
Authors’ accepted manuscript: IEEE 23th Mediterranean Conference on Control and Automation (MED), 2015.
The final publication is available at: https://doi.org/10.1109/MED.2015.7158919

Enhancement of a commercial multicopter
for research in autonomous navigation

Andres Gongora
System Engineering and Automation Department

University of Málaga (SPAIN)
Email: andresgongora@uma.es

Javier Gonzalez-Jimenez
System Engineering and Automation Department

University of Málaga (SPAIN)
Email: javiergonzalez@uma.es

Abstract— Multicopters are lightweight and maneuverable
aerial vehicles yet unable to carry heavy payloads, such as
large sensors or computers required for indoor autonomous
navigation. Therefore, localization is usually performed by using
vision-based solutions employing of either lightweight on-board
cameras or external fixed cameras and a ground station for
data-processing. Nevertheless, the current tendency is to use a
low-power on-board computers to perform all computation on
the multicopter itself. This paper covers the enhancement of a
commercial multicopter, also called drone, with computation
ability and sensorial devices for autonomous flight without
the need of a ground-station. We describe the hardware and
software integrated into the drone, which will be used for
the future development of 6DoF navigation algorithms. The
resulting system is able to work with most standard sensors
and has the possibility to change them as needed. Also, we
demonstrate the correct behavior of the drone by using a test
navigation program that autonomously follows a moving beacon
at constant distance and controlled altitude using an RGB-D
camera and a sonar.

Keywords— Unmanned systems, robotics, education and
training

I. INTRODUCTION

Multicopters, also called drones, are gaining attention in
the robotic community due to their potential for aerial appli-
cations that demand small size, high maneuverability and low
cost. They are specially suited for indoor flight due to their
ability to hoover and move freely in all directions but also
able to fly outdoors. However, one of their main drawback
is the reduced maximum weight they can carry, imposing a
limit to how much hardware for on-board computation can
be built into them. This in turn prevents them to exploit most
developments in autonomous robotic navigation, specially in
GPS-denied environments, such as indoors, where additional
sensors and computation are required.

Autonomous navigation involves the ability to plan
obstacle-free paths and actions ahead and dynamically
change them when new information about the surroundings
becomes available (see for example [12] [10] [16] [18]).
Executing all algorithms on board and eliminating the need
for a ground station allows for true autonomous navigation.
Some of the benefits are fast deployment of the system and
the absence of problems caused by a remote connection, such
as latency issues and connection losses.

In this paper we describe our approach to the problem of
sensor and computation integration into multicopters without

Fig. 1. Hexacopter enhanced with an on-board computer and extrospective
sensors: an RGDB-D camera for visual navigation and a sonar for altitude
control.

exceeding neither weight nor power limits. Starting with a
commercial remote controlled hexacopter, we enhance it with
an on-board Single Board Computer (SBC) and additional
sensors. The SBC is aimed at the possibility to run on-
board navigation algorithm that require a reasonable amount
of computation power, and that otherwise would run on a
ground-station. As for the additional sensors, the SBC makes
it possible to connect any kind of generic digital sensor, such
as video cameras or laser range-finders. In our setup we
have an RGB-D camera, which requires considerable data
processing, and a digital sonar, in order to also test simple
sensors. The final setup is shown in Figure 1.

Additionally, we describe how we implement an Appli-
cation Programming Interface (API) that simplifies the task
of interfacing with the drone. It was developed in order to
allow for fast and easy development of navigation programs
that can be integrated into a robotic architecture [3] [11].

Finally, we test the extended features of the system by
running a navigation program that uses the RGB-D camera to
track a moving beacon, whereas altitude is controlled using
sonar and inertial data with a non-linear complementary
filter.

https://doi.org/10.1109/MED.2015.7158919


II. BACKGROUND

Multicopter or multirotors are helicopter-like, aerial ve-
hicles with more than two rotors. They are usually small,
with a diameter less than 1 meter, and use batteries for
energy storage. Because they do not have enough inertia,
their flight is unstable, thus requiring constant readjustments
of how power is distributed among the rotors to compensate
for unwanted drifts. Although prior versions exist, the cur-
rent format is relatively new (endings of the 2000 decade)
being quadcopters (4 rotors) the most popular. Traditionally
multicopters are remote controlled vessels that feature only
an on-board micro-controller and Inertial Measurement Units
(IMUs) for flight stabilization.

