
UPGMpp: a Software Library for Contextual
Object Recognition

J.R. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez

System Engineering and Automation Dept., University of Málaga, Campus de
Teatinos, 29071, Málaga, Spain,

jotaraul@uma.es,
WWW home page: http://mapir.isa.uma.es/

Abstract. Object recognition is a cornerstone task towards the scene
understanding problem. Recent works in the field boost their perfor-
mance by incorporating contextual information to the traditional use
of the objects’ geometry and/or appearance. These contextual cues are
usually modeled through Conditional Random Fields (CRFs), a partic-
ular type of undirected Probabilistic Graphical Model (PGM), and are
exploited by means of probabilistic inference methods. In this work we
present the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp), an open source solution for representing, training, and per-
forming inference over undirected PGMs in general, and CRFs in par-
ticular. The UPGMpp library supposes a reliable and comprehensive
workbench for recognition systems exploiting contextual information, in-
cluding a variety of inference methods based on local search, graph cuts,
and message passing approaches. This paper illustrates the virtues of the
library, i.e. it is efficient, comprehensive, versatile, and easy to use, by
presenting a use-case applied to the object recognition problem in home
scenes from the challenging NYU2 dataset.

Keywords: contextual object recognition, probabilistic graphical mod-
els, probabilistic inference, scene understanding

1 Introduction

Scene understanding systems aim to provide a valid interpretation of the per-
ceived imagery which can be leveraged by a large variety of innovative technolo-
gies, like robotics, assistance to visual impaired, autonomous driving, etc. Object
recognition is a key component of these systems, whose results become crucial
for a proper understanding of the scene. Modern approaches improve the object
recognition performance by incorporating contextual information of the objects,
in addition to their usually employed geometry and/or appearance properties [1,
12–16, 20, 23]. This enables the disambiguation of confusing classifications pro-
vided by methods only relying on properties of the objects themselves [5]. Let’s
suppose, for example, a scene with a brown, cylindrical object. A method relying
on geometric/appearance properties could have problems to classify it as a pot
or a flowerpot, however, if it is found on a stove, the pot option is more probable.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



II

The Probabilistic Graphical Models (PGMs) framework [7] has been widely
used to exploit contextual relations among objects. Concretely, a particular type
of PGM, namely Conditional Random Field (CRF), has focused the interest of
researchers given its suitability to model this kind of problems. PGMs integrate
a compact and powerful graph-based representation of complex probability dis-
tributions defined over high-dimensional spaces, and employ probabilistic infer-
ence algorithms to efficiently perform queries of interest over it. Of particular
concern is the Maximum a Posteriori query (MAP), since it provides the recog-
nition results by computing the most probable category assignations to the scene
objects1. The simplest MAP inference method, called exact inference, exhaus-
tively tests all the possible objects’ category assignations, which is an unfeasible
approach in many real-world problems. Instead, approximate methods are ex-
ploited, which can be roughly classified into three major groups: local search [2],
graph cuts [4], and message passing algorithms [9].

Most contextual-based object recognition works rely on an ad-hoc implemen-
tations of both the PGMs framework and inference algorithms [1, 12, 20, 23]. This
makes it difficult to conduct a fair comparison between state-of-the-art works,
even when they report results resorting to the same dataset [15]. There are some
publicly available software libraries implementing this framework [11, 18], but
they are not suited for the contextual object recognition problem (e.g. they only
handle chain-structured models), or their applicability to this issue is limited.

