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Abstract

Semantic maps are world representations that permit a robot to understand not only
the spatial aspects of its workspace, but also the meaning of the existing elements
(objects, rooms, etc.) and how humans interact with them (e.g. functionalities, events,
and relations). To achieve this, a semantic map enhances purely spatial represen-
tations, like geometric or topological maps, with meta-information concerning the
types of elements and relations to be found in the working environment. This meta-
information, called semantic or common-sense knowledge, is typically codified into
Knowledge Bases (KBs).

An example of a piece of semantic knowledge stored in a KB could be: “refrig-
erators are big, box-shaped objects normally located in kitchens, which contain pill
boxes and perishable food”. Encoding and managing this semantic knowledge en-
ables the robot to reason about the information gathered from a given workspace, as
well as to infer new one in order to efficiently accomplish high-level tasks like “hey
robot! take the pills to grandma, please”.

This thesis contributes the usage of probabilistic techniques to build and main-
tain semantic maps, providing three main advantages in comparison with traditional
approaches:

i) to handle uncertainty (coming from inaccurate robot sensors and models),

ii) to provide coherent environment interpretations by exploiting contextual rela-
tions among the observed elements (e.g. fridges are usually in kitchens) in a
holistic fashion, and

iii) to yield certainty values that reflect the correctness in the robot understanding of
its surroundings.

Specifically, the included contributions can be grouped into two major topics.
The first set of contributions focuses on the scene object and/or room recognition
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problems, since semantic mapping systems must reckon on reliable recognition al-
gorithms for building proper representations. For that, we explore the utilization of
Probabilistic Graphical Models (PGMs) for exploiting contextual relations among
objects and/or rooms dealing with uncertainty, and the utilization of KBs to enhance
their performance in different ways, e.g. detecting incoherent results, providing prior
information, reducing the complexity of the probabilistic inference, generating syn-
thetic training samples, enabling the learning from experience, etc.

The second group of contributions accommodates the probabilistic outcome of the
developed recognition algorithms into a novel semantic map representation, coined
Multiversal Semantic Map (MvSmap). This map manages multiple interpretations
of the robot workspace, called universes, which are annotated with the probability
of being the true ones according to the current knowledge of the robot. Thus, this
approach gives a grounded belief about the understanding of the environment, which
enables a more coherent and efficient robotic operation.

The proposed probabilistic algorithms have been thoroughly tested against other
cutting-edge approaches employing state-of-the-art datasets. Additionally, this thesis
also contributes: two datasets, UMA-Offices and Robot@Home, containing diverse
ground truth information and sensory data from different types of devices covering
office and home environments, and two software tools, the Undirected Probabilistic
Graphical Models in C++ (UPGMpp) library, and the Object Labeling Toolkit (OLT),
for working with PGMs and processing datasets respectively.



Acknowledgments

Luckily, it is large the list of people who have been around and helped me, in one way
or another, to reach the peak of this sharp mountain called doctorate. They were there
in both good and not that good moments, and all of them deserve a warm mention.
Nevertheless, the space for showing my gratitude is limited, so I will do my best!.

Foremost, I would like to express my special appreciation and thanks to my su-
pervisors Prof. Dr. Javier González Jiménez and Dr. Cipriano Galindo Andrades. Our
brainstorming meetings, source of a bunch of ideas, and their constant support, indi-
cations, and positive thoughts are responsible to a great extent of this work. I have to
say that I consider them the parents of my academic career. Javier is an example of
tireless effort, patience, and talent. He is an absolute passionate about his work, and
successfully leads the MAPIR group, at the university of Málaga, which is in constant
growing. Cipriano is the inspiration personified, always with affectionate words and
acts, and fresh ideas to climb right to the top of the mountain. Thank you for believing
in me.

To be part of the MAPIR group is an experience itself. All of us, as a team, cel-
ebrate the victories and regret the frustrations of others. It is difficult to imagine a
more humane, and at the same time skilled group of people, within and outside the
workspace. Starting with the B team, I have to mention Mariano Tarifa, Francisco
Meléndez, Javier G. Monroy, Rubén Gómez, Manuel López, Carlos Sánchez, Jesús
Briales, Andrés Góngora and Ángel Martínez, and the former members Eduardo
Fernández, Ana Gago, Emil Khatib, Miguel Algaba and Gregorio Navidad. Thank
you guys for being that amazing. I would also like to thank the senior researches at
MAPIR, whose words helped me to stay motivated and focused. So Juan A. Fernán-
dez, Ana Cruz, Vicente Arévalo, and Francisco Moreno, thank you for that. I cannot
forget Jose L. Blanco, a former member of the group, totally in love with research
and with a shared passion for music, who gave me practical indications.

vii



viii

During my PhD years I have been in several conferences and schools. In there,
I have met great people that were a plus within the study-develop-publish cycle. I
also completed a stay at the University of Osnabrück, under the supervision of Prof.
Dr. Joachim Hertzberg, a brilliant and close person, where I shared office with my
colleague and friend Martin Günther, and I met nice people like Sebastian Stock,
Jochen Sprickerhof, Sven Albrecht, Thomas Wiemann, Kai Lingemann, and Astrid
Heinze. Thank you all for that enriching adventure, unfortunately my level of German
is still low, I promise to improve it!. A special thanks to Bárbara Rotstein, my Spanish
girl in Osnabrück, my stay there would had been quite different without her.

Friends have also played a pivotal role during the development of this thesis, spe-
cially Cristian F. Segura, Ismael Gutiérrez, José D. Pérez, José D. Sarmiento (com-
padre), Jesús Ramírez, Francisco Jiménez, Francisco A. Nieto, and Laura R., as well
as their respective and lovely partners. They forgave my absence from many meet-
ings, and illuminated me with their brilliant careers and growth as people. You fellows
are awesome.

My relatives have been like parts of my body, I could not conceive this period
of time without them. My mother María Sarmiento, was my heart, and my father
José Ruiz, was my mind. My strong brother Juan L. Ruiz, his pretty wife Mónica
Gallardo, and my lovely nephew Juan A. Ruiz were my skeleton. My uncles M. Josefa
Sarmiento, Inmaculada Sarmiento, Toñi Sarmiento, and Antonio Díaz, and my cousin
Samuel D. Díaz were my muscles. I just put the soul, and we all together achieved
this goal. I do not forget my grandparents, specially José Sarmiento. I am sure that,
wherever you are, you are reading these lines. It does not matter that you did not
speak English, the language of love is universal. Heartfelt thanks.

Last but not the least, I would like to thank my neni, Rocío, and her family, now
also mine, for sharing with me the last two years of this project. You enjoyed my vic-
tories like yours, and spent weekends with me at home working in front of a computer
screen, patiently waiting for having some leisure time. The effort has now its rewards,
and I promise to return all your support and love back, but multiplied by two.

José Raúl Ruiz Sarmiento
Málaga

September 2016

This thesis was partially supported by the Spanish grant program FPU-MICINN 2010, and
by the research projects PROMOVE: Advances in mobile robotics for promoting independent
life of elders (DPI2014-55826-R) and IRO: Improvement of the sensorial and autonomous ca-
pability of Robots through Olfaction (2012-TEP-530), funded by the the Spanish Government
and the Andalucía Regional Government, respectively.



Resumen

Introducción

El invierno se acerca. Un robot sirviente detecta que la temperatura está disminu-
yendo y decide llevarle una manta a una adorable abuela. En el mismo edificio, otro
robot encargado de patrullar una planta de oficinas se alerta al detectar una luz encen-
dida en una habitación; rápidamente se percata de que es el compañero del área de
investigación, Bob, trabajando hasta tarde por tercera noche en esta semana. Mien-
tras tanto, su hija Alice está triste por la ausencia de sus padres, y su colega robótico,
apodado cariñosamente Roboto, busca su oso de peluche favorito. Sophie, la madre
de Alice, también está contando las horas para verla, y ordena a un robot limpiar las
mesas una vez que su restaurante ha cerrado al público.

Estos escenarios son ejemplos donde los robots móviles de hoy en día, en mayor
o menor medida, pueden proveer una serie de servicios para mejorar el nivel de
vida de la sociedad. Cada vez se vislumbra más claramente que los robots están lle-
gando para quedarse, como se ve en su exitosa aplicación a diversas tareas como
vigilancia, cuidado de la salud, compañía, entretenimiento, mantenimiento del hogar,
etcétera [97], donde colaboran con humanos o los reemplazan en tediosos o peli-
grosos quehaceres. Algo común a todas las aplicaciones anteriores es la necesidad de
construir representaciones del entorno de trabajo, comúnmente llamadas mapas, las
cuales permiten a un robot móvil alcanzar un cierto grado de consciencia respecto a
sus alrededores para poder, por ejemplo, navegar evitando obstáculos, localizarse a si
mismo con respecto a un sistema de referencia dado, almacenar información relevante
sobre los elementos a su alrededor, etc.

Las representaciones tradicionales del entorno de trabajo del robot, como es el
caso de mapas geométricos [23, 140], topológicos [110, 109], o híbridos [139, 13],
aún son intensivamente usadas gracias a las habilidades básicas con las que dotan
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al robot (navegación y localización). A pesar de ello, la ejecución de tareas de alto
nivel como las mencionadas en los escenarios anteriores requiere representaciones
más sofisticadas, cercanas al modo en el que los humanos interpretan su entorno. Los
mapas semánticos (semantic maps en inglés) aparecieron para cubrir esta necesidad,
permitiendo a un robot no sólo comprender los aspectos espaciales de su entorno, sino
además el significado de sus elementos (objetos y habitaciones) y cómo los humanos
interactúan con ellos, por ejemplo funcionalidades, eventos, y relaciones. Para ello se
considera meta-información, comúnmente conocida como Conocimiento Semántico
(Semantic Knowledge o SK en inglés1), sobre los tipos de elementos que se pueden
encontrar en el área de trabajo del robot, incluyendo sus relaciones. Esbozos de dicha
información, típicamente codificada en una base de conocimiento (Knowledge Base
o KB en inglés), pueden ser: las mantas se encuentran habitualmente almacenadas en
armarios; las luces de la oficina deben estar apagadas tras la jornada laboral; los osos
de peluche mejoran el estado de ánimo; la vajilla frágil debe lavarse en el lavavajillas.

Motivación

Típicamente, los mapas semánticos son poblados2 con información exacta, por ejem-
plo un objeto es una manta o no lo es. Esto se debe a la incapacidad de las representa-
ciones semánticas tradicionales para tratar con resultados inciertos, lo que fuerza la
utilización de algoritmos de reconocimiento que provean información exacta, habi-
tualmente mediante la aplicación de umbrales a resultados probabilísticos. Por ejem-
plo, un algoritmo de reconocimiento3 indicando que un objeto puede ser una manta
con una probabilidad de 0.52, y una alfombra con 0.48, podría proveer un único resul-
tado considerando el objeto como una manta y desechando la otra hipótesis, aunque
esta es también altamente probable. Este enfoque exacto claramente compromete la
operación del robot: la incertidumbre, proveniente de fuentes como el propio sis-
tema de percepción del robot o los modelos empleados para tratar el problema, se
ignora al almacenar los resultados de reconocimiento en el mapa semántico. De este
modo, aunque los resultados del ejemplo claramente muestran que el reconocimiento
es ambiguo, nuestra querida abuela podría terminar con una áspera alfombra encima
suya. Este es un escenario de entre los muchos posibles que ponen de manifiesto la
necesidad de utilizar técnicas capaces de proveer mediciones de incertidumbre sobre
sus resultados para poblar y mantener mapas semánticos – para lo cual la literatura
recurre comúnmente a técnicas probabilísticas [141, 65] –, así como de adaptar las
representaciones semánticas actuales para poder manejar información incierta. Esto
resultaría en una operación más coherente y eficiente por parte del robot móvil.

1Cuando sea posible, a lo largo de este resumen se utilizarán los acrónimos en inglés de las herramientas
utilizadas, por ser su uso más común en la comunidad científica.

2Poblar un mapa semántico se refiere al proceso de introducción de los elementos espaciales en el
entorno del robot en dicho mapa, comúnmente objetos y habitaciones, percibidos mediante su sistema
sensorial.

3Para simplificar la explicación se considera que existen sólo dos tipos de objetos, mantas y alfombras.
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Tratando de evidenciar aún más la conveniencia de trabajar con información
incierta, supongamos un escenario donde a un robot sirviente, recién aterrizado en
su nueva casa desde el laboratorio, se le encomienda el traer las zapatillas a la abuela
adorable. En ausencia de información espacial, el robot puede inferir (de acuerdo con
la información cargada en su KB) que la localización más probable de las zapatillas es
un dormitorio. Durante el mapeo inicial de la casa por parte del robot, este reconoció
un dormitorio correspondiente a la habitación más lejana con respecto a la posición
actual de la abuela con una probabilidad de 0.45, y 0.43 de ser una cocina4. Otra
habitación cercana a la posición del robot ha sido reconocida como cocina con una
probabilidad de 0.48, y como dormitorio con 0.47. La utilización de la interpretación
más probable, el modus operandi usual cuando se trabaja con mapas semánticos tradi-
cionales, daría lugar a la exploración de la habitación más lejana, con un 45% de
probabilidades de ser el lugar correcto, mientras que el considerar ambas interpreta-
ciones produciría un plan más lógico: echar primero un vistazo a la habitación más
cercana.

Aunque existen numerosos algoritmos para el reconocimiento de objetos y/o habi-
taciones que proveen mediciones de incertidumbre sobre sus resultados, estos usual-
mente trabajan mediante el procesamiento individual de cada elemento espacial de
acuerdo con sus características geométricas (forma, tamaño, orientación, etc.) o de
apariencia (color, textura, brillo, etc.). En otras palabras, si el tipo más probable para
un objeto es manta, este es considerado una manta sin tener en cuenta que otros
objetos hay a su alrededor ni su localización. Este enfoque ignora la rica informa-
ción contextual presente en los entornos humanos: la distribución de las habitaciones
sigue un cierto orden, y los objetos no están colocados aleatoriamente, sino siguiendo
una cierta configuración acorde a su funcionalidad (por ejemplo, un mando a dis-
tancia suele estar en el entorno de una televisión, un pasillo conecta habitaciones,
o una bañera suele encontrarse en el cuarto de baño) [113, 73, 117]. El modelado
y aprovechamiento de esta información contextual puede ser útil, por ejemplo, para
clarificar resultados inciertos: siguiendo con el ejemplo anterior, si el objeto se en-
cuentra en un armario, este pertenecerá más probablemente al tipo manta que al tipo
alfombra, el cual se encuentra usualmente sobre el suelo. Este tipo de información
puede codificarse de manera natural en las bases de conocimiento, no obstante, su
explotación para el reconocimiento contextual de objetos/habitaciones manejando in-
certidumbre no es simple.

Los Modelos Gráficos Probabilísticos (Probabilistic Graphical Models o PGMs
en inglés) [65] son una herramienta ampliamente utilizada para el modelado y la ex-
plotación de relaciones de contexto tratando con incertidumbre. Estos modelos traba-
jan con una representación en forma de grafo, donde los nodos representan variables
aleatorias y los arcos conectan variables que tienen algún tipo de relación. Por ejem-
plo, en el caso del reconocimiento de objetos, cada objeto en la escena es representado
como una variable aleatoria que toma valores de entre los tipos de objetos posibles

4Nótese que la suma de ambas probabilidades es de 0.88. El resto, hasta sumar 1, se corresponde con
las probabilidades de pertenecer a otro tipo de habitación, e.g. pasillo, cuarto de baño, salón, etc.
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(mesa, sofá, libro, etc.), mientras que los arcos conectan variables cuyos objetos aso-
ciados están situados cerca en la escena. Esta representación soporta la ejecución
de algoritmos de inferencia probabilística, los cuales son capaces de proveer los re-
sultados de reconocimiento deseados, junto con mediciones de incertidumbre sobre
dichos resultados. Los PGMs han sido aplicados con éxito a tareas como elimina-
ción de ruido en imágenes, procesamiento de lenguaje natural, reconocimiento de la
actividad en una escena, predicción meteorológica, etc. A pesar de ello, estos mode-
los muestran una serie de limitaciones que deben ser tratadas antes de ser utilizados
para poblar mapas semánticos, a saber: son computacionalmente intratables cuando
la complejidad del problema a modelar incrementa (en este caso, cuando el número
de objetos/habitaciones en el entorno y sus posibles tipos crece), necesitan una con-
siderable cantidad de datos de entrenamiento para ajustar modelos exitosos, y son
incapaces de detectar resultados incoherentes así como de aprender de experiencias
pasadas.