In order to use multirotors as aerial robots, that is, as
drones, additional computation power is required for au-
tonomous navigation algorithms. In the first attempts, this
task has been carried out by ground computers that simply
replace the human operator. Sometimes this implementations
use additional sensors mounted on the drone [7] [9], but a
well-proved approach consists of triangulating the vehicle’s
position using ground cameras [8] [14] [19]. Even though
in essence the multirotor remains remote controlled, this
solution is still widely used because of its simplicity and pos-
sibility to execute more computation-demanding algorithms.

Due to the recent appearance of small and lightweight
yet powerful computers, drones can now carry part or even
all needed computation power on-board, alongside additional
sensors [13] [17] [22] [21]. This way it is possible to develop
true autonomous drones that offers the possibility for fast
deployment without the need for extra equipment.

III. REQUIREMENTS

We use a RTF-Y6 hexacopter [4] in coaxial configuration
by 3DRobotics, shown in Figure 3.a, meaning it has three
axis with two rotors each. Control of the rotors is performed
using Electronic Speed Controllers (ESC) which deliver
power to the motors as told by the control layer.

In order to develop the multicopter into a drone with
autonomous capabilities aimed at research and prototyping
of algorithms for 6 Degrees of Freedom (DoF), the following
consideration were taken.

• Lightweight and low power on-board computer with
reasonable computation power for navigation algo-
rithms, intended to act as on-board pilot of the vehicle.

• Ability to operate in GPS denied environments, such
as indoors, where the drone has no initial reference of
where it is or what surrounds it.

• Clean API to simplify the task of writing software for
the on-board computer. Future researchers that work
with the system should not need to concern with hard-
ware or low-level software details.

• Possibility to communicate with a ground station,
preferably using a widely available technology such as
WiFi. This link si intended to communicate with the
drone during flight, for example, to read telemetry data.

• Mechanism to remotely interfere and manually control
the drone in case of emergency. Also this can be used

Fig. 2. Hardware architecture of the system. Blue color corresponds to the
original system, while orange denotes the added elements. The SBC gives
flight orders to the MCB, but is also able to read telemetry data from the
MCB.

to force the drone into certain situation and test how the
navigation software behaves.

IV. HARDWARE ARCHITECTURE

This section presents an overview of the system’s hardware
architecture,depicted in Figure 2, which shows that the drone
is composed of a commercial remote controlled hexacopter,
shown in blue, and some additional hardware for autonomous
flight, shown in orange. The communications between the
on-board SBC and the Multicopter Control Board (MCB) is
bidirectional, allowing the SBC to give flight-orders to the
MCB and also read telemetry data from it.

Figure 2 also depicts 5 conceptual layers: perception,
computation, control, Human-Machine Interface (HMI), and
actuation, which are described next.

A. Human-Machine Interface (HMI)

In the commercial system the HMI consists of a Remote
Controller (RC) that gives direct control to the user. The
RC has been preserved for security purposes. With the RC
it is possible to override the SBC in case it wreaks havoc.
This is done at software level on the MCB by continuously
monitoring channel 5 (out of 7), which determines whether
to follow instructions from the SBC (channel 5 active) or
from the RC (default). Thus, a switch on the RC allows us
to easily change between manual and autonomous flight.



B. Human-Machine Interface (HMI)

It is possible to connect to the SBC via SSH in order
to upload the navigation program and to access telemetry
data. The connection can be established either using the
SBC’s WiFi module, or optionally, over USB when the
drone is landed. Considering the limited range of WiFi, we
use it only for development purposes. We are planning to
add a dedicated radio transmiter/receiver for kilometer-range
connections in future versions of the drone, such as XBee-
Pro.

Alternatively, it is possible to use a radio module con-
nected to the serial port of the MCB to receive telemetry
data using MAVLink protocol. We did not resort of it in this
first version because all our flights were done relatively close
to the WiFi access point and because SSH was much faster
to set up.

C. Computation

The computation layer makes it possible to execute on-
board navigation algorithms. Therefore, it acts as pilot of
the drone, substituting the former RC. Also, it is able of
retrieving data from additional sensors and process it.

For this purpose we use a UDOO-quad 4 core cortex
A9 1GHz ARM development board [6], shown in Figure
3.c. This board has a reasonable computation power while
remaining low power and lightweight. Also, it has several
I/O options and an integrated WiFI module.