This paper presents the Undirected Probabilistic Graphical Models in C++
(UPGMpp) library, a software package for working with undirected PGMs, as
is the case of CRFs, and its application to scene object recognition. UPGMpp
exhibits a number of features that make it suitable for facing this particular prob-
lem: i) it works with discrete random variables, like the ones needed to model the
possible objects’ categories (e.g. chair, table, book, etc.), ii) it handles unary and
pairwise relations, needed for representing the objects’ features and relationships,
and iii) it enables the representation of arbitrary structures, i.e. it can codify any
number of scene objects and relations among them. This library implements in-
ference methods from the three major groups mentioned above, including for
example Iterated Conditional Modes (graph search), α-β swaps (graph cuts),
or Loopy Belief Propagation (message passing). Therefore, UPGMpp provides a
good basis for their evaluation and integration into recognition systems exploit-
ing context. From an algorithmic point of view, the library also includes mech-
anisms to train PGMs and to perform probability queries (carry out marginal
inference), as well as functionality for storing/loading PGMs from files through
serialization. UPGMpp is designed to be efficient, versatile, extensible, and easy
to use through clear and intuitive APIs, and resorts to well known libraries for nu-
merical optimization (libLBFGS [10]), matrix operations (Eigen [6]) and memory
handling (Boost [17]). It is entirely open-source, and is publicly available under a
GNU General Public License (http://mapir.isa.uma.es/work/upgmpp-library).
The library is distributed along with a number of code tutorials, so the user can
master and start using it quickly.

1 Along this paper we employ the term inference to refer to MAP inference.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



III

microwave 

wall 

stove 

counter oven oven 

wall 

cabinet 

cabinet 

floor 

I(y4,y5,x4,x5, θ) 

y6 

y5 y7 

y4 y3 

y2 

y1 

U (y5,x5,w) 

x3 

x7 x5 

x4 

x1 

x2 

x6 

x5 

x4 

x1 

x3 

x2 

x9 

x10 

x7 

x8 

x6 

y8 

x8 

y9 

x9 

y10 

x10 

Fig. 1. Left, RGB-D image of a kitchen from the NYU2 dataset including the scene
objects marked as x = {x1, ..., x10}. Right, CRF structure built from the scene. The
blue shape represents the scope of an unary factor, while the red one states the scope
of a pairwise factor. Random variables are labeled with the categories assigned by the
execution of a probabilistic inference method over the CRF.

As an illustrative example of its suitability to the contextual object recog-
nition problem, we describe a use-case of recognizing objects from home scenes
within the challenging NYU2 dataset [19]. Performance results regarding the ex-
ecution time of inference and training methods within UPGMpp are also shown.

The next section describes the application of Conditional Random Fields to
the scene object recognition issue, in order to provide a theoretical background
for a better understanding of the library components. Then, section 3 presents
the UPGMpp library, as well as the inference algorithms that it implements.
Section 4 illustrates the UPGMpp application to the recognition of objects from
scenes within the NYU2 dataset. Finally, section 5 outlines the conclusions and
possible future work.

2 Contextual Object Recognition through Conditional
Random Fields

The object recognition problem can be stated as the assignation of classes (e.g.
table, chair, notebook, etc.) to a number of regions observed in imagery from a
given scene. Let’s consider the following definitions to address this problem from
a probabilistic stance:

– Define x = {x1, .., xn} as the set of n objects appearing in the scene,
where each xi is characterized through a vector of m features, fxiu =
[fxiu1

, .., fxium
]T , e.g. their size, color, orientation, etc.

– Let L = {l1, .., lk} be the set of k possible object classes.
– Define y = {yi, .., yn} as the set of discrete random variables over L, where

each yi assigns a class from L to its associated object xi.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



IV

Thereby, the object recognition problem, modeled through a Conditional
Random Field [7], is such of maximizing the probability distribution P (y|x), i.e.,
to find the most probable classes’ assignation from L to the random variables
in y according to the characterized objects in x. The structure of a CRF is
represented by a graph H = (V,E), where V is a set of nodes associated to
random variables, and E stands for a set of edges liking related variables/nodes.
Regarding the problem at hand, a node represents a variable from y, and an
edge connects two variables which associated objects are contextually related
in the scene, i.e. they are placed close to each other. Figure 1-left shows an
scene with ten objects, which are represented as nodes in the CRF in figure 1-
right. We can see how, for example, the stove is related to the cabinet, the wall,
and the counter, so their associated nodes are linked. Thereby, the probability
distribution P (y|x) can be factorized over this graph structure H, which is
expressed for convenience by means of log-linear models [7]:

P (y|x,ω,θ) =
1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (1)

where Z(·) is known as the partition function, so
∑
ξ(y) P (y|x,ω,θ) = 1, being

ξ(y) a possible assignation to the variables in y, ω and θ are vectors of weights
learned during the CRF training, and ε(·) is the energy function, defined as:

ε(y,x,ω,θ) =
∑
i∈V

U(yi, xi,ω) +
∑

(i,j)∈E

I(yi, yj , xi, xj ,θ) (2)

being U(·) and I(·) the so-called unary and pairwise factors respectively. These
factors can be seen as functions encoding small parts of the whole P (y|x) over
the nodes and edges of the graph H. Thus, an unary factor gives an intuition
about how probable is for a node yi to belong to a class from L according to
the features of the object xi. On the other hand, a pairwise factor speaks about
an edge, and states the compatibility of two related variables being assigned a
certain pair of classes from L. The scope of these factors is shown in figure 1-
right. They are defined by means of log-linear models as follows:

U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlfxiu
(3)

I(yi, yj , xi, xj ,θ) =
∑
l1∈L

∑
l2∈L

δ(yi = l1)δ(yj = l2)θl1,l2fxixjp
(4)

where δ(yi = l) is the Kronecker delta function, and fxixjp is the vector of
pairwise features characterizing the relationship between the objects xi and xj .

The training of a CRF consist of finding the vectors of weights ω and θ that
maximize the likelihood function:

max
ω,θ

LP (ω,θ : D) = max
ω,θ

∏
d∈D

P (yd|xd) (5)

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



V

where D is the set of all the scenes used for training, compound each one of a set
of characterized objects xd, and their respective ground truth classes yd. Solving
Eq. 5 requires the computation of the partition function, which is unfeasible in
practise. Section 3.1 introduces the approaches implemented in the UPGMpp
library to face this issue.

Once the CRF is trained, it can handle the execution of inference algorithms
to contextually recognize objects. Thus, given a scene, its particular graph struc-
ture H = (V,E) is built according to the relations shown by its constituent ob-
jects (see figure 1). The (MAP) inference goal is to find the classes assignation ŷ
that maximizes the probability distribution P (y|x) factorized over H, that is:

ŷ = argmax
y

P (y|x,ω,θ) (6)

Again the computation of the partition function Z(·) is needed. However,
since given a certain scene its value remains constant, this expression can be
simplified by:

ŷ = argmax
y

e−ε(y,x,ω,θ) (7)

Despite this simplification, to compute an exact solution of such an equation
is still unfeasible due to the huge number of possible assignations to be checked
(kn), which motivates the use of approximate inference methods. The algorithms
implemented in the UPGMpp library for this are described in section 3.2.

3 UPGMpp Library

The Undirected Probabilistic Graphical Models in C++ (UPGMpp) library is
an open-source software for dealing with undirected PGMs, e.g. Markov Random
Fields, or Conditional Random Fields. The library works with discrete random
variables and handles local and pairwise relations, i.e. first and second order
PGMs. UPGMpp provides tools for: i) defining graph representations, ii) com-
pleting a fast training of models, and iii) performing efficient inference queries
(both probability and MAP queries). This section presents an overview of the
most relevant features of the library and its components (section 3.1), as well as
the available inference algorithms (section 3.2).

3.1 Overview

The UPGMpp library is divided into three packages (see figure 2):

– base . Implements the functionality for building and managing PGM graphs.
– training . Permits the definition of training datasets to tune a PGM.
– inference . Implements algorithms to perform probability and MAP infer-

ence queries over PGMs.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



VI

Fig. 2. Simplified UML class diagram of the main classes within the base (blue), train-
ing (yellow) and inference (green) packages within the UPMGpp library. For interpre-
tation of references to color, the reader is referred to the web version of this work.

The base package provides an easy way to create and manage graphs repre-
senting PGM structures. Instances of nodes from V can be created employing
the CNode class, as well as edges from E through the CEdge one. The CNodeType

and CEdgeType classes permit us the definition of typed nodes and edges. Having
the sets of nodes and edges, they can be inserted into an instance of the CGraph

class, which represents the graph structure H = (V,E). The factors within nodes
(unary) and edges (pairwise) have been implemented through log-linear models
(recall equations 3 and 4), although the user can easily define a different way to
compute them through a prototype function.