Contribuciones

Las contribuciones de la presente tesis tratan de solucionar las limitaciones de los ma-
pas semánticos tradicionales anteriormente comentadas mediante el uso de técnicas
probabilísticas. Concretamente, los objetivos de la tesis, que tuvieron como fruto el
desarrollo de dichas técnicas, fueron definidos como:

• Desarrollo de un sistema de reconocimiento completo: Proveer algoritmos
probabilísticos para el reconocimiento de objetos y/o habitaciones manejando
información tanto de contexto como incierta, en los cuales también se considere
conocimiento semántico, con el objetivo de presentar una serie de caracterís-
ticas deseables como escalabilidad, detección de resultados erróneos, apren-
dizaje de experiencias pasadas, etc.

• Mejora de los mapas semánticos para el manejo incertidumbre: Acomodar
los resultados probabilísticos de dichos algoritmos en una novedosa represen-
tación de mapas semánticos, de tal modo que un robot pueda explotarlos para
conseguir una noción de la certeza del mismo sobre su comprensión del entorno
de trabajo, permitiéndole operar de un modo más coherente.

De este modo, las contribuciones de esta tesis pueden agruparse en dos temas
principales: comprensión contextual de la escena, y mapeo semántico de la misma.

Contribuciones a la comprensión contextual de la escena

El primer grupo de contribuciones, presentadas en los artículos [114, 116, 119, 117,
115, 122, 121], se centra en el problema del reconocimiento de objetos y/o habita-
ciones empleando información contextual. Los PGMs en general, y los Campos Aleato-
rios Condicionales (Conditional Random Fields o CRFs en inglés) en particular, son
usados para modelar este problema desde un punto de vista holístico, considerando las
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relaciones de contexto entre objetos y/o habitaciones, y tratando de manera formal la
incertidumbre inherente al proceso de reconocimiento. Su aplicabilidad al problema
tratado ha sido verificada tras una exhaustiva evaluación de los algoritmos más popu-
lares tanto de entrenamiento como de inferencia probabilística sobre dichos modelos.

Estos CRFs trabajan en conjunción con KBs, lo que permite mantener sus ventajas
cuando trabajan por separado a la vez que se mitigan sus limitaciones:

• Las KBs dotan a los CRFs con capacidades para: reducir su complejidad, ex-
plotar información a priori sobre el dominio del problema, verbalizar sus re-
sultados, generar un numero aleatorio de ejemplos de entrenamiento sintéticos
para su ajuste, detectar resultados incoherentes, y aprender de la experiencia
del robot.

• Los CRFs permiten a las KBs manejar información incierta y explotar rela-
ciones de contexto de acuerdo con una base teórica fundamentada.

Los resultados devueltos durante la evaluación de los métodos desarrollados han
sido comparados con los de otras soluciones punteras empleando conjuntos de datos
del estado del arte. Además, se ha reunido y hecho público un nuevo repositorio
de datos, llamado UMA-Offices, consistente en observaciones tridimensionales de 25
habitaciones de nuestro entorno de oficinas. También se ha implementado la libre-
ría software de código abierto Undirected Probabilistic Graphical Models in C++5

(UPGMpp) con el fin de manejar eficientemente los PGMs.

Contribuciones al mapeo semántico

El objetivo del segundo grupo de contribuciones, presentadas en los artículos [120,
118, 123], es el de acomodar los resultados probabilísticos provenientes de las téc-
nicas anteriores en una representación semántica del entorno. Para ello se ha de-
sarrollado la representación Multiversal Semantic Map (MvSmap), la cual permite
considerar diferentes interpretaciones del entorno de trabajo del robot en forma de
universos, también almacenando información sobre la probabilidad de que sean las
interpretaciones correctas. Esto permite al robot tener en cuenta no sólo el universo
más probable, sino otros que también muestran una alta probabilidad de ser válidos.
Este novedoso mapa se acompaña de técnicas para mantener tratable el número de
universos considerados, de tal manera que sea aplicable a entornos complejos con
numerosos objetos y habitaciones.

La idoneidad de los MvSmaps, así como su capacidad para manejar datos incier-
tos de una manera eficiente, se ha comprobado empleando el novedoso conjunto de
datos Robot@Home, acumulado por un robot móvil al explorar una serie de entornos
domésticos. Además, el conjunto de herramientas Object Labeling Toolkit6 (OLT),
disponible públicamente para la comunidad investigadora, ha sido desarrollado para

5http://mapir.isa.uma.es/work/upgmpp-library
6http://mapir.isa.uma.es/work/object-labeling-toolkit

http://mapir.isa.uma.es/work/upgmpp-library
http://mapir.isa.uma.es/work/object-labeling-toolkit
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procesar de manera fácil y rápida conjuntos de datos formados por secuencias de
información sensorial, como es el caso de Robot@Home.

Publicaciones

La presente tesis ha dado lugar a las siguientes publicaciones:

Revistas

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Build-
ing Multiversal Semantic Maps for Mobile Robot Operation. Enviado a
Knowledge-Based Systems (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. A
Survey on Learning Approaches for Undirected Graphical Models. Appli-
cation to Scene Object Recognition. En International Journal of Approximate
Resoning, (aceptado, por aparecer) (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez.
Robot@Home, a Robotic Dataset for Semantic Mapping of Home Envi-
ronments. Enviado a International Journal of Robotics Research (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Scene
Object Recognition for Mobile Robots Through Semantic Knowledge and
Probabilistic Graphical Models. En Expert Systems with Applications, vol.
42, no. 22, pp. 8805–8816, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Ex-
ploiting Semantic Knowledge for Robot Object Recognition. En Knowledge-
Based Systems, vol. 86, pp. 131–142, (2015).

Conferencias

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Prob-
ability and Common-Sense: Tandem Towards Robust Robotic Object Recog-
nition in Ambient Assisted Living. En 10th International Conference on Ubiq-
uitous Computing & Ambient Intelligence, Las Palmas de Gran Canaria, Spain,
(2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Joint
Categorization of Objects and Rooms for Mobile Robots. En IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. OLT:
A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets. En Eu-
ropean Conference on Mobile Robots (ECMR), Lincoln, UK, (2015).
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• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez.
UPGMpp: a Software Library for Contextual Object Recognition. En 3rd.
Workshop on Recognition and Action for Scene Understanding (REACTS),
Valletta, Malta, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Mo-
bile Robot Object Recognition through the Synergy of Probabilistic Graph-
ical Models and Semantic Knowledge. En European Conference on Artificial
Intelligence, Workshop on Cognitive Robotics (CogRob), Prague, Czech Re-
public, (2014).

Marco de la tesis

Esta tesis es el resultado de 5 años de trabajo del autor como miembro del grupo
Machine Perception and Intelligent Robotics7 (MAPIR), el cual se encuentra den-
tro del departamento de Ingeniería de Sistemas y Automática de la Universidad de
Málaga. La investigación realizada ha sido principalmente financiada por el programa
de ayudas Formación de Profesorado Universitario (FPU), promovido por el Minis-
terio de Educación.

Durante este periodo, el autor completó con éxito el programa doctoral en In-
geniería Mecatrónica, coordinado por el mismo departamento del que es miembro,
donde obtuvo un conocimiento sólido sobre los pilares fundamentales de la robótica:
sistemas de control, sistemas electrónicos, sistemas mecánicos, y ordenadores. Esta
educación académica fue completada con distintos cursos, como es el caso de Writ-
ing in the sciences, impartido por la Universidad de Stanford, y la participación en
la Primera Örebro Winter School en Artificial Intelligence and Robotics, la cual pre-
tende acercar dos campos estrechamente relacionados como son los de la Inteligencia
Artificial y la Robótica. Esta escuela también hizo posible el conocer otros investi-
gadores en el mismo campo de estudio, relaciones que se mantienen a día de hoy.

El autor también completó una estancia de tres meses en el Knowledge-Based
Systems Research Group8, en la Universidad de Osnabrück en Alemania, durante el
año 2014, bajo la supervisión de Prof. Dr. Joachim Hertzberg. Durante este tiempo
la investigación realizada se centró en el análisis y la implementación de diferentes
algoritmos para el manejo eficiente de PGMs, así como de su aplicación para el re-
conocimiento online de objetos en robots móviles. En esta gran experiencia también
se establecieron colaboraciones con distintos miembros del grupo receptor.

Además, también cabe destacar que el autor ha estado activo en el proceso de re-
visión de artículos de conferencias y revistas prestigiosas, como es el caso de las con-
ferencias International Conference on Robotics and Automation (ICRA, 2014, 2015,
2016), e International Conference on Intelligent Robots and Systems (IROS, 2015),
o las revistas Association for the Advancement of Artificial Intelligence e Intelligent
Service Robotics.

7http://mapir.isa.uma.es/
8www.inf.uos.de/kbs/
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La beca FPU también ofreció al autor la oportunidad de colaborar como profesor
asistente con el departamento del que es miembro. Concretamente, impartió docencia
en la asignatura de Robótica en la Escuela Técnica Superior de Ingeniería Infor-
mática, en la Universidad de Málaga. También supervisó el trabajo fin de grado de
un estudiante, David Zúñiga, titulado Visual SLAM with RGB-D Cameras Based on
Pose Graph Optimization.

Además de la investigación presentada en esta tesis, el autor también ha partici-
pado en otros proyectos dentro del grupo MAPIR, algunos de ellos de temática rela-
cionada:

• TCS: Tunnel Continuous Setout (Nov’08 – Jul’11): Este proyecto se centró
en el desarrollo de un sistema para el replanteo automático de secciones de
túneles a ser perforadas. El prototipo del sistema, que toma el mismo nom-
bre que el proyecto, combina una unidad de escaneo que realiza mediciones
sobre el frente de excavación y un láser proyector que continuamente muestra
la sección del túnel a perforar. La parte más desafiante del proyecto fue la im-
plementación de las técnicas de calibración para localizar con exactitud todos
los componentes del sistema dentro de un marco de referencia global.

• ExCITE: Enabling SoCial Interaction Through Embodiment (Jul’10 –
Jun’13): El rol del autor en este proyecto estuvo relacionado con el desarrollo
de mejoras técnicas para la plataforma robótica de telepresencia Giraff : un
manejo más simple y seguro, detección de obstáculos, y visualización de la
posición del robot en un mapa esquemático del lugar visitado. Una arquitectura
de control, llamada Navigation Assistant (NAS), fue desarrollada para cumplir
con estas necesidades especiales.

• Taroth: New developments toward a Robot at Home (Ene’12 – Dic’15):
Este proyecto persiguió tres objetivos principales: i) aumentar la independen-
cia del robot en cuanto a su movimiento, ii) integrar y explotar información
semántica para mejorar la autonomía del robot y permitirle interactuar con hu-
manos, y iii) desarrollar una arquitectura de control robótica para el manejo de
servicios de la llamada Ambient Assisted Living, como son el entretenimiento,
la domótica, las relaciones sociales, la seguridad, etc.

• IRO: Improvement of the sensorial and autonomous capability of Robots
through Olfaction (Ene’14 – Feb’19): La investigación en este proyecto se
orienta al estudio de mecanismos para usar información olfativa en problemas
como el reconocimiento de objetos y la interpretación de la actividad en una
escena. Dicho estudio presta especial atención al rol de la información semán-
tica en los procesos de percepción por parte del robot y toma de decisiones,
persiguiéndose una mejora en términos de eficiencia, autonomía y utilidad.

Del trabajo del autor en estos proyectos se desprendieron una serie de publica-
ciones adicionales:
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Revistas

• Javier Gonzalez-Jimenez, Vicente Arévalo, Cipriano Galindo, y Jose-Raul Ruiz-
Sarmiento. An Automated Surveying and Marking System for Continuous
Setting-out of Tunnels. En Computer-Aided Civil and Infrastructure Engineer-
ing, vol. 31, no. 3, pp. 219–228, (2016).

Conferencias

• David Zuñiga-Noël, Jose-Raul Ruiz-Sarmiento, y Javier Gonzalez-Jimenez. De-
tección de Lugares con Cámaras RGB-D. Aplicación a Cierre de Bucles en
SLAM. En XXXVII Jornadas de Automática, Madrid, Spain, (2016).

• Javier Gonzalez-Jimenez, Jose-Raul Ruiz-Sarmiento, y Cipriano Galindo. Im-
proving 2D Reactive Navigators with Kinect. En 10th International Confer-
ence on Informatics in Control, Automation and Robotics (ICINCO), Reyk-
javic, (Iceland, 2013).

• Javier Gonzalez-Jimenez, Cipriano Galindo, Francisco Melendez-Fernandez,
y Jose-Raul Ruiz-Sarmiento. Building and Exploiting Maps in a Telepres-
ence Robotic Application. En 10th International Conference on Informatics
in Control, Automation and Robotics (ICINCO), Reykjavic, Iceland, (2013).

• Javier Gonzalez-Jimenez, Cipriano Galindo, y Jose-Raul Ruiz-Sarmiento. Tech-
nical Improvements of the Giraff Telepresence Robot Based on Users’
Evaluation. En The 21st IEEE International Symposium on Robot and Hu-
man Interactive Communication (RO-MAN), Paris, France, (2012).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Cá-
maras basadas en tiempo de vuelo. Uso en la mejora de métodos de detec-
ción de caras. En XXXII Jornadas de Automática, Sevilla, Spain, (2011).

Informes técnicos

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, y Javier Gonzalez-Jimenez. Ex-
perimental Study of the Performance of the Kinect Range Camera for Mo-
bile Robotics. Universidad de Malaga, Andalucia Tech, Departamento de In-
genieria de Sistemas y Automatica, (2013).

Estructura de la tesis

Mas allá del capítulo introductorio (Chapter 1: Introduction) el resto de capítulos
en la primera parte de esta tesis (Part I: Thesis description) están organizados como
sigue:
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Chapter 2: Theoretical background provee nociones básicas sobre la teoría detrás
de dos herramientas intensivamente empleadas en esta tesis: PGMs y KBs, de
tal modo que el lector no experto en estas materias pueda obtener un conocimiento
básico para una mejor comprensión de los siguientes capítulos. El autor ha
tratado que sea una lectura lo más amena posible.

Chapter 3: Contextual scene understanding describe los enfoques tradicional-
mente seguidos para el reconocimiento de objetos y habitaciones por parte
de un robot móvil, y de que modo están relacionados con las contribuciones
presentadas. También se dan detalles sobre la sinergia entre PGMs y SK codi-
ficado en KBs persiguiendo el entendimiento de escenas. Este capítulo también
discute los repositorios de datos empleados para evaluar las técnicas desarrolla-
das, incluyendo UMA-Offices, así como el software implementado para mane-
jar PGMs.

Chapter 4: Semantic Mapping esboza las representaciones de mapas semánticos
comúnmente empleadas en robótica móvil, y describe las contribuciones de
esta tesis en relación a una representación capaz de manejar información incierta:
el Multiversal Semantic Map. Las virtudes de dicho mapa han sido compro-
badas empleando un novedoso dataset, Robot@Home, cuyas características
son descritas en este capítulo, junto con las del software usado para su proce-
samiento: Object Labeling Toolkit.