D. Control layer

The control layer is in charge of controlling the vehicle and
stabilizing the hexacopter. It uses inertial sensors to estimate
current pose of the multicopter, and corrects it according to
the indications from the computation layer.

Although the SBC outperforms the MCB and could inte-
grate computation and control, the MCB has been retained
since control loops are very CPU demanding, and would
reduce the resources available for navigation algorithms.

The commercial multicopter we started with already in-
tegrated an APM-2.6 control board by 3DRobotics [1],
shown in Figure 3.b. It runs ArduCopter, a open source
multicopter control software, which we have modified to
accept instructions from the on-board computer and to report
sensor data back when requested.

E. Sensors

Inertial sensors and a compass are used by the control
layer to stabilize the flight of the drone, therefore, they are
directly connected to the board. Once processed, information
about the pose can be accesses by the computation layer to
obtain relevant data for the flight such as rotation angles or
ascending speed.

Additional sensors can be connected to the computation
layer as required by the navigation algorithms. For our test-
setup we chose to use an RGB-D camera and a sonar. These
sensors represent complete opposites of complexity, data
throughput and computation requirements.

Each individual sensor is discussed below.

Fig. 3. Some of the employed hardware. (a) RTF-Y6 Hexacopter. (b)
APM-2.6 Multicopter Control Board. (c) UDOO-quad 4 core 1GHz ARM
development board. (d) Asus Xtion PRO live RGBD camera.

Fig. 4. Communications between the SBC and the MCB. The MCB uses
a native I2C bus to communicate with the SBC, and a software simulated
I2C with GPIO pins for the electronic compass. M denotes Master of the
bus and S denotes Slave

1) Inertial sensors: The MCB comes with a MPU-6000
[2] integrated circuit by Invensense, which contains an elec-
tronic accelerometer and gyroscope.

2) GPS and Compass: Because electronic motors cause
big magnetic field that disturb electronic compasses, and
because a GPS needs a obstacle-free view of the sky, both
sensors are mounted externally to the MCB. We use a Ublox
LEA-6H GPS and HMC5883L compass combo.

3) RGBD camera: We use an ASUS Xtion PRO Live
camera, shown in Figure 3.c. It provides video and depth with
a maximum resolution of 640x480 and a maximum range of
about 4 meters. The depth measure is very light sensible, and
therefore not suited to work with direct sunlight exposure.

4) Sonar: A SRF-10 sonar on the bottom of the drone
improves height estimations. The SRF-10 performs a mea-
surement every 65 ms in its 6 meters practical maximum
range with a resolution of 43mm.

V. COMMUNICATIONS BETWEEN SBC AND MCB

The MCB is intended as a stand-alone solution for remote
controlled multicopters, and in consequence has no connector
foreseen for external commands except for the receiver of a



Fig. 5. Software hierarchy. The left stack is for the Multicopter Control
Board. The right stack for the Single-Board Computer, which runs linux
and is divided into kernel and user space.

remote controller. Using this connector would allow only to
give commands to the MCB, but not to retrieve telemetry
data. The MCB also features a serial port intended for
MAVLink protocol, but we chose not to use it to minimize
the modifications to the board and retain the possibility to
connect a simple radio set for remote telemetry in future
projects.

Our solution consists in using the MCB’s Inter-Integrated
Circuit (I2C ) port intended for the external electronic
compass to establish a link with the SBC. But because I2C
is a single-master to multi-slave bus, it has no mechanism
to allow a slave to send data to the master unless explicitly
requested. In consequence, there would be conflicts if both
boards shared the bus, as both need to be master. The
MCB needs to control the compass and at the same time
be controlled by the SBC.

Although it is possible to configure I2C for multi-master
communications, we decided to create a second, virtual,
I2C bus on the MCB and use it as shown in Figure 4.
This way the MCB uses one as master with the electronic
compass, and the other as slave with the SBC. The virtual
I2C bus is software emulated and available through General
Purpose Input/Output (GPIO) pins. Because the virtual bus is
considerably slower, it is connected to the compass, leaving
all the bandwidth of the native bus for the SBC. Finally,
because the SBC works at 3.3V and the MCB at 5V, a
bidirectional 5 to 3.3 V-logic converter has been added.