The training package provides mechanisms for building datasets employing
the CTrainingDataset class, i.e. sets of graphs along with their ground truth
categories (see the yellow class and methods in figure 2). Once created and
populated, a dataset can be used to train an undirected PGM, i.e. to find the
vectors of weights ω and θ in equation 5. Recalling that the computation of
such an equation is unfeasible in practice, two major approaches are considered
in the literature: the definition of tractable alternative objective functions, like
the pseudolikelihood, and the use of approximate inference processes (including
MAP and marginal inference) [7]. Both approaches have been implemented and
are available to the user in the training package.

Finally, the inference package implements a number of state-of-the-art infer-
ence algorithms for performing both, probability and MAP queries (recall equa-

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



VII

tion 7), although in this work we focus on MAP since it provides the scene object
recognition results. To facilitate its use and future expansion, every MAP infer-
ence algorithm inherit the same functionality from a base class, CInferenceMAP,
and implements the same abstract method for performing inference (see green
classes in figure 2). The implemented MAP inference methods are described in
section 3.2.

UPGMpp resorts to the also open-source project libLBFGS [10] for perform-
ing numerical optimization, and the Eigen [6] library for performing fast matrix
operations. The Boost library [17] is used to avoid unnecessary re-copy of data
across the library methods by means of shared smart pointers. This library is
also used for serialization purposes, which adds the possibility of storing/loading
graphs from/to files, enabling the long-term life of PGMs beyond execution time.

3.2 MAP inference methods

This section briefly describes the theory behind the approximate MAP inference
methods implemented in the UPGMpp library. The interested reader can refer
to the provided citations for further information.

Local search methods. Local search methods are the simplest approaches
for approximated MAP inference, and they are widely used due to their easy
implementation and acceptable results. In a nutshell, these methods operate over
a set of candidate solutions called search states, which define a search space. In
object recognition, a search state can be seen as a certain assignation ξ(y) to the
variables in y, which have an associated likelihood value, and the search space
corresponds to the set of all possible assignations. Thus, starting at a certain
state ξc(y), a local search method checks if there is a state among the set of
similar states, defined as Sim(ξc(y)), showing a higher likelihood value. If so, the
algorithm moves to it as the current search state ξc(y). Thereby, these methods
perform small movements while exploring the search space, always increasing
the expected likelihood, until a local maximum is reached, i.e. there is not a
similar state to the current one with a higher likelihood. Algorithms within this
group differ in how they define the similarity function Sim(ξc(y)) for a given
state ξc(y). Next, the Iterated Conditional Modes (ICM) local search method
and its Greedy variant are described (see [2] for further detail.)

Iterated Conditional Modes. ICM operates by giving an initial assignation to the
variables in y, and iterating over those variables to maximize the local condi-
tional probability:

ŷi = argmax
yi

P (yi|yNH (yi)
, xi,xNH (yi)) (8)

where yNH(yi) and xNH(yi) are sub-vectors of the original y and x ones that
contain the random variables and observations of the neighbor nodes of yi in a
certain graph H. Thus, being ξc(·) the current assignation to a set of random

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



VIII

variables, the set of similar states is defined as Sim(ξc(y)) = {ξ(y) | ξ(y−i) =
ξc(y−i)}. This algorithm ends when convergence is achieved, i.e., an iteration
over all the variables is completed without changing the search state, or when a
given limit of iterations is reached.

Greedy ICM . The greedy variant takes the same initialization and ending cri-
teria, but instead of performing a movement per random variable in y, it first
iterates over all the variables, and then applies the movement that yields the
maximum likelihood increment. In this case the set of similar states is defined
as: Sim(ξc(y)) = {ξ(y) | diff(ξ(y), ξc(y)) = 1}, where diff(ξ(y)−ξc(y)) yields
the number of random variables with different assigned classes, i.e. two states
are similar if only one random variable in y shows a different assignation. This
algorithm requires on average more iterations to converge than the original ICM,
but it is more robust against getting stuck in a local maximum.