Chapter 5: Summary of included papers lista los artículos que conforman la se-
gunda parte de esta tesis, Part II: Included papers, describiendo brevemente
su contenido y el papel del autor en los mismos.

Chapter 6: Conclusions and future work discute las conclusiones que se pueden
extraer del trabajo realizado, así como las líneas de investigación que quedan
abiertas e interesantes extensiones a dicho trabajo.

Publicaciones incluidas en la Tesis

Esta sección realiza un esbozo de los artículos incluidos en la segunda parte de la
tesis, así como las contribuciones del autor a cada uno de ellos.

Artículo A: Aprendiendo Conditional Random Fields con
datos provenientes de Semantic Knowledge

Descripción: Este trabajo estudia la aplicabilidad de CRFs entrenados con datos
sintéticos, generados a partir de SK, al problema del reconocimiento de objetos ex-
plotando su contexto. El objetivo de este enfoque para el entrenamiento es el de evitar
la recopilación de datos reales para ajustar sistemas de reconocimiento. Dicha recopi-
lación es una tarea pesada que requiere de una alta dedicación temporal, además de
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no ser realizable en ciertos entornos, ya que los datos recogidos deben ser suficiente-
mente representativos del dominio del problema. Para solucionar esta cuestión se co-
difica SK en una Ontología, la cual define las clases (o tipos) de objetos del dominio
de discurso (por ejemplo, en el dominio del hogar, ejemplos de estos tipos serían
horno, microondas, salón, o cocina), sus propiedades y sus relaciones, y es usado
para generar ejemplos de entrenamiento sintéticos. La conveniencia del método de
aprendizaje propuesto debe ser comprobada empleando conjuntos de datos reales,
por lo que UMA-Offices y NYUv2 [131] formaron el banco de pruebas necesario
para responder a preguntas como: ¿Cuánto contribuyen las relaciones de contexto al
éxito del método?, ¿Cómo afecta el tamaño del conjunto de datos de entrenamiento
al rendimiento?, o ¿Capturan los datos sintéticos generados características y rela-
ciones reales?.

Contribución del autor: Estudió el estado del arte sobre PGMs y KBs abordando
el problema del reconocimiento de los objetos de una escena. Diseñó el modo de
codificar información relevante en la Ontología para su posterior aprovechamiento.
Implementó el algoritmo para la generación automática de un número arbitrario de
ejemplos de entrenamiento. Procesó el conjunto de datos UMA-Offices, y realizó los
experimentos necesarios para demostrar la validez de la propuesta.

Artículo B: Categorización conjunta de objetos y
habitaciones

Descripción: En este artículo se extienden los métodos desarrollados en el anterior
trabajo para también considerar las habitaciones del entorno. Motivado por estudios
recientes que destacan la conveniencia de modelar conjuntamente los problemas de
reconocimiento de objetos y habitaciones (dada la influencia mutua que tienen los
tipos de los objetos reconocidos y los tipos de las habitaciones), la Ontología definida
en el Artículo A es aumentada para también incluir tipos de habitaciones, sus atribu-
tos, y relaciones entre ellas así como entre objetos y habitaciones. Un ejemplo de esta
información sería que los dormitorios están usualmente conectados con pasillos y
suelen contener camas. Los CRFs también son convenientemente adaptados para tra-
bajar con diferentes tipos de variables aleatorias (representando categorías de objetos
o habitaciones) y relaciones de contexto. Para validar el método se emplean escenas
ilustrando entornos domésticos dentro del conjunto de datos NYUv2.

Contribución del autor: Estudió las técnicas en el estado del arte para modelar con-
juntamente los problemas de reconocimiento de objetos y habitaciones. Diseñó la ex-
pansión de la Ontología en el artículo anterior, así como de los CRFs y el algoritmo
implementado para la generación de ejemplos sintéticos. Realizó los experimentos
que soportan las afirmaciones del trabajo.
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Artículo C: Empleando Semantic Knowledge para un
reconocimiento e�ciente y coherente

Descripción: La complejidad de los CRFs aumenta considerablemente cuando se
aplican a escenarios repletos de objetos. Esto implica la utilización de técnicas de in-
ferencia aproximada para obtener los resultados de reconocimiento, lo que en algunos
casos compromete el éxito del método en comparación con el uso de soluciones de
inferencia exacta. Este artículo propone la utilización de SK para reducir la com-
plejidad del proceso de inferencia. Dicho conocimiento, codificado de nuevo en una
Ontología, se aprovecha para generar hipótesis sobre los tipos más probables a los que
pueden pertenecer los objetos en la escena, empleando para ello sus características.
Estas hipótesis son consideradas por el CRF como las únicas categorías candidatas
posibles, reduciendo de este modo la complejidad del proceso de inferencia, incluso
habilitando en ciertos casos la inferencia exacta. Adicionalmente, también se codifica
en la Ontología información a priori sobre la frecuencia de aparición de los distintos
tipos de objetos. Esta información muestra que, por ejemplo, en un entorno de oficinas
es más probable encontrar un ordenador a un sofá, mientras que es bastante impro-
bable encontrar una tabla de planchar. El artículo también propone una modificación
a la formulación usual de los CRFs para el aprovechamiento de dicha información.
La ganancia en cuanto a la eficiencia y coherencia proporcionada por esta solución es
medida con los conjuntos de datos UMA-Offices y NYUv2.

Contribución del autor: Diseñó el marco para, empleando las hipótesis generadas
mediante inferencia lógica sobre la Ontología, reducir la complejidad del modelo
probabilístico. Adaptó la formulación de los CRFs para también considerar informa-
ción previa sobre la frecuencia de aparición de los diferentes tipos de objetos desde la
Ontología. Evaluó la reducción de complejidad conseguida y la mejora en cuanto a la
coherencia de los resultados devueltos empleando dos repositorios de datos distintos.

Artículo D: Libería UPGMpp para manejar Conditional
Random Fields

Descripción: Este trabajo presenta la librería Undirected Probabilistic Graphical
Models in C++ (UPGMpp), un paquete software para trabajar con este tipo de mo-
delos probabilísticos. La librería está especialmente diseñada e implementada para
ser eficiente a la hora de tratar el problema del reconocimiento de objetos y/o habita-
ciones. El artículo describe cómo usar el software para modelar este problema, y pre-
senta sus tres partes fundamentales: base (implementa la funcionalidad para construir
y manipular modelos gráficos), training (permite la definición de conjuntos de datos
para entrenar los modelos), e inferencia (implementa algoritmos de inferencia proba-
bilística). Para mostrar la flexibilidad y usabilidad de la librería, este trabajo ilustra
los procesos necesarios para entrenar y testear – realizar inferencia sobre – PGMs, in-
cluyendo ejemplos de código. También se reportan los resultados de reconocimiento
devueltos por distintos métodos de inferencia al tratar con escenas del conjunto de
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datos NYUv2, así como el tiempo de ejecución requerido por dichos métodos.

Contribución del autor: Estudió la teoría detrás de los PGMs no dirigidos, así como
otras librerías relacionadas para tratar con los mismos. Diseñó e implementó las partes
de la librería, con el objetivo de que fueran eficientes, versátiles, extensibles, y fáciles
de usar. Hizo la librería pública, ejemplificó su uso, y realizó las mediciones sobre
tiempos de ejecución y éxito del reconocimiento.

Artículo E: Conjunto de herramientas para el tratamiento
de repositorios de datos con información RGB-D

Descripción: En este trabajo se presenta el conjunto de herramientas software Object
Labeling Toolkit (OLT), desarrollado para el procesamiento eficiente de repositorios
de datos compuestos de secuencias de observaciones RGB-D (intensidad, RGB, más
profundidad, D), capturadas por un número arbitrario de sensores de este tipo. Para
ello, OLT construye una reconstrucción 3D de cada secuencia de observaciones y
permite al usuario, mediante una interfaz gráfica, anotar los objetos y habitaciones
en dicha reconstrucción con el tipo al que pertenecen (cama, mesa, lámpara, cocina,
etc.). El artículo describe sus componentes principales, a saber: pre-procesamiento
del conjunto de datos, construcción de mapa 2D, localización de las poses de las
observaciones, visualización secuencial, etiquetado de la escena, y propagación auto-
mática de etiquetas a cada observación individual, de los cuales sólo el etiquetado de
la escena requiere la intervención de un operador humano. También se ejemplifica
el uso de OLT para el etiquetado fácil y rápido de dos secuencias de observaciones
RGB-D, analizando sus virtudes con respecto a una técnica de etiquetado tradicional.

Contribución del autor: Diseñó el conjunto de herramientas. Estudió e implementó/
adaptó las técnicas necesarias para los procedimientos de: procesado de imágenes
tanto RGB como de profundidad, construcción de mapas geométricos 2D, recons-
trucción de escenas 3D, visualización e interacción con las reconstrucciones, y propa-
gación automática de las anotaciones a través de las secuencias de observaciones.
Comparó el tiempo ahorrado empleando OLT con respecto al uso de una técnica de
etiquetado típica.

Artículo F: Mapa semántico capaz de manejar incertidumbre

Descripción: En este artículo se propone un mapa semántico novedoso que permite
la manipulación de incertidumbre, también aprovechando las relaciones contextuales
de los elementos espaciales en el entorno del robot (objetos y habitaciones). Esta re-
presentación adopta el nombre de Multiversal Semantic Map (MvSmap). El artículo
proporciona un estudio completo sobre otros enfoques para realizar un mapeo semán-
tico del entorno, así como de técnicas para poblar dichos mapas. Los MvSmaps son
descritos en detalle y definidos formalmente, incluyendo los algoritmos necesarios
para su construcción, donde las técnicas de reconocimiento desarrolladas en trabajos
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previos tienen un rol principal. Además, este trabajo estudia algoritmos para tratar
eficientemente la incertidumbre modelada en estos mapas. Finalmente, el conjunto
de datos Robot@Home [123] es el elegido para evaluar el rendimiento de los distin-
tos sistemas envueltos en la construcción de MvSmaps.

Contribución del autor: Diseñó la representación Multiversal Semantic Map para
el almacenamiento y tratamiento de información incierta. Integró las técnicas de re-
conocimiento de objetos y habitaciones anteriormente desarrolladas en un sistema
para poblar dichas representaciones. Diseñó e implementó el proceso para la cons-
trucción de MvSmaps de acuerdo a la información percibida por un robot móvil.
Procesó el conjunto de datos Robot@Home para que fuera útil durante el testeo de
los sistemas en este trabajo.

Conclusiones y líneas futuras

Esta tesis ha explorado y hecho contribuciones al fascinante mundo del mapeo semán-
tico del entorno por medio de un robot móvil. Este tipo de mapas dotan al robot de
herramientas para comprender cuales son los elementos y espacios que tiene a su
alrededor, así como sus propiedades, lo cual sienta las bases para una operación in-
teligente, autónoma y eficiente. En la investigación llevada a cabo se ha prestado
especial atención a la población de mapas semánticos con información sobre los ele-
mentos espaciales en el entorno de trabajo del robot, es decir objetos y habitaciones,
a través de la combinación de técnicas de los campos del Aprendizaje Automático
y la Inteligencia Artificial. Estos campos se encuentran actualmente en un momento
dulce, donde los estudios y aplicaciones en las que son utilizados sigue creciendo, tal
y como apuntó en una reciente entrevista uno de los directivos de Amazon, Ralf Her-
brich, afirmando que “Estamos en una edad dorada para el aprendizaje automático y
la inteligencia artificial. Nos encontramos aún lejos de hacer cosas del mismo modo
en el que los humanos las hacen, pero estamos solventando problemas increíblemente
complejos cada día y consiguiendo un progreso increíblemente rápido”. En opinión
del autor, la investigación de sistemas que aprovechen la sinergia de sendos campos,
potenciando sus ventajas y mitigando sus limitaciones, puede llevar a avances no-
tables en la comunidad robótica. Este es el caso de las técnicas desarrolladas en la
presente tesis.

Para que un robot móvil alcance un cierto grado de consciencia del entorno en
el que se desenvuelve, este debe ser capaz de reconocer los elementos espaciales ob-
servados a través de su sistema sensorial. El primer grupo de contribuciones de esta
tesis trata este tema, centrándose en la combinación de Conditional Random Fields
(CRFs), una variante discriminativa no dirigida de los Probabilic Graphical Models
(PGMs), y Semantic Knowledge (SK) del dominio de discurso codificado en una On-
tología. Ambos enfoques han alcanzado un éxito notable en distintos problemas de
clasificación.

Por un lado, los CRFs permiten el modelado de relaciones de contexto entre ele-
mentos espaciales, al mismo tiempo que maneja la incertidumbre proveniente del
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sistema sensorial del robot y de los modelos empleados para definir el problema.
Estos modelos también permiten la ejecución de métodos de inferencia probabilís-
tica. Precisamente, una de las primeras contribuciones de esta tesis fue la librería
Undirected Probabilistic Graphical Models in C++ (UPGMpp), desarrollada como
consecuencia de la ausencia de herramientas software para manejar PGMs no dirigi-
dos en general, y CRFs en particular, proveyendo las características que demanda un
sistema de reconocimiento ejecutándose en un robot móvil (e.g. eficiencia, flexibili-
dad, o facilidad de integración). Esta librería, disponible públicamente, implementa
algoritmos populares para la construcción, aprendizaje e inferencia sobre modelos
gráficos. Las posibles combinaciones de métodos para entrenar e inferir información
sobre CRFs motivó el estudio de diferentes estrategias de aprendizaje, el cual reportó
valiosas conclusiones no sólo para la correcta utilización de estos modelos en el resto
de contribuciones, sino para su empleo por parte de cualquier miembro de la comu-
nidad robótica que desee configurar rápidamente un sistema de reconocimiento tan
exitoso como sea posible.

A pesar de su notoria utilización en distintos campos, los CRFs muestran una
serie de limitaciones a la hora de ser aplicados al problema de reconocimiento. En
primer lugar, para ser correctamente entrenados requieren una considerable cantidad
de ejemplos (datos) que, además, cubran por completo los elementos dentro del do-
minio de trabajo. La recogida de dichos conjuntos de datos es una tarea tediosa y que
requiere una alta dedicación temporal, además de ser irrealizable en algunos domi-
nios, tal y como experimentó el autor al procesar el repositorio UMA-Offices. Dicho
conjunto de datos contiene 25 escenas capturadas por un robot móvil en entornos de
oficinas de la Universidad de Málaga, y se recogió con el fin de evaluar las técni-
cas de reconocimiento desarrolladas – de manera conjunta con otros repositorios del
estado del arte. Para evitar la dependencia de conjuntos de datos conteniendo informa-
ción real, se mostró como SK, convenientemente codificado en una Ontología, puede
usarse para generar sin esfuerzo una cantidad arbitraria de datos de entrenamiento
representativos del dominio de discurso. Las Ontologías suponen una manera natural
de codificar SK, además de ser compactas, leíbles por un humano, y directamente uti-
lizables en tareas de razonamiento de alto nivel. No obstante, son incapaces de mane-
jar incertidumbre, y es complejo dar el salto de información sensorial de bajo nivel
a información codificada sin emplear procesos ad-hoc. Su combinación con CRFs
elimina estas limitaciones, sentando las bases de una relación de beneficio mutuo.