VI. SOFTWARE ARCHITECTURE

As shown in Figure 5 the MCB runs ArduCopter, an open
source software devised to control multicopters and which
we modified to communicate with the SBC. Arducopter reads
all inertial sensors, estimates the current attitude and calcu-
lates the needed thrust by each rotor to move as indicated
by the SBC. Then, it sends the control values to Electronic
Speed Controllers, which regulate the speed of the rotors.

The SBC runs Arch Linux, a non-real-time OS which,
as usual, divides execution time into User Space and Kernel
Space. The SBC is fast enough to meet al time requirements,
thus we could afford not to use a real-time OS and therefore
avoid additional over-head computation. It is intended that
the current demo program and future navigation software run
in User Space, while sensor drivers and MCB-related code
reside in the Kernel Space.

A. User Space

On the top of the User Space is the autonomous navigation
program, which exploits the computation capabilities of the
SBC to execute robotic algorithms.

In order to work with the RGD-D camera we use
OpenNI2, for its drivers. Also, we use OpenCV, which is
a library for computer vision that allows for more advanced
applications such as pattern recognition and visual tracking
of objects. OpenNI2 was directly compiled and installed on-
board, meaning that user-applications need not to be cross-
compiled.

At the border line between User and Kernel Space is
a C++ API aimed at reducing development time of future
applications. It hides all details of how communications work
between the SBC and the MCB, and also converts data
reported by the MCB from non standard notation in integer
format to metric units in floating point format. Additionally
it creates several threads that are used to update attitude
information and obtain parameters which are time related,
such as speeds and accelerations.

B. Kernel Space

ArchLinux has been adopted on the SBC because its a
lightweight and performance oriented Linux Distribution.

In the Kernel Space we run two I2C drivers that commu-
nicate with the MCB and the sonar. They create binary files
in the file-system with thread blocking access in order to
increase performance.

VII. TESTING THE SYSTEM

In order to test the performance fo the hardware and
software integrated in the drone, we have developed a
demonstration program. With the RGB-D camera the drone
tracks a moving beacon of a previously defined color at con-
stant distance. Altitude is maintained using a non-linear filter
that combines the sonar with the accelerometer. Because
following a beacon and controlling altitude are independent,
they have been implemented to run on separate threads for
performance reasons.

We do not intend to demonstrate the performance of a
concrete navigation algorithm or technique. Our aim is to test
the improved capabilities of the drone to execute tasks that
demand a rational amount of on-board computation, such as
real time image processing, and to test the communications
between the different modules and sensors.



Fig. 6. Blue: non-linear complementary filter [20] for altitude that integrates
twice the accelerometer data to obtain the current altitude and eliminates
accumulative the bias using the data from the sonar. Orange: PID controller
for altitude that commands the drone’s throttle.

Fig. 7. Altitude PID controller output when setting 1 meter as target altitude
and engaging autonomous mode flying at an altitude of 2 meters.

A. Controlling flight altitude

In order to fly at a given altitude, the drone needs to know
its current altitude first. On one hand, using the accelerometer
it is possible to know the relative altitude with respect to the
lift-off altitude by integrating twice over time the vertical
acceleration. Nevertheless, this information is not useful as
integration slowly introduces a bias error with each iteration.

On the other hand, using the sonar alone is neither a good
option, as it works only at a limited range (max 4 meters),
has a relatively big error and is prone to important outlier
samples.

Our solution was to implement a non-linear complemen-
tary filter [20] adapted to one dimension that uses the sonar
for an absolute reference and the accelerometer to calculate
the rate of change. This combination keeps the best of both
sensors: accurate absolute value, high sensibility to small
changes and immunity to outlier measurements.

Once the current altitude is known, the hexacopter’s al-
titude is controlled with a PID controller that commands
thrust. The altitude control thread behaves as depicted in
Figure 6 and runs every 10 ms.

Figure 7 shows the response of the drone when setting the
desired altitude to 1 meter and letting it fall from 2 meters.
For this test we flow the drone in manual mode to the starting
altitude and switched to autonomous mode to observe how
it descended as it was expected to.

B. Following a moving beacon

The drone follows the beacon using the RGB-D camera.
With the color output it is able to orient itself towards the

Fig. 8. The angle ψ is obtained with the centroid of the segmented color
image that retains only pixels belonging to the beacon. Then, ψ is then used
as error input for a PID controller that commands yaw in order reduce ψ
to zero, effectively rotating the drone towards the beacon.