Graph cuts methods. Graph cuts [4] have been extensively used to efficiently
face early vision problems that can be formulated as a minimization of an energy
function. This approach reduces the MAP inference task to instances of the
minimum cut problem. Let’s suppose a binary classification problem (yi = {0, 1})
with factors codified over a graph H = (V,E). To apply graph cuts, the graph is
modified in the following way: a pair of nodes, s (source) and t (sink), are added
so Vc = {V, s, t}, and two edges linking each node with s and t are included,
obtaining the set Ec = {E} ∪ {es→i, ei→t,∀i ∈ V }. Then, the minimum cut of
this new graph Hc = {Vc, Ec} is computed, which divides the set of nodes into
two sets: the one containing the nodes connected to the source s, called Vs, and
the set of nodes Vt linked to the sink t. Finally, the nodes in Vs are classified
as belonging to the class 0, and those in Vt to the class 1. This method can
be extended to handle non-binary classification problems, as illustrate the α-β
swaps and the α-expansions algorithms [3].

α-β swaps. This algorithm iterates over all the possible class pairs (α,β) in
L, and checks if there is a swap among the variables assigned to that classes
that increments the expected likelihood. Let Vα = {Vi = α,∀i ∈ V } be the set
of nodes/variables assigned to the class α, and Vβ = {Vi = β,∀i ∈ V } those
assigned to β. Then, graph cuts compute the optimal classes assignation for the
graph Hc = (Vc, Ec), where Vc = Vα ∪ Vβ ∪ {s, t} and Ec = {eij ∈ E | (i =
α) ∩ (j = β)} ∪ {es→k, ek→t,∀k ∈ (Vα ∪ Vβ)}. In this case, a node connected to
the source s in the minimum cut is classified as belonging to the class α, and
to β otherwise. A change in the assignation of a node in the minimum cut with
respect to its previous one produces an α-β swap move. The algorithm ends
when no swap moves increasing the likelihood can be performed.

α-expansions. This method iterates over the classes α in L performing α-expansions,
i.e. changing the class assigned to a node from Lᾱ ∈ L−α to the class α. Thus,
for each class, graph cuts are used to compute the minimum cut of the graph

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



IX

Hc = (Vc, Ec), where in this case Vc = {Vᾱ, s, t} is the set of nodes not assigned
to the class α plus the source s and the sink t, and Ec = {eij ∈ E | (yi 6=
α)∩ (yj 6= α)} ∪ {es→k, ek→t,∀k ∈ Vᾱ}. The nodes connected to the source s in
the minimum cut produce an α-expansion, i.e. they replace their assigned class
by α, while those linked to the sink t keep their initial class. This process is
repeated until no α-expansion can increase the current expected likelihood.

Message passing methods. The message passing approach, also called Belief
Propagation (BP) or max-product [22], is based on the exchange of statistical
information among related nodes. This is performed by passing messages from
node yi to node yj , denoted as mij(yj), indicating the belief of node yi about
the belonging class of node yj . These messages are computed in the following
way:

mt
ij = U(yi, xi,ω)I(yi, yj , xi, xj ,θ)

∏
yk∈NH (yi)\yj

mki(yi) (9)

where NH(yi) \ yj is the set of neighbors of yi in the graph H less yj , and t is
an iteration counter. Thus, the BP algorithm keeps sending messages between
nodes following a certain message scheduling until the graph is calibrated, i.e. the
messages exchanged between nodes are the same in two consecutive algorithm
iterations. Once calibrated, the belief of each node is computed as:

b(yi) = κU(yi, xi,ω)
∏

yj∈NH (yi)

mji (10)

being κ a normalization component so the beliefs for node yi sum to 1. Then,
each node yi is assigned to the class with the highest belief value in b(yi).

In the case of tree-structured graphs, such a message updating rule yields
the optimal maximum. On the other hand, when it is applied to graphs with
loops it adopts the name of Loopy Belief Propagation (LBP), and it is able to
approximate a solution with a reasonable success. Next, we briefly describe the
Tree-Based Reparametrization message passing algorithm (TRP) [21].