En esta tesis se ha mostrado como las Ontologías que codifican SK tienen mucho
más que ofrecer en su matrimonio con CRFs. Por ejemplo, se han empleado para
generar hipótesis sobre los posibles tipos de objetos/habitaciones en una escena, re-
duciendo drásticamente la complejidad de los CRFs cuando modelan dicha escena.
Esto incrementa la eficiencia de los métodos de inferencia aproximada sobre CRFs,
así como amplía el abanico de escenarios donde es posible realizar una inferencia
exacta. Nótese que la eficiencia del método de reconocimiento es fundamental para
el apropiado funcionamiento del robot, ya que este debe compartir los (usualmente li-
mitados) recursos del robot con otros algoritmos en ejecución, como puedan ser los de
navegación o localización. Además, las Ontologías pueden codificar distintos tipos de
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información sobre los elementos del dominio, lo cual se ha aprovechado para definir
la frecuencia de aparición de los distintos tipos de objetos. La usual formulación de
los CRFs ha sido consecuentemente adaptada para explotar esta fuente de informa-
ción, permitiendo a estos modelos alcanzar unos resultados de reconocimiento más
coherentes. El SK también se ha empleado para la detección de incoherencias en los
resultados, y para aprender de las mismas en colaboración con un humano. Este en-
foque soluciona la incapacidad de los CRFs para aprender de experiencias pasadas,
y les permite mejorar su rendimiento y robustez a largo plazo en su aplicación a en-
tornos humanos.

Una vez desarrolladas las técnicas para el reconocimiento, estas fueron integradas
en un sistema de mapeo semántico. Para ello se diseñó una novedosa representación
del entorno llamada Multiversal Semantic Map (MvSmap), la cual es capaz de aco-
modar y aprovechar los resultados probabilísticos de los métodos de reconocimiento.
Dicho mapa considera diferentes interpretaciones de los elementos espaciales, o uni-
versos, como instancias de Ontologías, creándose un multiverso. Estas Ontologías
son además automáticamente anotadas con las probabilidades devueltas por el sis-
tema de reconocimiento, así como con su probabilidad de ser las interpretaciones
correctas. De este modo, el desempeño del robot no se limita a la utilización del uni-
verso más probable, modus operandi de los mapas semánticos tradicionales, sino que
también puede considerar otras posibles explicaciones con diferentes interpretaciones
semánticas. Además se discutió una estrategia para mantener tratable el número de
universos considerados, clave para la eficiencia de esta representación semántica.

También se han hecho públicos dos recursos relacionados con las técnicas de
mapeo semántico. El primero se corresponde con el conjunto de datos Robot@Home,
el cual contiene, entre otros: 87,000+ observaciones recogidas en distintas casas por
un robot móvil dotado de un aparejo con 4 cámaras RGB-D y un escáner láser 2D,
reconstrucciones tanto en 2D como en 3D de las escenas exploradas, información
topológica sobre la conectividad de las habitaciones, y anotaciones sobre los tipos
de los objetos y habitaciones percibidos. El repositorio de datos es rico en informa-
ción contextual de los elementos espaciales antes mencionados, una característica
que no se encuentra en la mayoría de los repositorios actuales, lo cual puede ser
aprovechado por sistemas de mapeo semántico. La segunda contribución a este res-
pecto es el conjunto de herramientas denominado Object Labeling Toolkit (OLT), dis-
eñado para procesar eficientemente repositorios de datos compuestos de secuencias
de observaciones RGB-D. Estas herramientas son altamente customizables y expan-
sibles, facilitando la integración de algoritmos ya desarrollados, y han mostrado su
utilidad para reducir drásticamente el tiempo y esfuerzo necesarios para procesar re-
positorios conteniendo ese tipo de información. Por ejemplo, OLT fue usado para el
procesamiento de Robot@Home.

Como observación final, cabe destacar que aunque las técnicas descritas en esta
tesis han sido evaluadas con conjuntos de datos provenientes de entornos domésticos
y de oficinas, su utilización no se limita a esos dominios, sino que pueden ser em-
pleadas en cualquier escenario que exhiba información semántica como pueda ser el
caso de hospitales o centros comerciales. También es interesante añadir que su uso no



xxv

está restringido al campo de la robótica móvil, sino que podrían ser exportadas a otros
campos que se pudieran beneficiar de la explotación de mapas semánticos tales como
asistencia a invidentes o personas mayores, realidad aumentada, y otras aplicaciones
por venir en la era de los dispositivos portátiles con gran capacidad de cómputo. Hoy
en día, de hecho, nuestros teléfonos móviles son casi tan potentes como los orde-
nadores de sobremesa. Los esfuerzos en la investigación en mapeo semántico, junto
con los avances tecnológicos, nos aseguran la aparición de apasionantes y rompedoras
aplicaciones. ¡Manténgase atento!.

Trabajos futuros

El trabajo realizado en la presente tesis deja abiertas una serie de líneas de investi-
gación y expansiones. Algunas de las más relevantes se describen a continuación.

Generación de hipótesis. La generación de hipótesis empleando la información
codificada en la Ontología podría ser demasiado restrictiva en algunas situaciones,
principalmente con objetos que muestran unas características particulares. Supón-
gase una escena con un libro en el suelo. En esta situación el razonador lógico no
devolvería la clase libro como hipótesis, dado que su altura desde el suelo difiere en
gran medida de la esperada. Una opción podría ser considerar el resultado del proceso
de inferencia lógica como una puntuación a ser considerada en la formulación de los
CRFs, a expensas de comprometer la opción de inferencia exacta.

Aprovechamiento de los MvSmaps. El potencial real de los Multiversal Seman-
tic Maps (en opinión del autor) está aún por verse. Se han diseñado y realizado di-
versas pruebas de concepto en tareas típicamente robóticas, pero debe estudiarse en
mayor detalle el beneficio de estos mapas en problemas reales como navegación efi-
ciente y búsqueda de objetos, localización del robot, planificación de tareas con in-
formación incierta/incompleta, etc.

Aprendiendo de experiencias. El sistema propuesto para el aprendizaje en base
a la experiencia acumulada puede ser ampliado en diferentes aspectos. Primero, debe
realizarse una evaluación rigurosa del sistema empleando complejos CRFs y On-
tologías, incluyendo información de objetos y habitaciones, a lo largo de extensos
periodos de tiempo. También podría estudiarse, dado que un humano forma parte del
bucle de aprendizaje, cómo afectan al rendimiento del sistema posibles instrucciones
incorrectas por parte del usuario. Además el sistema también se podría beneficiar de
un estudio acerca de cuándo sería más apropiado preguntar a dicho humano sobre un
resultado incoherente, de tal manera que se le moleste lo mínimo posible.

Posibles desarrollos dentro de UPGMpp. Sería interesante explorar algunas
características adicionales relacionadas con el rendimiento de UPGMpp. Por ejem-
plo, aunque las partes que requieren más tiempo de ejecución han sido paralelizadas
empleando OpenMP, algunas operaciones repetitivas que utilicen datos de forma ma-
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siva podrían beneficiarse de su ejecución en núcleos GPU empleando, por ejemplo,
CUDA u OpenCL. También sería útil el contar con herramientas gráficas para visua-
lizar y modificar los grafos de los PGMs, así como para comprender cómo evolucio-
nan en tiempo de ejecución. También se contempla la incorporación de técnicas para
la generación de muestras de la distribución de probabilidad definida por un PGM
(como Markov Chain Monte Carlo). Por supuesto, es bienvenida cualquier contribu-
ción a esta librería por parte de la comunidad robótica o de visión por computador.

Mejoras a OLT. La incorporación de algoritmos para un registro globalmente
consistente de las observaciones RGB-D en una secuencia podría dar lugar a recons-
trucciones incluso más precisas. La experiencia de usuario también se podría mejo-
rar considerando otras primitivas geométricas para segmentar y etiquetar escenas,
además de las cajas empleadas actualmente, como puedan ser esferas o cilindros. Por
último, el tiempo necesario para el etiquetado también podría reducirse si se ofreciera
al usuario una segmentación inicial de la escena, así como etiquetas tentativas para
los objetos/habitaciones apareciendo en la misma.

Punto y aparte

Esta sección concluye el resumen de la presente tesis, Probabilistic Techniques in
Semantic Mapping for Mobile Robotics. El lector puede continuar con los siguientes
capítulos, en el idioma inglés, donde se describen en mayor detalle las contribuciones
de la misma.
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1
Introduction

Winter is coming. A servant robot senses that the temperature is decreasing and takes
a blanket to a lovely grandma. In the same building, another robot patrolling an of-
fices’ floor is alerted by a light turned on in a room; rapidly it notices that the research
fellow, Bob, is working late in the night, the third time that week. Meanwhile, baby
Alice, Bob’s daughter, is sad because of the absence of her daddy, and her robotic
colleague warmly nicknamed as Roboto looks for her favorite teddy. Sophie, Alice’s
mom, is also counting the hours to see her, and commands a robot to clean the tables
once the restaurant she runs is closed to the public.

These scenarios are some examples where mobile robots, to a greater or lesser ex-
tent, can provide a number of services for raising the standards of living. Nowadays,
it becomes clear that robots are coming to stay, as it is shown by their remarkable
application to an increasing number of tasks where they collaborate with humans
or release them from tedious or hazardous chores, such as surveillance, health care,
companion, entertainment, household maintenance, etcetera [97]. Figure 1.1 depicts
some examples of modern robots aimed at performing some of these tasks. Common
to all these robotic applications is the necessity of building representations of the
working environment, commonly referred to as maps, which permit a mobile robot
to be aware of its surroundings in order to navigate avoiding obstacles, localize it-
self with respect to a given reference frame, store relevant information about spatial
elements for accomplishing its goals, etc.

Traditional spatial representations, like geometric, topological, or hybrid maps,
are extensively used due to the core skills they provide, i.e. navigation and local-
ization. Nevertheless, the execution of high-level tasks, like the ones involved in the
aforementioned scenarios, calls for more sophisticated representations closer to the
way in which humans interpret and behave within their environments. Semantic maps
came out to cope with this need, permitting a robot to understand not only the spatial
aspects of its workspace, but also the meaning of its elements (objects and rooms)
and how humans interact with them, e.g. functionalities, events, and relations. This is

3
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Figure 1.1: Examples of state-of-the-art robots successfully applied to different tasks. From
left to right: the educational robot Zowi, the companion and entertainment robot Zenbo, the
security patrol robot S5, and the Giraff robot employed in telehealth-care applications.

achieved by considering meta-information, commonly referred to as common-sense
or Semantic Knowledge (SK), concerning the types of elements (and their relations) to
be found in the robot workspace. Pieces of this information, typically encoded into a
Knowledge Base (KB), could be: blankets are often stored in cupboards; lights must
be switched off after the working day; teddies make kids happier; fragile crockery
should not be cleaned in the dishwasher.

1.1 Motivation

Typically, semantic maps are populated with crispy information, e.g. an object is a
blanket or not. This is due to the weakness of traditional semantic representations to
handle uncertainty, which forces the use of recognition algorithms providing a crispy
outcome, probably by thresholding a probabilistic result. For example, a recognition
algorithm1 stating that an object can be a blanket with a probability of 0.52, and a
carpet with 0.48, might yield a unique outcome by considering the object as a blan-
ket and neglecting the other, high probable, hypothesis. This crispy stance clearly
compromises the robot operation: the uncertainty coming from sources like the robot
sensory system and the employed models is being disregarded when the recognition
results are stored in the semantic map. So, despite the results clamor for a disambigua-
tion, our lovely grandma could end up with a rugged carpet on top of her. Therefore,
it becomes clear the necessity of levering probabilistic techniques for populating and

1For the sake of simplicity only two possible object types are considered at this point.
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maintaining semantic maps, as well as to adapt semantic representations for manag-
ing uncertain information, which would permit a mobile robot to operate in a more
coherent and efficient way.

As an illustrative example of the convenience of dealing with uncertain informa-
tion, let’s suppose an scenario where a servant robot right landed from the lab into
its new home is commanded to bring the slippers to the grandma. In the absence of
spatial information, the robot could infer (according to the loaded KB) that the most
probable location for slippers is a bedroom. During the preliminary setup, the robot
initially recognized a bedroom corresponding to the farthest room from the current
grandma location with a probability of 0.45, and 0.43 of being a kitchen2. Another
room, close to the robot location, has been recognized as a kitchen with a probability
of 0.48, and as a bedroom with 0.47. The utilization of only the most probable in-
terpretation, modus operandi of traditional, crispy semantic maps, would lead to the
exploration of the farthest room having a 45% of being the correct place, while the
consideration of both interpretations would produce the more logical plan (for the
robot battery and the grandma patience) of taking a look at the closer room first.

Although there exist numerous algorithms for the recognition of objects and/or
rooms that provide uncertainty measurements about their results, they usually work
by individually processing each spatial element according to its geometric/appearance
features. In other words, if the most probable type of an object is blanket, it is con-
sidered a blanket no matter other objects placed nearby nor its location. Nevertheless,
human-made environments are rich in contextual information worth to exploit, i.e. the
room’s layout follows a certain order, and objects are not placed randomly but fol-
lowing certain configurations according to their functionality: e.g. a remote control is
usually found close to a tv, a corridor connects rooms, or bathtubs are (as indicated by
its name) placed at bathrooms. Modeling and leveraging context is useful, for exam-
ple, to disambiguate uncertain results: following the previous example, if the object
is found into a wardrobe it would be more probably a blanket than a carpet, which
are usually lying on the floor. This kind of information can be naturally encoded in
KBs, however, its exploitation for contextual object/room recognition, also managing
uncertainties, is not straightforward.

Probabilistic Graphical Models (PGMs) have been a widely resorted tool for
modeling and exploiting contextual relations, while dealing with uncertainty. They
work with a graph-based representation, where nodes stand for random variables and
edges link variables showing some type of relation. For example, in the case of the
object recognition problem, each object in the scene is represented by a random vari-
able that takes values from the set of possible object types (table, book, couch, etc.),
and nodes whose associated objects are close to each other in the scene are linked
by an edge. This representation supports the efficient execution of probabilistic infer-
ence methods, which permit us to retrieve the scene object recognition results along
with a measure of their uncertainty. PGMs have been successfully applied to tasks

2Notice that the sum of both probabilities is 0.88. The remaining probabilities, up to a total of 1,
correspond to other possible room types: corridor, bedroom, living room. etc.
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like image denoising, natural language processing, activity recognition, etc. However,
they exhibit a number of limitations that could prevent their utilization for populat-
ing semantic maps: they become computationally intractable when the complexity of
the problem increases, i.e. the number of objects/rooms in the environment and their
types augments, they need a considerable amount of training data to tune success-
ful models, and they are unable to detect incoherent results as well as to learn from
experience.

1.2 Contributions

This thesis contributes to overcome some of the aforementioned limitations of tradi-
tional semantic maps by resorting to probabilistic techniques. Concretely, the goals
of the thesis, which resulted in the development of those techniques, were stated as:

• Development of reliable recognition methods: To provide contextual ob-
ject/room recognition algorithms able to exploit contextual relations and han-
dle uncertainty, in close synergy with KBs, also offering a number of desirable
features like scalability, efficiency, detection of wrong results, learning from
experience, etc.

• Enhancement of traditional representations to manage uncertainty: To ac-
commodate the probabilistic outcomes of such algorithms into a novel seman-
tic map representation, in such a way that a robot could have a grounded belief
about the certainty of its understanding of the surroundings, hence operating in
a coherent fashion.

Thereby, the contributions of this thesis can be grouped into two major topics:
contextual scene understanding, and semantic mapping.

1.2.1 Contributions to contextual scene understanding

The first set of contributions, presented in the papers [114, 121, 122, 115, 116, 119,
117] focuses on the scene object and/or room recognition problems. To overcome
these problems is crucial for the proper building of the semantic representations
sought. Probabilistic Graphical Models, concretely Conditional Random Fields (CRF),
are used to model those issues from a holistic stance, considering the contextual re-
lations among objects and/or rooms, and to natively deal with uncertainty. Their suit-
ability for the problem at hand has been verified through a comprehensive evaluation
of PGMs trained and exploited by the most popular learning and probabilistic infer-
ence algorithms.