Fig. 9. Distance PID controller response. a) Current distance ”d” is greater
than target distance, the drone approaches by changing its pitch towards the
beacon. b) Current distance ”d” is smaller than target distance, the drone
retreats by changing its pitch away from the beacon.

beacon, and with the depth output it is able to maintain a
given distance from it.

The beacon following thread searches for the beacon
within the image using color information, and if found,
determines its relative position. This is done using a HSV1

filter from OpenCV to segment the image. Afterwards the
centroid of the segmented image is calculated, which in turn
allows to calculate the angle to the beacon, denoted ψ in
Figure 8. Also with the segmented image, the distance d
to the beacon is calculated as the mean value of the depth
measured by the RGB-D camera.

The angle ψ is used as input for a PID controller that
commands yaw to rotate the drone towards the beacon as
shown in Figure 8. A second PID that commands pitch,
as shown in Figure 9, controls the drone to keep it at a
preconfigured distance from the beacon.

C. Performance of the system

We monitored the system using a WiFi connection to a
laptop. The tests were performed attaching the beacon to a
mobile robot moving at about 2 km/h and following it at 1
meter and by holding the beacon in one hand walking, and
running, in both cases configured to follow at 2 meters.

1Hue Saturation Value, a format to represent colors with three numbers
similar to RGB, but using a format which can be interpreted more naturally
by a human.



Fig. 10. Average execution time for the beacon following thread at 15 FPS
(66.67 ms period ).

Fig. 11. Average execution time for the altitude control thread at 100 Hz
(10 ms period ).

The drone is able to identify the beacon in most light
conditions, orient itself and follow it at the preconfigured
distance. Using the RGB-D camera at 15FPS and the altitude
control loop at 100Hz, the system load stayed between 21
and 23%. Setting the sampling frequency of the camera to
25FPS increased the system load to about 35%. For 1GB
RAM, memory usage was constant at 2.6% for the test
program and 1% for the OS.

Figures 10 and 11 show the average execution time for
the demonstration program. Figure 10 shows the consumed
time for the beacon-following thread running at 15 FPS, that
is, every 66.67 ms, and Figure 11 shows the time for the
altitude control thread running every 10 ms. The fact that
none of the threads need to run their total period and that
they execute concurrently on one of the four CPU’s, agrees
with an average system load of 23%.

VIII. DISCUSSION AND FUTURE WORK

The paper describes some key aspects of retrofitting a mul-
ticopter with an on-board computer and additional sensors
with the goal of using it in future research and development
of autonomous aerial navigation. The use of a small and
lightweight Single Board Computer makes it possible to
process sensor-data and execute software to fly itself without
requirements for a ground station.

Nevertheless, our setup offers the possibility to create a
TCP/IP connection over WiFi if required. We use it for
external data logging and debugging, but it can optionally be
used for additional external computation or to communicate
with other robots.

The whole setup weights slightly less than 2.0 Kg with a
4200 mAH battery. Flight duration is 13 minutes hoovering
and 7 minutes for a more dynamic flight. Also, at the
expense of flight time, it is able to lift up to 700 g of
additional payload.

Our future work is aimed at using the system to adapt
and test navigation algorithm which we have developed for
omni-directional ground robots. Also we want to exploit the
advantages of visual and laser odometry for aerial navigation,
because we have no other way to detect movement on the
drone the way it is done with ground vehicles, such as
counting wheel rotations.

A video [15] of the implemented demonstration program
and the source code [5] are available online.

REFERENCES

[1] Apm-2.6 multicopter control board. [Online].
http://store.3drobotics.com/products/apm-2-6-kit-1.

[2] Mpu6000 inertial sensor. [Online].
http://www.invensense.com/mems/gyro/mpu6050.html.

[3] Robotic operating system (ros). [Online]. http://http://www.ros.org.
[4] Rtf-y6 hexacopter. [Online]. http://3drobotics.com/kb/diy-y6-kit/.
[5] Source code (mapir webpage). [Online].

mapir.isa.uma.es/mapirwebsite/index.php/mobile-robotics/182-drone1.
[6] Udoo quad. [Online]. http://shop.udoo.org/eu/product/udoo-

quad.html.
[7] Markus Achtelik, Abraham Bachrach, Ruijie He, Samuel Prentice, and

Nicholas Roy. Autonomous navigation and exploration of a quadrotor
helicopter in gps-denied indoor environments. In First Symposium on
Indoor Flight, 2009.