Tree-Based Reparametrization. This method pursuits a more global exchange of
statistical information, not only between related nodes, aiming to reach a faster
calibration even in cases where traditional BP methods fail. For that, a set of
trees T = {T1, .., Tt} are spanned over the original graph H = {V,E} in such a
way that every node in V belongs to (at least) one tree.

Once the set of trees T is obtained, the algorithm iteratively selects a tree
and calibrates it, keeping fixed all the messages from the variables out of the
tree. The calibration of a tree can lead to the miscalibration of other trees,
so the algorithm has to be repeated until global calibration is reached. Once
calibrated, the inference results are obtained in the same way as the original
LBP algorithm. The interested reader can refer to [21] for more detail.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



X

Fig. 3. Processing pipeline when training and exploiting a CRF model using the UP-
GMpp library. Colored shapes are processes and data handled by the library (see
figure 2), while gray shapes are problem specific and, therefore, defined by the user.

4 Contextual Object Recognition Using the UPGMpp
Library

This section shows the flexibility and usability of the UPGMpp library when
applied to the scene object recognition problem exploiting contextual informa-
tion. First, we introduce the NYU2 [19] dataset which has been used to test
the library (section 4.1). Then, we describe the processes needed for training
and testing (performing inference) Conditional Random Fields (CRFs) employ-
ing the UPGMpp library (section 4.2). Finally, the recognition results yielded by
the different inference methods within UPGMpp are shown (section 4.3), includ-
ing performance information, which support the suitability of the application of
the presented library for the scene object recognition problem.

4.1 The NYU2 dataset

In this work we employ RGB-D images from the NYU2 dataset, which contains
a total of 1,449 densely labeled pairs of intensity and depth data. The dataset
has been widely used in the literature (e.g. [8]) due to its challenging cluttered
scenes from commercial and residential buildings. In this work, we have used
208 scenes belonging to rooms typically found in houses, namely: bedrooms,
bathrooms, kitchens and living rooms, containing 1,692 objects that belong to
22 objects classes, e.g. cabinet, counter, bottle, toilet, sofa, lamp, clothes, etc.

4.2 CRFs creation and operation with UPGMpp

Figure 3 shows the general processing pipeline when training a CRF model and
exploiting it to perform object recognition. The colored shapes in the image
comprise the processes and data provided/managed by the UPGMpp library,
and the involved package (as before, blue represents the base package, yellow
the training one, and green the inference package). On the other hand, the gray
shapes are problem-specific, so they have to be defined by the user. We have
instantiated this pipeline for the case of the NYU2 dataset, although it can be
replaced by any other.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



XI

Fig. 4. A simple example of the use of the UPGMpp library.

The NYU2 dataset has been split into training and testing scenes which have
to be processed in order to extract the features of the objects appearing in them
and their relationships. These features are defined by the user, and in this work
we have used the following object/node ones: orientation, planarity, linearity,
minimum, maximum and centroid heights from the floor, volume, area of its
biggest face, and hue variation, while the chosen contextual/edge features have
been: difference of orientation, vertical distance, is on relation2, and a bias value
that states the compatibility of the related object classes. The extracted features
from the training scenes are used to build their respective CRF representations
(instances of CGraph), which together with ground truth information are inserted
into an instance of the CTrainingDataset. Then, the selected training method
computes the vectors of weights of the CRF model. In UPGMpp these weights are
stored within the node and edge types (instances from CNodeType and CEdgeType

respectively), so all the CRF graphs employing these node and edge types share
the same vectors of weights.