These CRFs work in synergy with KBs, a mutually beneficial relationship which
permits to keep their advantages and mitigate their limitations:

• KBs provide CRFs with the capabilities to: reduce their complexity, exploit
prior information, verbalize their outcome, generate an arbitrary number of
training samples, detect incoherent results, and learn from experience.
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• CRFs enables KBs to handle uncertainty and exploit contextual relations in a
holistic and principled manner.

The developed algorithms have been compared with other cutting-edge solutions
employing state-of-the-art datasets. Additionally, a dataset consisting of 25 rooms
from our facilities, called UMA-Offices, has been collected and made public. An open-
source library, called Undirected Probabilistic Graphical Models in C++ (UPGMpp),
has been also implemented for working with PGMs paying attention to the special
requirements of software targeted at robotic applications.

1.2.2 Contributions to semantic mapping

The goal of the second group of contributions, presented in the papers [123, 118, 120],
is to accommodate the probabilistic outcome of the previous techniques into a seman-
tic map representation. For that, the so-called Multiversal Semantic Map (MvSmap)
representation has been developed. This map turns such outcome into different inter-
pretations of the robot workspace, coined universes, which are annotated with their
probability of being the true ones. This permits the robot to consider not only the most
probable universe, but other ones also showing a high probability, hence unlocking
a more coherent and efficient operation. Techniques to keep the number of possible
universes tractable in complex environments, crowded of objects and rooms, has been
also studied.

The suitability of this map as well as its capacity to efficiently handle uncertain in-
formation have been tested with a novel dataset, Robot@Home, collected by a mobile
robot surveying a number of apartments. The Object Labeling Toolkit (OLT), publicly
available for the researcher community, has been developed to effortlessly process
datasets compounded of sequences of sensory information, such as Robot@Home.

1.2.3 Publications

The present thesis encompasses the following publications:

Journals

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Building Multiversal Semantic Maps for Mobile Robot Operation. Sub-
mitted to Knowledge-Based Systems (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez. A
Survey on Learning Approaches for Undirected Graphical Models. Appli-
cation to Scene Object Recognition. In International Journal of Approximate
Reasoning, accepted (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Robot@Home, a Robotic Dataset for Semantic Mapping of Home Envi-
ronments. Submitted to International Journal of Robotics Research (2016).
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• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Scene Object Recognition for Mobile Robots Through Semantic Knowl-
edge and Probabilistic Graphical Models. In Expert Systems with Applica-
tions, vol. 42, no. 22, pp. 8805–8816, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Exploiting Semantic Knowledge for Robot Object Recognition. In Knowledge-
Based Systems, vol. 86, pp. 131–142, (2015).

Conference proceedings

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Probability and Common-Sense: Tandem Towards Robust Robotic Object
Recognition in Ambient Assisted Living. In 10th International Conference on
Ubiquitous Computing & Ambient Intelligence, Las Palmas de Gran Canaria,
Spain, (2016).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Joint Categorization of Objects and Rooms for Mobile Robots. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg,
Germany, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets.
In European Conference on Mobile Robots (ECMR), Lincoln, UK, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
UPGMpp: a Software Library for Contextual Object Recognition. In 3rd.
Workshop on Recognition and Action for Scene Understanding (REACTS),
Valletta, Malta, (2015).

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Mobile Robot Object Recognition through the Synergy of Probabilistic
Graphical Models and Semantic Knowledge. In European Conference on
Artificial Intelligence, Workshop on Cognitive Robotics (CogRob), Prague,
Czech Republic, (2014).

1.3 Thesis framework

This thesis is the result of 5 years of work by the author as a member of the Machine
Perception and intelligent Robotics (MAPIR) research group3, part of the Department
of System Engineering and Automation of the University of Málaga. This research
has been mainly funded by the FPU (Formación de Profesorado Universitario) grant
program, supported by the Spanish Education Ministry.

3http://mapir.isa.uma.es/
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During this period, the author successfully completed the doctoral program in Me-
chatronics Engineering, coordinated by the Department of System Engineering and
Automation, where he obtained a strong background knowledge concerning the four
fundamental pillars of robotics: control systems, electronic systems, mechanical sys-
tems, and computers. This academic education was completed with different courses,
like the “Writing in the sciences” course imparted by the Stanford University, and
with the participation in the First Örebro Winter School on “Artificial Intelligence and
Robotics”, which aimed to bring closer two fields strongly correlated like Artificial
Intelligence and Robotics. This school also made possible to meet other researchers
in the same and other related fields.

The author also completed a three months research stay at the Knowledge-Based
Systems Research Group4, of the University of Osnabrück, in 2014, under the su-
pervision of Prof. Dr. Joachim Hertzberg. During this time, research focused on the
analysis and implementation of different algorithms for efficiently handling PGMs,
as well as in their application to online object recognition in mobile robots. In this
great experience, cooperations with researchers of the group were also established.

Besides, it is also worth to mention that the author has been active in the review
process of papers/articles from prestigious conferences and journals, like in the case
of the International Conference on Robotics and Automation (ICRA, 2014, 2015,
2016), the International Conference on Intelligent Robots and Systems (IROS, 2015),
or the Association for the Advancement of Artificial Intelligence and the Intelligent
Service Robotics journals.

The FPU grant also offered the opportunity to collaborate as an assistant lecturer
with the Department of System Engineering and Automation. Concretely, the author
taught on ‘Robotics” at the faculty of Computer Science, in the University of Málaga.
He also co-supervised the bachelor thesis of a student, David Zúñiga Noël, entitled
“Visual SLAM with RGB-D Cameras Based on Pose Graph Optimization”.

In addition to the research concerning this thesis, the author has been also in-
volved in other projects within the MAPIR group, some of them with related topics:

• TCS: Tunnel Continuous Setout (Nov’08 – Jul’11): this project focuses on
the development of a system for the automatic setting-out of tunnel sections to
be perforated. The system prototype, which takes the same name as the project,
combines a scanning device that surveys the excavation front and a laser projec-
tor that continuously displays the actual tunnel section. The most challenging
part of the project was the implementation of calibration techniques for retriev-
ing the accurate location of all the system components.

• ExCITE: Enabling SoCial Interaction Through Embodiment (Jul’10 –
Jun’13): The author’s role in this project was related to the development of
technical improvements for the Giraff telepresence platform: a safer and eas-
ier driving, including auto-docking to the recharging station, obstacle detection,
and displaying the robot position in a sketch map of the visited place. A robotic

4www.inf.uos.de/kbs/
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architecture called Navigation Assistant (NAS) was also implemented to fulfill
these particular needs.

• Taroth: New developments toward a Robot at Home (Jan’12 – Dec’15):
this project pursuits the three following targets: 1) improving dependability
of the robot motion, 2) integrating and exploiting semantics to improve robot
autonomy and interaction with humans, and 3) developing a robot software
architecture that can manage Ambient Assisted Living services related to en-
tertainment, domotics, social networking, safety, etc.

• IRO: Improvement of the sensorial and autonomous capability of Robots
through Olfaction (Jan’14 – Feb’19): the research in this project is targeted
at the investigation of mechanisms to use odor information in problems such
as object recognition and scene-activity understanding, paying special atten-
tion to the role of semantics within the robot perception and decision-making
processes, aiming to improve the robot capabilities in terms of efficiency, au-
tonomy and usefulness.

From the author’s work in these projects arose a number of additional publica-
tions:

Journals

• Javier Gonzalez-Jimenez, Vicente Arévalo, Cipriano Galindo, and Jose-Raul
Ruiz-Sarmiento. An Automated Surveying and Marking System for Con-
tinuous Setting-out of Tunnels. In Computer-Aided Civil and Infrastructure
Engineering, vol. 31, no. 3, pp. 219–228, (2016).

Conference proceedings

• David Zuñiga-Noël, Jose-Raul Ruiz-Sarmiento, and Javier Gonzalez-Jimenez.
Detección de Lugares con Cámaras RGB-D. Aplicación a Cierre de Bucles
en SLAM. In XXXVII Jornadas de Automática, Madrid, Spain, (2016).

• Javier Gonzalez-Jimenez, Jose-Raul Ruiz-Sarmiento, and Cipriano Galindo.
Improving 2D Reactive Navigators with Kinect. In 10th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO), Reyk-
javic, (Iceland, 2013).

• Javier Gonzalez-Jimenez, Cipriano Galindo, Francisco Melendez-Fernandez,
and Jose-Raul Ruiz-Sarmiento. Building and Exploiting Maps in a Telepres-
ence Robotic Application. In 10th International Conference on Informatics in
Control, Automation and Robotics (ICINCO), Reykjavic, Iceland, (2013).

• Javier Gonzalez-Jimenez, Cipriano Galindo, and Jose-Raul Ruiz-Sarmiento.
Technical Improvements of the Giraff Telepresence Robot Based on Users’
Evaluation. In The 21st IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), Paris, France, (2012).
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• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Cámaras basadas en tiempo de vuelo. Uso en la mejora de métodos de
detección de caras. In XXXII Jornadas de Automática, Sevilla, Spain, (2011).

Technical reports

• Jose-Raul Ruiz-Sarmiento, Cipriano Galindo, and Javier Gonzalez-Jimenez.
Experimental Study of the Performance of the Kinect Range Camera for
Mobile Robotics. Universidad de Malaga, Andalucia Tech, Departamento de
Ingenieria de Sistemas y Automatica, (2013).

1.4 Thesis outline

Besides the introductory chapter, the remaining ones in the first part of this thesis,
Part I: Thesis description, are organized as follows:

Chapter 2: Theoretical background gives brief notions of the theory behind two
frameworks constantly resorted in this thesis: Probabilistic Graphical Models
and Knowledge Base representations, so the non-expert readers in this field
can get the basic background for a proper understanding of the next chapters.
The author has tried his best to make the reading of this chapter as pleasant as
possible.

Chapter 3: Contextual scene understanding describes the traditional approaches
followed for the recognition of objects and rooms by a mobile robot, and how
they are related to the presented contributions exploiting contextual informa-
tion. Details about the synergy of PGMs and Semantic Knowledge for scene
understanding are provided. This chapter also discusses the datasets used to
test the developed techniques, including the UMA-Offices one, as well as the
implemented software in this respect: the Undirected Probabilistic Graphical
Models in C++ library.

Chapter 4: Semantic Mapping outlines the semantic map representations tradition-
ally used in mobile robotics, and describes the thesis contribution for a repre-
sentation handling uncertain information: the Multiversal Semantic Map. The
virtues of this map have been checked against a novel dataset, Robot@Home,
whose features are described in this chapter along with those of the software
used for its processing: the Object Labeling Toolkit.

Chapter 5: Summary of included papers lists the papers that make up the second
part of the thesis, Part II: Included papers, giving a brief description of their
content and contributions.

Chapter 6: Conclusions and future work discusses the conclusions drawn from the
work done in this thesis, as well as the research lines still open an possible ex-
tensions.





2
Theoretical background

This chapter briefly covers the theory behind two frameworks that
have been essential for the research in this thesis. The first one is
Probabilistic Graphical Models, used to holistically model the ob-
ject and/or room recognition problems from a probabilistic stance.
The second framework is Knowledge Bases, employed to encode Se-
mantic Knowledge of the domain at hand for its posterior exploita-
tion with different purposes. The synergy between both frameworks
enables the design of sophisticated techniques to manage semantic
maps.

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) [65, 12] suppose a widespread framework
from the Machine Learning field to efficiently model and exploit contextual relations,
aiming to predict multiple, somehow dependent, random variables. These models
are usually employed to deal with complex systems that involve uncertainty, which
mainly arises from the limitations on the motion and sensory systems of the robot.

PGMs rely on a graph representation G = (V,E), where the set V represents the
random variables of the problem as nodes, while the edges E ⊆V ×V relate variables
that are dependent in some way. This graph-based representation permit PGMs to
compactly encode complex distributions over high-dimensional spaces, and to sup-
port the execution of probabilistic inference techniques for the prediction of the vari-
able values. Thus, PGMs are strongly based on principles from graph theory and
probability theory.

13
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Figure 2.1: a) Graph representation of the MRF happiness model. b) Factors defined over such
a graph. c) CRF representation including measures about different aspects.

PGMs have been successfully applied to a variety of domains like medicine, com-
puter vision, robotics, etc. Depending on the types of edges, PGMs can be grouped
on Directed or Undirected models. On the one hand, Directed Graphical Models, also
called Bayesian Networks (BNs) [98], model the dependencies among nodes through
directed edges, encoding causality relations. These models have been utilized with
notable success in problems like medical diagnosis [84], biology [159], weather fore-
casting [1], or robotic localization and map building [14]. On the other hand, Undi-
rected Graphical Models (UGMs), also called Markov Random Fields (MRFs) [63],
employ undirected edges to define symmetric relations among random variables. This
approach has reached a remarkable success in computer vision [50].

The choice between BNs and MRFs largely depends on the target application,
since they are able to encode different types of dependencies (e.g. BNs can define
induced dependencies, while MRFs are able to represent cyclic dependencies). In the
case of the object/room recognition problem, the more suitable framework is such of
MRFs, since the nature of the relations among objects and rooms is symmetric, and
they can also exhibit loops, which are non trivial to model within the BNs frame-
work. In its turn, the discriminative variant of MRFs, called Conditional Random
Fields (CRFs) [70], are more appropriate in classification problems where the ran-
dom variables are conditioned to observed data [59, 69]. The next section shows an
example to illustrate the differences among these models.

2.1.1 The happiness example

Let’s suppose the family formed by Bob, Sophie, and Alice presented in the intro-
ductory chapter, and a mobile robot with the goal of modeling their happiness state
through a MRF. As human beings, we empathize with each other, and we are di-
rectly affected and affect the well-being and emotional state of our relatives, so it
makes sense to take into account these relationships when trying to predict the hap-
piness state of a person. PGMs model this in a principled way. Figure 2.1-a) shows
the graph representation exemplifying the relations among the happiness state of each
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family member, also including our lovely grandma, called Tess, who have nice con-
versations with Bob in the elevator. From this representation it can be inferred that
the happiness of Alice, Bob, or Sophie directly influences the feelings of the other
family members, while Tess has only influence and is influenced by Bob.

At this point, instead of modeling the whole probability distribution P(y) (with
y = [A,B,S,T ]), MRFs break it down into smaller pieces through the utilization of
factors, i.e. functions defined over different parts of the graph. The first row of Fig-
ure 2.1-b) shows factors defined over the nodes of the graph, which are commonly
called unary factors, stating the likelihood of these nodes to take certain values. Let’s
simplify the happiness of a person to two possible states, unhappy (0) and happy (1).
Having a closer look at these factors, we can see for example that Alice is more prob-
able to be happy than Tess. In its turn, the second row shows factors defined over pair
of nodes, called pairwise factors, that set the likelihood about those nodes taking a
certain values combination. The defined factors tell us that Bob, Alice and Sophie are
prone to share their happiness, and although Bob and Tess are also inclined to have
the same state, this influence is weaker. The values defined in a factor have not to sum
up 1, since they are not probabilities.

Exhaustively defining P(y) in this toy example requires the codification of 24 = 16
probabilities. In this case, the MRF codification through factors does not save so
much work, however, in more realistic scenarios with dozens, hundreds or thousands
of random variables their utilization becomes crucial to keep the problem tractable.
For example, a scenario with 20 binary random variables entails the definition of
220 ' 106 probabilities.

Thus, according to the Hammersley-Clifford theorem [48], the probability P(y)
can be factorized over the graph G as a product of factors φ(·):

p(y) =
1
Z ∏

c∈C
φ(yc) (2.1)

where C is the set of maximal cliques1 of the graph G, and Z(·) is the so-called
partition function that plays a normalization role so ∑ξ (y) p(y) = 1, being ξ (y) a
possible assignment to the variables in y. Therefore, the computation of the partition
function is needed for computing the probability of a given assignment.