[8] Markus Achtelik, Tianguang Zhang, Kolja Kuhnlenz, and Martin Buss.
Visual tracking and control of a quadcopter using a stereo camera
system and inertial sensors. In IEEE International Conference on
Mechatronics and Automation, ICMA 2009., pages 2863–2869.

[9] Ludovic Apvrille, Jean-Luc Dugelay, and Benjamin Ranft. Indoor
autonomous navigation of low-cost mavs using landmarks and 3d
perception. Proc. Ocean and Coastal Observation, Sensors and
Observing Systems, 2013.

[10] Jose Luis Blanco, Juan Antonio Fernandez-Madrigal, and Javier
González. A novel measure of uncertainty for mobile robot slam
with rao—blackwellized particle filters. The International Journal of
Robotics Research, 27(1):73–89, 2008.

[11] Jose Luis Blanco, Cipriano Galindo, Javier Gonzalez Monroy, and
Javier Gonzalez-Jimenez. Open mobile robot architecture (openmora).
[Online]. http://www.mapir.isa.uma.es/openmora.

[12] Jose Luis Blanco, Javier González, and Juan Antonio Fernández-
Madrigal. Extending obstacle avoidance methods through multiple
parameter-space transformations. Autonomous Robots, 24(1):29–48,
2008.

[13] Roland Brockers, Martin Hummenberger, Stephan Weiss, and Larry
Matthies. Towards autonomous navigation of miniature uav. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 645–651, 2014.

[14] Matthew G Earl and Raffaello D’Andrea. Real-time attitude estimation
techniques applied to a four rotor helicopter. In 43rd IEEE Conference
on Decision and Control, 2004.

[15] Andres Gongora and Javier Gonzalez-Jimenez. Demonstration
video for enhancement of a commercial multicopter for
research in autonomous navigation (youtube). [Online].
https://www.youtube.com/watch?v=tq9NQ5rQ85Q.

[16] Javier Gonzalez, Anthony Stentz, and Anibal Ollero. A mobile robot
iconic position estimator using a radial laser scanner. Journal of
Intelligent and Robotic Systems, 13(2):161–179, 1995.

[17] Slawomir Grzonka, Giorgio Grisetti, and Wolfram Burgard. A fully au-
tonomous indoor quadrotor. IEEE Transactions on Robotics, 28(1):90–
100, 2012.

[18] Mariano Jaimez-Tarifa, Javier González-Jiménez, and Jose Luis
Blanco. Efficient reactive navigation with exact collision determination
for 3d robot shapes. International Journal of Advanced Robotic
Systems, 2015.

[19] Sebastian Klose, Jian Wang, Michael Achtelik, Giorgio Panin, Florian
Holzapfel, and Alois Knoll. Markerless, vision-assisted flight control
of a quadrocopter. In International Conference on Intelligent Robots
and Systems, pages 5712–5717, 2010.

[20] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. Nonlinear
complementary filters on the special orthogonal group. IEEE Trans-
actions on Automatic Control, 53(5):1203–1218, 2008.

[21] Antonio J Muñoz and Javier Gonzalez. Two-dimensional landmark-
based position estimation from a single image. In IEEE International
Conference on Robotics and Automation, 1998. Proceedings. 1998,
volume 4, pages 3709–3714, 1998.

[22] Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas Domel,
Michael Kassecker, Elmar Mair, Iris Lynne Grixa, Felix Ruess,
Michael Suppa, and Darius Burschka. Toward a fully autonomous uav:
Research platform for indoor and outdoor urban search and rescue.
IEEE Robotics & Automation Magazine, 19(3):46–56, 2012.


	Introduction
	Background
	Requirements
	Hardware architecture
	Human-Machine Interface (HMI)
	Human-Machine Interface (HMI)
	Computation
	Control layer
	Sensors
	Inertial sensors
	GPS and Compass
	RGBD camera
	Sonar


	Communications between SBC and MCB
	Software architecture
	User Space
	Kernel Space

	Testing the system
	Controlling flight altitude
	Following a moving beacon
	Performance of the system

	Discussion and future work
	References