On the other hand, for each scene into the testing data, its CRF structure
is built according to the features shown by their constituent objects. Figure 4
lines 1-22 shows a code snippet where two scene objects/nodes are created and
characterized (concretely, x6 and x7 from figure 1), as well as their contex-
tual relation/edge, and then inserted into a CRF structure. Notice that both
nodes share the same node type, object, and the used edge type is defined as
edgeBetweenObjects. The same process is repeated for all the objects and rela-

2 This feature takes the value 1 if an object is placed on the other one, and 0 otherwise.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



XII

tions appearing in the scene. Finally, the chosen inference process over the CRF
structure gives the object recognition results, which are obtained for every scene
within the testing data. As an illustrative example, figure 4 lines 25-27 shows the
definition of an ICM inference object, and its use to get the recognition results
for a given CRF structure.

4.3 Contextual Object Recognition results

This section shows the results of applying the UPGMpp to the NYU2 dataset
excerpt, as well as the computational time required for training and inference.
This outcomes come from a 4-random-fold cross-validation, i.e. the 208 scenes
were randomly divided into 4 folds with equal size, then three out of the four
folds were used to train a CRF model, while the remaining fold was used to
evaluate its performance. This process is repeated a total of 100 times, and the
results are computed as the average of all the evaluations. The training of the
CRF models has been done through the optimization of the pseudolikelihood
function.

Table 1. Scene object recognition results employing the different inference methods
within the UPGMpp library with/without contextual information. It is also shown
their mean execution time as well as the execution time in the worst cases (in ms.).

Method ICM Greedy α-expansions α-β swaps LBP TRP
Objects 65.71% 65.71% 65.71% 65.71% 65.71% 65.71%

Objects+context 68.37% 68.60% 68.99% 66.72% 71.45% 71.16%
Mean ex. time 0.46 2.92 7.78 37.39 2.16 11.05
Max ex. time 4.85 26.30 26.73 181.26 10.80 130.67

Table 1 shows the results yielded by the different inference methods. Note
that all the methods yielded the same outcome when considering only the fea-
tures of the objects themselves. In this case, only nodes are added to the CRF
graph structure, and all the methods chose the class assignation that maximizes
the unary factor for each node (recall equation 3). On the other hand, when con-
textual information is considered, the performance increases in all of the cases.
It can be seen how the outcome of the Greedy method is slightly better than the
ICM one, and similar to the α-expansions, being the α-β swaps the method with
worse results. In contrast, LBP and TRP shows the better figures, improving
the recognition results in more than a ∼ 5% with respect to only using the ob-
jects’ features (with no contextual information). Regarding the execution time
consumed by these methods, the average ranges from the 0.46ms. of the ICM
method up to the 37.39ms. of the α-β-swaps3.

Despite of the results achieved by the inference methods in these tests, their
general performance is affected by a number of factors, e.g. the features used to

3 These figures were obtained using an Intel R©CoreTMi5 3330 microprocessor at 3GHz
and 8 GB DDR3 RAM memory at 1.6 GHz.

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



XIII

model the problem, the training method employed, or the domain at hand. Thus,
for a different application, the performance of each individual method should be
tested in order to employ the one giving the better results.

Regarding the time spent training the CRF models, its average over the 100
executions is 585.46 seconds. Notice that the training process has to be performed
only once, and the resulting CRF model can then be used to recognize objects
within any scene.

5 Conclusions and Future Work

This paper has presented the Undirected Probabilistic Graphical Models in C++
library (UPGMpp), a software library for dealing with the scene object recog-
nition problem exploiting contextual information. A description of the main
software packages of UPGMpp has been detailed, with especial emphasis on the
implemented probabilistic inference algorithms, giving a practical idea about the
library features and capabilities. This work also contributes with the application
of the UPGMpp library to a use-case to both: train CRF models, and obtain ob-
ject recognition results through the execution of a number of inference processes.
The challenging NYU2 dataset is used to train and test the CRF models within
the use-case, proving the virtues of the library, which is publicly available under a
GNU General Public License at http://mapir.isa.uma.es/work/upgmpp-library.

Some additional features regarding the performance of the UPGMpp library
are currently under work. For example, some parts could greatly reduce their
execution time with the utilization of multi-core parallelization mechanisms,
like OpenMP. Support for GPUs using CUDA and/or OpenCL could be also
advantageous in that sense. We also plan to include visualization tools for PGM
graphs, as well as sampling techniques to draw samples from the probability
distribution defined by a PGM. We welcome any contribution to the UPGMpp
library from the computer vision community.