This way to define factors is rigid and naive: the happiness of a person can hardly
be modeled by writing in stone his tendency to be happy, and it is additionally influ-
enced by a number of (hopefully measurable) daily aspects: the sleeping hours, the
success at work, hours spent with family and friends, etc. These aspects could be also
included in the MRF graph as additional random variables, although the modeling of
their probabilities and relations tend to be needlessly complex. Conditional Random
Fields (CRF) [70] avoid the need to model them by conditioning the probability dis-
tribution over y to the values of these aspects, referred to as features. Thus, a CRF

1A maximal clique is a fully-connected subgraph that can not be enlarged by including an adjacent
node.
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works directly with the distribution p(y | x), where x is the vector of observed fea-
tures. Figure 2.1-c) shows the graph representation of a CRF considering this infor-
mation. Additionally, instead of defining by hand the factors for each possible content
of x, they are parametrized through a vector of weights θ that are learned during the
training phase of the CRF. Thus, the probability p(y | x) can be retrieved by:

p(y | x;θ) =
1

Z(x,θ) ∏
c∈C

φ(yc,xc,θc) (2.2)

The parametrized factors can be formulated in different ways depending on the
application. For example, in recognition problems, unary factors are often defined as
φu(yi,xi,θ) = ∑l∈L δ (yi = l)θ l f (xi), where f (xi) computes a vector of features that
characterizes the object xi (e.g. size, shape, color, etc.), θ l is the vector of weights
for the class l obtained during the training phase, and δ (yi = l) is the Kronecker
delta function, which takes value 1 when yi = l and 0 otherwise. Pairwise factors
are defined in a similar way, but considering a function that computes a vector of
contextual features (e.g. difference of color, difference of orientation, etc.).

2.1.2 Learning the models

Training a CRF model for a given domain requires estimating the parameters θ , in
such a way that they maximize the likelihood in Eq.2.2 with respect to a certain i.i.d.
training dataset D = [d1, . . .dm], that is:

max
θ

Lp(θ : D) = max
θ

m

∏
i=1

p(yi | xi;θ) (2.3)

where each training sample di = (yi,xi) consists of a number of observed features
from the elements of the problem at hand (xi), the people whose happiness is to be
estimated in our example, and the corresponding ground truth information about their
classification (yi), i.e. if they are happy (1) or not (0).

The optimization in Eq.2.3 is also known as Maximum Likelihood Estimation
(MLE), and requires the computation of the partition function Z(·), which in practice
is NP-hard, hence an intractable problem. Two major approaches stand out to over-
come this concern: (i) the definition of alternative, tractable objective functions, or (ii)
the estimation of the likelihood by approximate inference algorithms [68, 66, 96]. The
performance of methods from both options highly differs depending on the domain
of the problem at hand, i.e. the nature and internal structure of the data to work with.
Therefore, for a certain application, a thorough study is needed in order to obtain a
successful model, which motivates the analysis described in Chapter 3.

2.1.3 Probabilistic inference

Once a CRF is trained, and its graph representation modeling a given problem is built,
it can be exploited by probabilistic inference methods to perform different probability
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queries. At this point, two types of queries are specially relevant: the Maximum a
Posteriori (MAP) query, and the Marginal query. The goal of the MAP query is to
find the most probable assignment ŷ to the variables in y, i.e. :

ŷ = argmax
y

p(y | x;θ) (2.4)

Once again, the computation of the partition function Z(·) is needed, but since
given a certain CRF graph its value remains constant, this expression can be simplified
by:

ŷ = argmax
y ∏

c∈C
exp(〈φ(xc,yc),θ〉) (2.5)

Nevertheless, this task checks every possible assignment to the variables in y, so
it is still unfeasible for real applications. An usual way to address this issue is the uti-
lization of approximate methods, like the max-product version of Loopy Belief Prop-
agation (LBP) [150], Iterated Conditional Models (ICM) [11], or Graph Cuts [15].

On the other hand, the Marginal query, which can be performed by, for example,
the sum-product version of LBP [155], provides us beliefs about the possible assig-
nations to the variables y. In other words, this query yields the marginal probabilities
for each element taking different values, as well as the compatibility of these assign-
ments with respect to the values of contextually related elements. Notice that the most
probable MAP assignment to a random variable can differ from the highest marginal
probability. Additionally, with this query is also possible to estimate the probability
of a certain assignment to the variables in y.

2.2 Knowledge bases

Knowledge base (KBs) is the term used in Artificial intelligence (AI) to describe one
of the two parts of a knowledge-based system, which is in charge of encoding seman-
tic or common-sense knowledge about a particular domain in a computer-readable
fashion. The other system part is a reasoning engine able to infer new information or
detect inconsistencies in the KB. In the happiness example, a KB could encode the
types of relations among persons, the different factors that affect their happiness, etc.
(see Section 2.2.2), which are typically modeled through Ontologies. Knowledge-
based systems have been a pivotal component for semantic mapping, as they permit
a mobile robot to perform efficiently according to the information collected from the
environment.

2.2.1 Ontologies

An Ontology is commonly defined as a representation of a conceptualization related
to a knowledge domain, which accounts for a number of concepts arranged hier-
archically, relations among them, and instances of such concepts, also called indi-
viduals [144]. Example of concepts could be Person or Happiness, while Person
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Figure 2.2: Hierarchy of concepts for the happiness domain.

hasState Happiness could be a relation stating the happiness of a person. Thus,
the happiness of Bob, an individual of the concept Person, could be codified by Bob

hasState Happy.
The process of obtaining and codifying Semantic Knowledge can be tackled in

different ways. For example, web mining knowledge acquisition systems can be used
as mechanisms to obtain information about the domain of discourse [158]. Available
common-sense Knowledge Bases, like ConceptNet [134] or Open Mind Indoor Com-
mon Sense [46], can be also analyzed to retrieve this information. Another valuable
option is the utilization of internet search engines, like Google’s image search [29],
or image repositories like Flickr [99], for extracting knowledge from user-uploaded
information. Semantic Knowledge can be also codified through an human elicitation
process, which supposes a truly and effortless encoding of a large number of concepts
and relations between them. In contrast to online search or web mining-engine based
methodologies, this source of semantic information (a person or a group of people) is
trustworthy, so the uncertain about the validity of the information is reduced [119].

2.2.2 Happiness from an Ontological stance

Figure 2.2 shows an example of hierarchy of concepts from an Ontology modeling
the happiness domain. The root concept is Thing, with 5 children codifying infor-
mation about: the possible states of happiness, the person concept itself, different
types of relationships among people, possible aspects that affect happiness, and mea-
surements of those aspects. Using this Ontology, one can define, for example, that a
happy person has a Good SleepTime, Success at work, and LeisureTime. Thus, if
a Person shows these properties, a logical reasoner, like Pellet [133], FaCT++ [143],
or Racer [47], can be used to automatically infer that such a person is happy.



2.2. KNOWLEDGE BASES 19

Contextual relations among concepts or instances can be also defined. For ex-
ample, Bob hasFamilyRealtion Alice sets that Bob and Alice are relatives. This
way of inferring crispy information and defining crispy relations and properties, al-
though useful in some domains, has limitations. The major one is the lack of mech-
anisms to manage uncertainty or providing beliefs about the inference results, which
prevent its application to problems where their consideration is a must.





3
Contextual scene understanding

This section deals with the developed techniques for contextually
recognizing objects and rooms. After an introduction, it discusses
the related work that can be found in the literature, describes the
datasets used as a testbed to evaluate such techniques, and con-
cludes with the description of the contributions done in this regard.

3.1 Introduction

The ability to be aware of the objects and rooms in the robot surroundings, as well
as of their types, is vital for a successful robot operation. Object/room recognition
techniques are core components of semantic mapping systems, which are in charge
of yielding the type of the spatial elements captured by the robot sensory system. As
a consequence of this, a number of recognition approaches have been proposed for
populating semantic maps.

Recognition methods often rely on RGB, and more recently on RGB-D informa-
tion to perceive the robot environment and process the spatial elements therein. For
that, the captured images are segmented into such spatial elements, which are indi-
vidually processed in order to retrieve their type, e.g. counter, cabinet, microwave,
kitchen, bathroom, etc., through a number of appearance and/or geometric features.
The utilization of RGB and depth information entail a number of challenges as chang-
ing lighting conditions, cluttered room layouts, occlusions, or changing viewpoints,
which can produce ambiguous recognition results. Recognition techniques also face
other sources of uncertainty, like those coming from the own sensory system (e.g. sen-
sor noise) or from the defined models. Given the effect that ambiguous recognition
results stored in a semantic map may have on the robot operation (recall the lovely
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grandma and the carpet), recognition techniques integrated into these systems have to
tackle them.

In the works that conform this thesis a number of recognition techniques that
address this uncertainty issues have been proposed, also striving to decrease the am-
biguity of the recognition results by exploiting contextual relations. PGMs are em-
ployed for that, in close cooperation with KBs in the form of Ontologies in order to
enhance their performance. These techniques are also able to provide a measure about
the uncertainty of their results, which is crucial for the semantic mapping framework
presented in the next chapter.

3.2 Related work

A vast literature exists around the recognition of objects and/or rooms. This section
starts by briefly discussing traditional approaches addressing this issue, and the good
reasons for contextually modeling these problems. Then, popular works exploiting
context through PGMs are presented, as well as some alternatives exploring the uti-
lization of Semantic Knowledge. Finally, the datasets applicable to the evaluation of
the proposed recognition techniques are reviewed, as well as related software appli-
cations.

Traditional scene object/room recognition

Scene object recognition is a widely studied topic in computer vision and robotics.
Recognition systems have traditionally relied on the features of the objects/room like
their geometry or appearance due to their acceptable performance. Regarding ob-
ject recognition, a popular example is the work by Viola and Jones [146], where an
integral image representation is used to encode the appearance of a certain object cat-
egory, and is exploited by a cascade classifier over a sliding window to detect the oc-
currences of such object type in intensity images. Another well known approach is the
utilization of image descriptors, like Scale-Invariant Feature Transform (SIFT) [74],
Speeded-Up Robust Features (SURF) [64], or Local Binary Pattern (LBP) [20], to
capture the appearance of objects, and its posterior exploitation by classifiers like
Supported Vector Machines (SVMs) [100] or Bag-of-Words [85, 52]. Other works
study the automatic learning of low level features, e.g. using neuronal networks, as is
the case of Bai et al. [8]. The work by Zhang et al. [157] provides a comprehensive
review of methods following this approach.

On the other hand, a considerable number of works also tackle the room catego-
rization problem through the exploitation of their geometry or appearance, like the
one by Mozos et al. [80] which employs range data to classify spaces according to
a set of geometric features. Also popular are works resorting to global descriptors
of intensity images, like the gist of the scene proposed by Oliva and Torralba [91],
those resorting to local descriptors like the aforementioned SIFT and SURF [6, 81],
or the works combining both types of cues, global and local, pursuing a more robust
performance [149, 101].
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Despite the success of local recognition systems for certain applications, their
integration into mobile robots arises a number of additional issues to be tackled
[119, 93]. One of the most significant ones is the fact that they can lead to ambiguous
recognitions, i.e. they are prone to fail in identifying classes with similar features, as
analyzed in [92, 19, 38, 115]. This is mainly due to only relying on features of the
objects/rooms themselves, disregarding valuable contextual information that is also
available. Therefore, a significant, growing body of current research aiming to over-
come this issue is considering contextual information of the scene objects in addition
to their usually employed individual features. Some works have attempted to exploit
this information by providing ad-hoc or preliminary solutions, like in [78], where
the co-occurrence of objects appearing in distinct types of rooms are implicitly mod-
eled. However, these works lack a consistent theoretical background, compromising,
among others, their comparison, generalization, re-usability, or scalability. Moreover,
their output consists of a set of objects’ labels, which do not carry any semantic infor-
mation profitable by high-level AI robotic components. Well grounded alternatives
for modeling/exploiting contextual relations are Probabilistic Graphical Models and
Semantic Knowledge, whose combination is exploited in this thesis with the goal of
mitigating their drawbacks and boosting their virtues.

Contextual Recognition through PGMs

Probabilistic Graphical Models (PGMs) in general, and Undirected Graphical Models
(UGMs) in particular, have became popular frameworks to model and exploit contex-
tual relations in combination with probabilistic inference methods [65]. Contextual
relations can be of different nature, involving objects and/or rooms. On the one hand,
objects are not placed randomly within the robot workspace, but following config-
urations that make sense from a human point of view, e.g. carpets are on the floor,
remote controls can be found close to televisions, and pillows are normally placed on
beds. The earliest works using this information were based on intensity information
of the scene, like [152], where the context between pixels in a given RGB image is
modeled by a discriminative Conditional Random Field (CRF). Another work, also
relying on intensity images, is the presented in [106] that proposes a CRF framework
that incorporates hidden variables for part-based object recognition. The work in [79]
also builds part-based models of objects, and represents their interrelations with a
PGM. More recent is the work presented in [33] which employs stereo intensity im-
ages in a CRF formulation. Three-dimensional information from stereo enables the
exploitation of meaningful geometric properties of objects and relations. However,
stereo systems are unable to perform on surfaces/objects showing an uniform inten-
sity, which can negatively affect the recognition performance.

With the emergence of inexpensive 3D sensors, like Kinect, a new batch of ap-
proaches have appeared leveraging the dense and relatively accurate data provided by
these devices. For example, the work presented in [4] builds a model isomorphic to a
Markov Random Field (MRF) according to the segmented regions from a scene point
cloud and their relations. The authors did the tedious work of gathering information
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from 24 office and 28 home environments, and manually labeled the different object
classes. Interestingly, it is shown in [111] that the accuracy of a MRF in charge of
assigning object classes to a set of superpixels increases as the amount of available
training data augments. In [145] a meshed representation of the scene is built on the
basis of a number of depth estimates, and a CRF is defined to classify mesh faces.
CRFs are also used in [60] and [154], where Decision Tree Fields [87] and Regres-
sion Tree Fields [56] are studied as a source of potentials for the PGM. The CRF
structure for representing the scenes in [154] is similar but less expressive than the
one presented here. In that work, a CRF is used to classify the main components of a
facility, namely clutters, walls, floors and ceilings.

On the other hand, object–room relations also supposes a useful source of infor-
mation: objects are located in rooms according to their functionality, so the presence
of an object of a certain type is a hint for the categorization of the room and, like-
wise, the category of a room is a good indicator of the object categories that can
be found therein. Thus, recent works have explored the joint categorization of ob-
jects and rooms leveraging both, object–object and object–room contextual relations.
CRFs have proven to be a suitable choice for modeling this holistic approach, as it
has been shown in the works by Rogers and Christensen [113] or Lin et al. [73].

Despite their virtues, PGMs shows a number of drawbacks, like the necessity of
large and comprehensive datasets for training, their high complexity when modeling
real world problems, or their inability to detect incoherent results and learn from
experience. The contributions in this section aim to mitigate those issues with the
utilization of Semantic Knowledge.

Semantic Knowledge for modeling context

A different trend in the literature resorts to Semantic Knowledge for both recogniz-
ing objects and exploiting their contextual information. For example, the work de-
scribed in Günter et al. [45] codifies contextual information in an Ontology, combined
with a set of rules defined with the Semantic Web Rule Language [53], to generate
objects’ candidate classes. These hypotheses are subsequently validated through a
matching process with CAD models. Another example is presented in Nüchter and
Hertzberg [88], which defines a constraint network in Prolog to classify the main
structural surfaces of buildings, i.e. walls, floors, ceiling and doors, using contextual
relations like orthogonal, parallel, above, etc. In Galindo et al. [35], data codified
into an Ontology about scene objects and their relations are used to infer new high-
level information. The work introduced by Durand et al. [21] recognizes segmented
regions that have been previously characterized through a set of features in RGB
images. These features are defined in an Ontology, and their usual values for the dif-
ferent object types are learned by symbolic supervised machine learning tools. In this
case, a specific procedure matches characterized regions with semantically defined
concepts, but although the authors propose the use of contextual relations, they are
neither defined nor exploited. An Ontology is also used in Maillot et al. [25] for the
recognition of isolated objects and their subparts, which manually establishes the as-
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sociation between geometric features and numeric values. This Ontology is populated
through machine learning techniques like Perceptrons and Support Vector Machines.

