetic samples gen-
eration. The results obtained in our experiments justify our claim that the
proposed method can successfully replace the time-consuming and arduous
tasks of gathering and processing real datasets. In order to also support its
advantage for saving time/cost in the process, we have measured the time
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Table 4: Results of the recognition process with different sets of pairwise features (con-
figurations) and methods for the NYU2 dataset. No pairwise features are used within
configuration #1. #2 resort to i1–Perpendicularity, i2–on/under, relation, and i3–Vertical
distance of centroids.

Configurations
Method Metric #1 #2

micro p./r. 76.23 81.37
CRF trained with synthetic data macro p. 73.72 79.21

macro r. 76.32 80.35
micro p./r. 74.21 76.03

CRF trained with real data macro p. 65.57 67.65
Koller and Friedman (2009) macro r. 66.70 69.57

consumed by the human elicitation and samples generation processes.
In our experiments, the human elicitation process for the office domain

took 20 minutes, including the collection of the knowledge from the person
and its codification into an ontology.

On the other hand, the time employed in the synthetic samples generation
is negligible, since our method is capable of generating hundreds of samples
in a less than a second (e.g., 1500 samples in 0.11sec.). Thus, summing up
the time spent for human elicitation, synthetic samples generation, and CRF
training, our object recognition system can be ready to work in less than
21 minutes. Thereby, the presented methodology reduces dramatically the
time required for training with real data, which involves the navigation of the
robot through a number of locations (large enough to capture the variability
of the domain), collecting the data, and its posterior processing. In our case,
the gathering and processing of the 25 offices within the UMA-offices dataset
took more than 7 hours, that is, 20 times higher than the time needed by
our method.

5.2. Results with the NYU2 dataset

Our approach has been also evaluated considering 61 scenes from office-
environments, and 200 home-environment scenes, all of them from the NYU2
dataset (Silberman et al., 2012).

Office-environments. For the tests within the office domain, two of
the five CRFs trained during the evaluation with the UMA-offices have been
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reused, concretely the ones with configurations #1 and #2. Notice that the
same set of objects classes L has been considered.

Table 4 depicts the results of these tests. We can see how the integration
of contextual information increments the micro p./r. value in a ∼ 5%. This
is lower than the ∼ 9% achieved with UMA-offices, which can be explained
by the limited contextual information obtained from one-shot observations in
NYU2 w.r.t. the multi-shot registered scenarios gathered in the UMA-offices
dataset.

The performance of our approach has been also contrasted with: i) the
results yielded by a standard CRF (Koller and Friedman, 2009) trained and
tested with office data from NYU2, and ii) the CRF configuration from
Xiong and Huber (2010), following again a 5-fold cross-validation and av-
erage methodology. The second row of table 4 shows the outcome of CRFs
from Koller and Friedman (2009), while the configuration in Xiong and Hu-
ber (2010) reached a micro p./r. of 73.10% relying on unary features, and
of 75.42% also integrating the pairwise ones. Both systems improve their
results a ∼ 2% when contextual information is introduced, however, they are
still under the performance reached by the proposed methodology.

Home-environments. The aim of the testing with home scenes is to
validate the applicability of the proposed approach to a different domain. For
that, human elicitation has been used to define a new home ontology, pub-
licly available at (http://goo.gl/mz51ho), which contains 20 object classes
typically found in a home environment, e.g. bottle, cabinet, faucet, sink, toi-
let, sofa, pillow, bed, clothes, etc. These objects exhibit arbitrary shapes, so
the recognition framework shown in figure 2 has been modified to work with
object bounding boxes as geometric primitives, instead of the planar patches
used in offices. In this case, the following properties replace those in ta-
ble 2 for defining objects’ concepts: hasBiggestArea, hasColorVariation,
hasElongation, hasHeight, hasOrientation, hasSize and isPlanar. The
contextual relations were codified in the same way as with the office ontology
(recall section 4.1).

The resultant ontology was exploited to generate synthetic training data,
and two CRF were tuned. The first CRF considers the following unary
features to characterize an object: orientation, planarity, and size of its
bounding box, area of its two principal directions, height from the floor, and
color hue variation, and the second CRF also includes contextual relations
characterized by: difference between principal directions, vertical distance of
centroids, volume ratio, connectivity and object-object compatibility. These
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configurations yielded a micro p./r. of 64% and a 69.44% respectively.
Additionally, a CRF following the standard formulation (Koller and Fried-

man, 2009) has been trained and tested through the above described 5-fold
cross-validation and average process using the 200 home-environment scenes.
In this case, the system achieved a 61.67% of micro p./r. relying only on
unary features, and a 65.42% also considering contextual relations. A com-
parison with the CRF from Xiong and Huber (2010), as conducted in the
previous sections, does not make sense here since it relies on planar patches.
These figures support our claim that the proposed training approach can
be applied to different environments compound of objects showing arbitrary
shapes.

6. Conclusions and Future Work

Collecting real data for training object recognition systems is a highly
time-consuming and cumbersome task, since the gathered data must be rep-
resentative enough of the given domain. The approach presented in this
paper overcomes this issue by replacing the data gathering task with the
generation of synthetic samples. These samples implicitly capture the se-
mantics of the scene by exploiting the knowledge codified in an ontology by
a human. Our proposal has also the advantage of avoiding the processing
of the collected sensorial information, which usually involves: segmentation,
feature extraction, creation of contextual relations (if the recognition method
leverages them), and finally regions’ labeling by a human. In order to support
our claim, we have trained and evaluated a number of Conditional Random
Fields, with different sets of pairwise features and two datasets.

The results obtained in the conducted evaluations achieve a recognition
success of ∼ 90% within the UMA-offices dataset, and of ∼ 81% and ∼ 69.5%
using office and home scenes from the NYU2 dataset respectively, reveal-
ing that the use of semantic knowledge can be exploited for the suitable
training of recognition systems. Our approach has been also compared with
other state-of-the-art approaches based on CRFs yielding a substantial im-
provement. A number of additional, related issues have been also addressed.
Firstly, the discriminant capability of different sets of contextual features has
been studied, showing their positive effect on the system performance. Also,
the relation between the size of the training datasets and the system perfor-
mance has been analyzed, obtaining the expected conclusions: the larger the
dataset is, the better the system outcomes are. It has been also reckoned the
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computational efficiency, evidencing the suitability of the proposed system
for real time robot applications. Finally, we have studied the time saving
gained with the use of human elicitation plus synthetic samples generation
processes, resulting 20 times lower than the time spent in collecting real data
from the UMA-offices dataset.

In the future we plan to exploit the symbolic representation of the rec-
ognized objects to perform higher-level robot tasks, such as efficient task
planning or knowledge inference. We also plan to include temporal relations
in the ontology as well as enabling crowdsourcing for the human elicitation
process.
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