Acknowledgements

This work has been funded by the Spanish grant program FPU-MICINN 2010
and the Spanish projects “TAROTH: New developments toward a robot at
home” (Ref. DPI2011-25483) and “PROMOVE: Advances in mobile robotics
for promoting independent life of elders” (Ref. DPI2014-55826-R).

References

1. Anand, A., Koppula, H.S., Joachims, T., Saxena, A.: Contextually guided semantic
labeling and search for three-dimensional point clouds. In the International Journal
of Robotics Research 32(1), 19–34 (Jan 2013)

2. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statis-
tical Society. Series B (Methodological) 48(3), 259–302 (1986)

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.



XIV

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on
23(11), 1222–1239 (Nov 2001)

4. D.M. Greig, B.P., Seheult, A.: Exact maximum a posteriori estimation for binary
images. J. of the Royal Statistical Society. Series B 51, 271–279 (1989)

5. Galleguillos, C., Belongie, S.: Context based object categorization: A critical sur-
vey. Computer Vision and Image Understanding 114(6), 712–722 (Jun 2010)

6. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
7. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press (2009)
8. Lin, D., Fidler, S., Urtasun, R.: Holistic scene understanding for 3d object detection

with rgbd cameras. IEEE Int. Conf. on Computer Vision 0, 1417–1424 (2013)
9. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate

inference: An empirical study. In: Proceedings of the Fifteenth Conference on Un-
certainty in Artificial Intelligence. pp. 467–475. UAI’99 (1999)

10. N. Okazaki, J.N.: libLBFGS: a library of Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS). http://www.chokkan.org/software/liblbfgs/

(2015), [Online; accessed 20-April-2015]
11. Okazaki, N.: Crfsuite: a fast implementation of conditional random fields (crfs),

http://www.chokkan.org/software/crfsuite/, [Online; accessed 28-April-2015]
12. Ren, X., Bo, L., Fox, D.: Rgb-(d) scene labeling: Features and algorithms. In: IEEE

Conf. on Computer Vision and Pattern Recognition. pp. 2759–2766 (2012)
13. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Mobile robot object

recognition through the synergy of probabilistic graphical models and semantic
knowledge. In: European Conf. on Art. Int. Workshop on Cognitive Robotics (2014)

14. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Exploiting semantic
knowledge for robot object recognition. In: Knowledge-Based Systems (2015)

15. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: OLT: A Toolkit for Ob-
ject Labeling Applied to Robotic RGB-D Datasets. In: European Conference on
Mobile Robots (ECMR) (2015)

16. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Scene Object Recogni-
tion for Mobile Robots through Semantic Knowledge and Probabilistic Graphical
Models (2015), submitted

17. Schling, B.: The Boost C++ Libraries. XML Press (2011)
18. Schmidt, M.: UGM. http://www.cs.ubc.ca/~schmidtm/Software/UGM.html

(2015), [Online; accessed 28-April-2015]
19. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor Segmentation and Sup-

port Inference from RGBD Images. In: Proc. of the 12th European Conference on
Computer Vision (ECCV 2012). pp. 746–760 (2012)

20. Valentin, J., Sengupta, S., Warrell, J., Shahrokni, A., Torr, P.: Mesh based semantic
modelling for indoor and outdoor scenes. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2013). pp. 2067–2074 (2013)

21. Wainwright, M., Jaakkola, T., Willsky, A.: Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. IEEE Transactions on
Information Theory 49(5), 1120–1146 (May 2003)

22. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product
belief-propagation algorithm in arbitrary graphs. IEEE Trans. Inf. Theor. 47(2),
736–744 (Sep 2006)

23. Xiong, X., Huber, D.: Using context to create semantic 3d models of indoor en-
vironments. In: In Proceedings of the British Machine Vision Conference (BMVC
2010). pp. 45.1–11 (2010)

Draft Version. Final version published in The Third Workshop on Recognition and Action for Scene Understanding (REACTS), 2015.