A common characteristic of these approaches based on Semantic Knowledge is
that they show limitations in quantifying the uncertainty of their results, and in ex-
ploiting the encoded contextual relations. The presented contributions face these is-
sues through collaboration with a CRF, which provides the mobile robot with a recog-
nition system endowed with a probabilistic inference mechanism, able to manage
uncertainty and adequately exploit contextual relations.

Related software applications

Most contextual-based object recognition works rely on an ad-hoc implementations
of both the PGMs framework and inference algorithms [4, 111, 145, 154]. This makes
it difficult to conduct a fair comparison between state-of-the-art works, even when
they report results resorting to the same dataset. There are some publicly available
software libraries implementing this framework [89, 129], but they are not suited
for the contextual object recognition problem (e.g. they only handle chain-structured
models), or their applicability to this issue is limited. Regarding Semantic Knowl-
edge related applications, there exist a number of mature software for codifying and
managing this information in Ontologies, as is the case of Protégè [43] or Fluent Ed-
itor [17], as well as logical reasoners like Pellet [133], HermiT [41], FaCT++ [143],
or Racer [47].

Applicable RGB-D datasets

The irruption of proposals exploiting RGB-D information has been accompanied
with public datasets that offer common benchmarking resources for comparing these
works. Among them we can find Berkely-3D [57], Cornell-RGBD [5], NYUv1 [130],
NYUv2 [131], TUW [3], SUN3D [153], or ViDRILO [75]. Specially popular are
Cornell-RGBD, which is employed in several works aforementioned [4, 60, 54], and
NYUv2 used in [151, 119, 116, 117]. The next section reports the datasets employed
in this thesis.

3.3 Testbed

Three datasets containing RGB-D information have been used to assess the perfor-
mance of the contributions in this chapter: UMA-Offices [119], NYUv2 [131] and
Cornell-RGBD [5]. This section briefly describe the last two datasets, while details
about UMA-Offices are provided in Section 3.4.1.

NYUv2 contains a total of 1,449 labeled pairs of both intensity and depth images,
and has been extensively used in the literature (e.g. [151, 119, 116, 117]) due to its
challenging, cluttered scenes from commercial and residential buildings. Although
the number and type of objects and rooms we have considered differs from one work
to other, typically 208 scenes corresponding to home facilities have been employed,
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as well as 24 object categories appearing in such environments, e.g: bottle, cabinet,
counter, faucet, floor, mirror, sink, toilet, towel, table, sofa, book, etc. It is worth to
mention that the provided images only capture a portion of the scene, so the contained
contextual relations are somehow limited. An evidence of this is given by the total
number of extracted relations, 1,345, when compared with the number of objects,
1,295. This is an average of 6.25 objects and 6.47 relations per scene.

The Cornell-RGBD repository has 24 labeled office scenes and 28 home labeled
scenes built from the registration of RGB-D images. As opposed to NYUv2, the pro-
vided data inspect a larger portion of the scene, resulting in a richer set of available
contextual information. This feature has motivated its utilization in a variety of works
(e.g [4, 60, 54]). As before, the home scenes have been selected, which sum up a total
of 764 object instances and 2,911 contextual relations among them, averaging 27.29
objects and 103.96 relations per scene. We have used the same 17 categories as in the
work that presented this dataset [4].

3.4 Contributions

This section describes the developed techniques for an object/room recognition frame-
work through the synergy of PGMs and Semantic Knowledge. It starts with the de-
scription of the UMA-Offices dataset, specially collected for testing such techniques,
and continues with an overview of the Undirected Probabilistic Graphical Models in
C++ library, implemented for efficiently handling PGMs in robotic applications, as
well as an analysis of PGM learning strategies. Then, a brief review of those tech-
niques is provided, along with references to papers and online resources with further
information.

3.4.1 UMA-O�ces dataset

Office facilities are one of the typical application domains for mobile robots. To
test the developed techniques in such environments, the UMA-Offices dataset, com-
pounded of 25 office scenes from the University of Málaga, has been collected. Sen-
sory data included in this dataset was acquired by Rhodon, a mobile robot endowed
with an RGB-D device mounted on a Pan-Tilt unit, which permits it to perceive the
world from a human-like point of view (see Figure 3.1-left). In this repository, the
plane-based mapping algorithm by Fernandez-Moral et al. [31] was used to build a
3D representation of the scenes (see Figure 3.1-right), as well as to extract planar
patches characterized through a number of features (e.g. size, orientation, position or
contextual relations). In total, 170 object instances were labeled from the following
categories: floor, wall, table top, table side, chair back rest, chair seat, and computer
screen. Table 3.1 lists the features of this and the other two datasets used as testbeds.
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RGBD camera 

Figure 3.1: Left Rhodon robot from the MAPIR Group capturing RGB-D images from an
office. Right, two point clouds from the UMA-Offices dataset.

Table 3.1: Principal characteristics of the three discussed datasets, UMA-Offices, NYUv2 and
Cornell-RGBD.

Properties Dataset UMA-Offices NYUv2 Cornell-RGBD
#scenes 25 208 24
#obj. categories 7 24 17
#objects 170 1,345 764
#relations 305 1,295 2,911
mean #objects 6.8 6.25 27.29
mean #relations 12.2 6.47 103.96
type of objects planar surfaces arbitrary shapes arbitrary shapes

3.4.2 The UPGMpp library

The study of the software used by state-of-the-art recognition methods employing
CRFs arose the lack of public solutions especially focused and optimized for that
goal. The utilization of efficient software is a must, since the computational resources
in typical robotic platforms are limited given the different modules of the robotic
architecture (navigation, localization, etc.) that compete for them.

For that reason, the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp, see Figure 3.2) has been developed as open-source1 for the efficient build-
ing, training and managing of undirected PGMs. Its main features are:

• It works with discrete random variables.

• Handles first order (local or unary) and second order (pairwise) relations.

1http://mapir.isa.uma.es/work/upgmpp-library
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PGMpp
Figure 3.2: UPGMpp logo.

• Nodes (random variables) of different types can appear and interact in the same
PGM (for example, nodes representing objects, rooms, facilities, etc.).

• If the value of a random variable is known, such an evidence can be considered.

• It supports PGMs with an arbitrary structure (including graphs with loops).

UPGMpp is fully implemented in C++, and resorts to the also open-source project
libLBFGS [82] for performing numerical optimization, and to the Eigen library [44]
for fast matrix operations. Boost library [128] is used to avoid unnecessary re-copy
of data across the implemented methods by means of shared smart pointers. This
library is also employed for serialization purposes, which adds the possibility of stor-
ing/loading graphs from/to files, enabling the long-term life of PGMs beyond exe-
cution time. Additionally, the Open Multi-Processing API (OpenMP) [94] was em-
ployed to speed-up the execution of a number of algorithms through parallelization
techniques. Further implementation information and other details can be found in the
work by Ruiz-Sarmiento et al. [115], which is included in this thesis.

The methods currently available for managing Undirected PGMs are:

Maximum a Posteriori (MAP) inference: Iterated Conditional Modes (ICM) [11],
Greedy ICM, Exact Inference, Loopy Belief Propagation (LBP) [150], Tree
Reparametrization Belief Propagation (TRBP) [148], Residual Belief Propaga-
tion (RBP) [24], α-expansions and α-β Swaps Graph Cuts [15].

Marginal inference: (sum-prduct) Loopy Belief Propagation [155], Tree Reparametriza-
tion Belief Propagation [148], Residual Belief Propagation [24].

Learning objective functions: Pseudo-likelihood [11], Score-matching [55], Piecewise-
likelihood [136, 135], Marginal-based approximation [68], MAP-based approx-
imation [65].

Learning optimization methods: Stochastic Gradient Descent (SGD) [83], quasi-
Newton Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [86].

As a proof of the efficiency achieved by the library, and as reported in [115], dif-
ferent inference methods were executed on scenes from the NYUv2 dataset, which av-
erages 6.25 objects and 6.47 contextual relations per scenario (see Table 3.1), reach-
ing the ICM inference method a mean execution time of 0.46ms, the LBP one 2.16ms,
and the α-expansions method 7.78ms.
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3.4.3 Testing CRF learning approaches

The learning and probabilistic inference methods implemented in UPGMpp have
been successfully applied to a variety of problems, however, their performance highly
depends on the peculiarities of the application domain [68, 66, 96, 32]. A study of this
for the scene object recognition result was missing in the literature, so this gap was
covered through an empirical analysis of the most popular strategies. Concretely, two
families of objective functions have been explored: pseudo-likelihood, and approxi-
mate inference algorithms, including Marginal and Maximum a Posteriori methods:
sum-product and max-product LBP, ICM, and Graph-cuts. Two approaches for the
optimization of such objectives are also considered: SGD, and L-BFGS.

As a testbed for the conducted analysis the indoor home scenes from the NYUv2
and Cornell-RGBD were employed, with particular features worth to explore: while
NYUv2 comprises a high number of labeled images (we have used 208 from home
environments) that capture the objects and relations from portions of scenes, Cornell-
RGBD provides a lower number of scenes (28 from homes) but fully covering the
inspected place, similarly to the contributed UMA-Offices dataset, which results in a
considerably larger number of perceived objects and relations.

The conducted study focused on two facets of the learning methods: the recogni-
tion performance of the trained CRFs, and the required computational time. To mea-
sure the CRFs performance different MAP inference methods were executed over
the learned models, and their recognition results compared with the ground-truth in-
formation provided by the datasets. The computational time needed by each learning
method to converge was also analyzed, studying the advantage of parallelization tech-
niques. Finally, the scalability of the learning methods according to different factors
was also studied.

Briefly, the conducted study yielded the following conclusions, which greatly help
in deciding the learning strategy to be chosen and the configuration according to the
target application (for a complete conclusions’ list, please refer to [121]):

• CRF models learned from Cornell-RGBD data were more prone to over-fit
their parameters than those working with NYUv2. This is due to the higher
complexity of the scenes from the Cornell-RGBD.

• The Marginal inference – SGD strategy yielded the highest recognition perfor-
mance in both datasets: 79.85% in NYUv2 and 67.27% in Cornell-RGBD.

• The PL – L-BFGS strategy was the most robust, providing acceptable results
in all the CRF configurations studied.

• LBP was the winning method for testing, reaching the best results when dealing
with CRFs with edges and normalized features.

• In general, the computational time is reduced, ranging from the 24.43s. (on
average) with the PL – SGD strategy, up to the 71.03s. with the Marginal infer-
ence – SGD one.
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• L-BFGS and SGD benefited from parallelization techniques in OpenMP, achiev-
ing a speed-up factor of∼ 3.5 for PL – L-BFGS, and∼ 5 for Marginal inference
-– SGD using 8 CPU-cores.

Concerning the scalability of the studied strategies, it has been analyzed how the
utilization of different number of training samples and object categories affect their
performance. These experiments reported that the computational time required for
learning scales considerably better in both cases when PL – L-BFGS was used, being
its growth even sub-linear in some cases. Regarding recognition success, the Marginal
inference – SGD option achieved the best outcome.

3.4.4 Exploiting Semantic Knowledge for CRF learning

PGMs in general, and CRFs in particular, need a vast amount of training data in or-
der to reliably encode the gist of the domain at hand. However, the collection of that
information is an arduous, time-consuming, and – in some domains – an intractable
task that consists of moving the robot from one scene to another, gathering the data,
and post-processing it accordingly to the type of information expected by the training
algorithms. To face this issue, a framework to codify Semantic Knowledge through
human elicitation in an Ontology has been developed, defining the domain object
classes, their properties, and their relations. The result is used to generate an arbitrary
number of training samples for tuning CRFs. These training samples reify prototypal
scenarios where objects are represented by a set of geometric primitives, e.g., planar
patches or bounding boxes, that fulfill certain geometric properties and relations, like
proximity, difference of orientation, etc. This approach exhibit a number of advan-
tages:

• It eliminates the usually complex and high resource-consuming task of col-
lecting the large number of training samples required to tune an accurate and
comprehensive model of the domain.

• Ontologies are compact and human-readable knowledge representations. In
that way, extending the problem with additional object classes is just reduced
to codify the knowledge about the new classes into the Ontology, generate
synthetic samples considering the updated semantic information, and train the
CRF. This process can be completed in a few minutes, in contrast to the time
needed for gathering and processing real data.

• The recognized objects are anchored to semantically defined concepts, they
hence can be straightforwardly incorporated to a semantic map for performing
high-level tasks [36, 34, 18].

Thus, the proposed framework follows a top-down methodology (see Figure 3.3).
The design starts with the definition of an Ontology for the knowledge domain at
hand, e.g. an office environment, through human elicitation, stating the typical ob-
jects, their geometrical features, and relations. Then, the encoded Semantic Knowl-
edge is used for generating sets of synthetic samples, which replace the real datasets
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Figure 3.3: Overview of the developed framework for object recognition. The shadowed area
delimits the proposed components for the generation of training samples. Boxes represent pro-
cesses, whereas ovals are generated/consumed data (taken from [116]).

required for training through an algorithm that performs an arbitrary number of times
the following steps:

1. Inclusion of objects in the scene. The set of objects that appears in the syn-
thetic scene is selected according to their frequency of occurrence codified
within the Ontology.

2. Object characterization. The geometrical features of the objects included in
the previous step, e.g. area, centroid height, elongation, orientation, etc. are
reified according to their concepts’ definitions in the Ontology.

3. Context creation. The contextual relations between the included objects are
established.

4. Context characterization. Different features of those relations are computed,
adding valuable contextual information. Examples of these features are: dif-
ference between centroid heights, perpendicularity, difference between areas,
areas ratio, difference between elongations, etc.

Once the CRF is trained (recall Section 2.1.2), it is integrated into an object recog-
nition framework that works following a bottom-up stance (see Figure 3.3). During
the robot operation, a plane-based mapping algorithm [31] extracts planar patches,
which are characterized through a number of features, e.g., size, orientation, posi-
tion or contextual relations. These characterized planar patches feed a probabilistic
inference process that yields the recognition results (recall Section 2.1.3).

The results obtained in the conducted evaluations achieved a recognition success
of∼ 90% within the UMA-Offices dataset (see Figure 3.4), and of∼ 81% and 69.5%
using office and home scenes from the NYUv2 dataset respectively, revealing that
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Figure 3.4: Examples of scene object recognitions performed by the proposed framework.
Left column, observed scenes from th UMA-Offices dataset with the detected planar patches
delimited by yellow lines. Right column, recognition results of such scenes (see [116]).

Semantic Knowledge can be exploited for the suitable training of recognition systems.
This approach was also compared with other state-of-the-art approaches based on
CRFs, like [154], yielding a substantial improvement.

A number of additional, related issues were also addressed:

• The discriminant capability of different sets of contextual features was studied,
showing their positive effect on the system performance.

• The relation between the size of the training datasets and the system perfor-
mance was analyzed, obtaining the expected conclusions [111]: the larger and
the more comprehensive the dataset is, the better the system outcomes are.

• It was also reckoned the computational efficiency, evidencing the suitability of
the proposed system for real time robotic applications.
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• It was analyzed the time saving gained with the use of human elicitation plus
synthetic samples generation processes, resulting 20 times lower than the time
spent in collecting real data from the UMA-Offices dataset.

Please refer to [116] for further information about the developed framework, its
evaluation, and the reached conclusions.

3.4.5 Including rooms into the equation

The spatial awareness needed by the robot to accomplish high-level tasks must ac-
count for the existing close relations among not only objects, but also their typical
locations. Thus, the robot should not only tackle the object recognition problem, but
also the room recognition one, i.e. to infer the type of space where it is.

Recent publications (e.g. [73, 113]) have shown that the joint modeling of these
problems can outperform other methods that address them separately [28, 16, 90,
107, 105]. Holistic approaches exploit the fact that objects are located in rooms ac-
cording to their functionality, so the presence of an object of a certain type is a hint
for the recognition of the room [147, 102, 26]. Likewise, the category of a room is
a good indicator of the object types that can be found inside [142]. Besides, objects
are not placed randomly, but following configurations that make sense from a hu-
man perspective [114, 4, 154]. Thereby, the exploitation of these object-object and
object-room contextual clues provides recognition methods with useful information.

For leveraging this information, the framework presented in the previous sec-
tion has been extended to also consider rooms, recognizing them through the ex-
ploitation of their contextual relations. For that, Semantic Knowledge about rooms
was codified into the Ontology through human elicitation (see Figure 3.5-top). Fig-
ure 3.5-bottom shows the definition of the concept Microwave within such Ontology,
where we can see, for example, that their orientation is usually horizontal, or that they
can be found in kitchens. This Ontology and other resources are available online at:
http://mapir.isa.uma.es/work/objects-rooms-categorization.

The CRFs employed were also modified in order to consider random variables of
different types, e.g. taking values from different object types, or from a set of room
types, as well as contextual relations of different nature: object-object and object-
room relations.

Thereby, two new steps were added to the four-steps algorithm described in the
previous section to also generate room-related data. Concretely the new algorithm is:

1. Room characterization. The first step is the computation of the room features
which, in the used Ontology, includes its volume (m3) and color hue variation.

2-5. The same four steps as in the original algorithm, but taking into account the
type of the room being synthetically generated.

6. Object-room context characterization. The relation between the room and
its objects is characterized by a fixed value, as it is the training process of the
CRF which learns automatically the likelihood of finding an object of a certain

http://mapir.isa.uma.es/work/objects-rooms-categorization.
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Figure 3.5: Top, excerpt of the Ontology used for the codification of Semantic Knowledge
about the home domain. Bottom, definition of the concept Microwave.

type into a kitchen. Notice that the appearance of an object of a certain type in
the room depends on previous steps.

In summary, the above six steps yield the objects, room and contextual features
needed to feed the unary and pairwise factors during the training of the CRF. The avid
reader can find more information about this process in [117].

The approach has been validated against home scenes from the NYUv2 dataset,
reaching a categorization success of ∼ 70% for both objects and rooms. The work
by Lin et al. [73] also employs CRFs and NYUv2 for validation, and although a
fair comparison is not possible since the authors consider a different set of object
categories and room types, it permits us to qualitatively confirm the promising per-
formance of the proposed approach, since they achieve a success of ∼ 60.5% and
∼ 58.7% recognizing objects and rooms respectively.

It is worth to mention that the applicability of the framework is not limited to
robots working at home environments, but it is suitable to perform in other domains
which properties and semantics can be defined by human elicitation, e.g. office facil-
ities or hospitals.
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Figure 3.6: Example of hypotheses generation for a given region. New instances are inserted
into the Ontology using the OWL language.

3.4.6 Further enhancing CRFs performance: coherence
and e�ciency

Approximate inference methods executed over CRFs are able to handle complex
models and operate in impressive short times, at the expense of a (hopefully) tiny
sacrifice in terms of recognition success. Obviously, the utilization of exact infer-
ence algorithms is preferable, but the complexity of real models prevents their use.
This contribution proposes the exploitation of the Semantic Knowledge encoded in
an Ontology to reduce the CRF inference complexity.

Concretely, the Semantic Knowledge is used to generate hypotheses about the
most probable belonging classes of the objects according to their features. For exam-
ple, a horizontal surface with a medium height from the floor could be hypothesized
as belonging to the Chair_seat, Table or Counter concepts, but not to Wall or
Computer_screen. These hypotheses are then taken by the CRF as the only possi-
ble candidates. This leads to a considerable reduction in the number of combinations,
i.e. assignments to the random variables, hence decreasing the inference complexity
and even enabling, in some cases, exact inference. Moreover, the generation of these
hypothesis ensures that the results will be coherent with the information in the Ontol-
ogy, and consequently, with the Semantic Knowledge that the human encoded about
the domain.

The process shown in Figure 3.6 help us to illustrate how hypotheses are gener-
ated. First, the object (in this case a chair back) is characterized through a number
of features, and a new instance derived from the Object concept is inserted into the
Ontology, e.g. object-1, also including a number of properties, or relations, stating
such features, e.g. object-1 hasCentroidHeight MM_Around06. This informa-
tion is encoded in the Ontology employing the OWL language [10]. Then, a logical
reasoner, Pellet [133] in this case, infers a set of concepts that are consistent with
the instance definition: Wall, Computer_screen and Chair_backRest in the ex-
ample. In this way, the CRF only considers that concepts as possible categories for
that object, hence decreasing the problem complexity.

Additionally, prior information about the frequency of occurrence of the different
object types was also encoded into the Ontology. This type of information permits us
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to model that, for example, it is more likely to find a computer than a couch in an
office environment, while it is quite unlikely to find an ironing table. This new source
of information comes together with a modification to the usual CRF formulation,
which can be checked in [114, 119], so it is able to exploit this prior information
from the Ontology. This approach enhances even more the expected coherence of the
recognition results.

The claimed virtues of these contributions have been thoroughly validated con-
sidering the NYUv2 and UMA-Offices datasets. Regarding the recognition success,
the evaluation provided the performance of a local object recognition approach as a
baseline, which was of∼ 79% and∼ 54% for UMA-Offices and NYUv2 respectively,
and revealed the progressive increment in the performance and robustness as long as
additional information is exploited: contextual information (∼ 84% and ∼ 59%), hy-
potheses of objects’ types (∼ 93% and ∼ 61%), and prior information about object
category occurrences (∼ 94% and ∼%65).

Moreover, an analysis of the complexity reduction of the probabilistic inference
process was carried out by considering the most promising object belonging types,
including the feasibility of exact inference for the considered datasets. The yielded
results are promising, allowing the system to rely on exact inference in all the sce-
narios within the UMA-Offices dataset, and in a wider variety of them in NYUv2.
Further details in this regard can be found in [114, 119].

3.4.7 Learning from experience

Typically, mobile robots employ CRFs that are pre-tuned with a certain dataset in or-
der to recognize a fixed range of object categories. However, this configuration lacks
of the flexibility demanded by robots performing in human-like environments, e.g.
it is (of course) unable to recognize new types of objects not appearing in the train-
ing dataset, or instances of learned ones showing peculiar features, which can lead to
an incoherent performance [93]. This section proposes a recognition framework that
relies on (surprise) Semantic Knowledge to detect and learn from incoherent recog-
nition results yielded by inference over a CRF.

For example, it can be defined the concept Fridge codifying that they are usually
high, box-shaped objects, and the Pill_box one, stating that they are small boxes
related to fridges by Pill_box placedInto Fridge. In the proposed framework,
the recognition results yielded by probabilistic inference over the CRF are checked
for coherence against the Semantic Knowledge. If any of them is detected as incoher-
ent (for example, a middle-size object is classified as a fridge), then it is annotated
for its posterior evaluation by the user through a simple dialog. This human-robot
interaction is greatly supported by the Ontology, since its content can be verbalized
in a straightforward way. Finally, the feedback from the user is back-propagated in
order to tune the CRF and the own Ontology accordingly. It is worth to mention that
Ontologies also suppose a basic way to understand the robot workspace, enabling the
detection of object configurations that can be hazardous, e.g. the pill box found out
of the fridge.
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More concretely, the recognition pipeline of the recognition framework starts by
capturing an image of the scene to be processed to build its CRF graph representation.
This graph, along with the pre-trained CRF parameters, is exploited by a probabilis-
tic inference algorithm to provide a set of tentative object recognition results. These
results are then inserted as instances in the Ontology, which checks their consistency
with respect to the codified Semantic Knowledge by employing a logical reasoner
(Pellet). This permits the robot to detect incoherent results that are subsequently eval-
uated by the user. The evaluation of a conflicting object starts by showing him/her a
cropped image of it. Three different scenarios are then possible:

Case 1: the user determines that the recognition result is right. This means that
the CRF performed correctly, but the codified common-sense knowledge was
somehow too strict. The Ontology learns from this outcome by relaxing the
codified object property that produced the inconsistency.

Case 2: the recognition result is wrong, and:

Case 2.1: the object type is already present in the CRF/Ontology. In this case
the CRF misclassified the object. To learn from the mistake, the gathered
object information is used to re-tune the CRF parameters.

Case 2.2: the object type is new. The relevant information from the object is
used to automatically generate a new concept in the Ontology, and the
CRF is also re-trained taking into account this new object type.

To perform a proof-of-concept validation of the framework, a robot was deployed
into an apartment and commanded to perform a primary task: to check the configura-
tion of the objects in the kitchen. Concretely, during the robot operation, the RGB-D
camera was used to capture both intensity and depth images when reaching certain lo-
cations in the kitchen. In that setup, the robot detected an inconsistency, which corre-
sponded to a pill box recognized as a cereal box, since such object type was unknown
for the robot. This information was then back-propagated to both: (i) the Ontology,
where the system created a new concept Pill_box, inheriting from the Object one,
and described it with the information gathered from the human and from the collected
sensory data, and (ii) to the CRF model, which re-tuned its parameters according to
the new information. The learning success was evaluated in later observations of pill
boxes, where the robot was able to successfully recognize this new type of object.

3.5 Discussion

This chapter has described the thesis’ contributions to the contextual object and/or
room recognition problem. It started with the UMA-Offices dataset, a collection of
3D reconstructions of offices from the University of Málaga, which was necessary
for evaluating the developed algorithms. Then, the Undirected Probabilistic Graph-
ical Models in C++ (UPGMpp) library has been presented, which permits the ef-
ficient handling of Undirected PGMs when applied to robotic-related applications.
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PGMs in general, and CRFs in particular, have proven to be valuable frameworks for
the modeling of recognition problems exploiting contextual information, also dealing
with uncertainty. The effort needed for the collection and processing of UMA-Offices
and other sensory data, along with the hungry for comprehensive and large training
datasets exhibited by the learning phase of PGMs, motivated the study of alternative
training strategies. This led to the utilization of Semantic Knowledge stored within
an Ontology to remove the necessity of a real dataset. This is specially useful in do-
mains where it is difficult, or even infeasible the collection of large amounts of data.
Ontologies also provide the recognition system with an structured, human readable
representation ready-to-use for high-level robotic tasks.

Semantic knowledge has been further exploited for reducing the complexity of the
probabilistic inference processes over the CRFs, as well as to provide prior knowledge
about the frequency of occurrence of the object classes of the domain at hand. This in-
formation is incorporated into the usual CRF formulation in order to enhance its per-
formance. It has been also leveraged for detecting incoherent recognition results, by
considering a logical reasoner that checks the consistency of the CRF outcome with
respect to the encoded knowledge. This also allows the recognition system, including
an user in the loop (supervised learning), to learn from experience by automatically
adapting its internal representations.

These contributions make up a probabilistic recognition system which is able to:
(i) exploit contextual relations, (ii) handle uncertainty, (iii) leverage prior knowledge
about the domain at hand, (iv) detect incoherent results, (v) learn from experience, and
(vi) verbalize its outcome. In addition to these features, the system can also provide
a measure about the uncertainty of its results. Finally, the system has been integrated
into a semantic mapping framework specially suited for taking advantage of these
features, as shown in the next chapter.



4
Semantic Mapping

This chapter outlines the thesis’s contributions to the semantic
mapping field. It starts with a brief introduction to the prob-
lem and a discussion of relevant works in the literature. Then,
it describes: a toolkit for labeling sequential RGB-D datasets,
the Robot@Home repository processed by that toolkit, and finally
the Multiversal Semantic Map, a novel representation evaluated
through Robot@Home.

4.1 Introduction

Despite the possibilities of geometric and/or topological maps when applied to mo-
bile robot applications, the planning and execution of high-level tasks like “bring me
the red cup from the kitchen’s counter” or “show the customer off-season clothing,
specially pants, please” demands more sophisticated maps. Humans share semantic
knowledge about concepts like red, cup, or off-season clothing, which must be trans-
ferred to robots in order to successfully face these tasks. Semantic maps emerged to
cope with this need, providing the robot with the capability to understand: (i) the
spatial aspects of human environments, (ii) the meaning of their elements (objects,
rooms, or facilities), and (iii) how humans interact with them (e.g. functionalities,
events, or relations).

This feature is distinctive and traversal to semantic maps, being the key differ-
ence with respect to maps that simply augment metric/topological models with labels
to state the type of recognized objects or rooms [108, 22, 76, 127], e.g. saying that a
portion of sensory data is a cup, without any other information about the implications
of that. Contrary, semantic maps handle meta-information that models the properties
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and relations of relevant concepts therein the domain at hand, codified into a Knowl-
edge Base (KB) and stating that, for example, cups are cylindrical-shaped objects
usually found in kitchens and useful for containing liquids. Building and maintaining
semantic maps involve the symbol grounding problem [49, 18], i.e. linking portions
of the sensory data gathered by the robot (percepts), represented by symbols (e.g.
object-1 or room-1), to concepts in the KB by means of some recognition and
tracking method. These representations usually reckon on off-the-shelf recognition
methods to individually ground percepts to particular concepts, which disregard the
valuable contextual relations between the workspace elements: a rich source of in-
formation intrinsic to human-made environments (for example that night-stands are
usually in bedrooms and close to beds).

Semantic maps generally support the execution of reasoning engines, providing
the robot with inference capabilities for efficient navigation, object search, or pro-
activeness [36], among others. Typically, such engines are based on logical reason-
ers that work with crispy information (e.g. a percept is identified as a cup or not).
The information encoded in the KB, along with that inferred by logical reasoners,
is then available for a task planning algorithm dealing with this type of knowledge
and orchestrating the aforementioned tasks [35]. Although crispy knowledge-based
semantic maps can be suitable in some setups, especially in small and controlled sce-
narios [156], they are also affected by uncertainty coming from different sources like
the robot sensory system or the inaccurate modeling of the elements within the robot
workspace.

This chapter presents the contributions done for achieving a semantic map repre-
sentation able to deal with uncertainty, also managing contextual relations, where the
techniques outlined in Chapter 3 play a pivotal role (Section 4.3.3). In addition, given
the lack of datasets for evaluating mapping systems with those features, we also de-
scribe a repository of information especially collected for that goal, the Robot@Home
dataset (Section 4.3.2), as well as a toolkit developed for the efficient processing of
this type of repositories, the Object Labeling Toolkit (Section 4.3.1).

4.2 Related work

This section reviews the most relevant works addressing some issues related to the
semantic mapping problem, starting with a discussion about popular semantic repre-
sentations (Section 4.2), continuing with an analysis of the datasets that are suitable
as a testbed for such approaches (Section 4.2), and finishing with a discussion on
available tools for managing datasets (Section 4.2).

Semantic mapping approaches

In the last decade, a number of works have appeared in the literature contributing
different semantic map representations. One of the earliest works in this regard is the
one by Galindo et al. [37], where a multi-hierarchical representation models, on the
one hand, the concepts of the domain of discourse through an ontology, and on the
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other hand, the elements from the current workspace in the form of a spatial hierarchy
that ranges from sensory data to abstract symbols. NeoClassic is the chosen system
for knowledge representation and reasoning through Description Logics (DL), while
the employed recognition system is limited to the classification of simple shape prim-
itives, like boxes or cylinders, as furniture, e.g. a red box represents a couch. The
potential of this representation was further explored in posterior works, e.g. for im-
proving the capabilities and efficiency of task planners [35], or for the autonomous
generation of robot goals [36]. A similar approach is proposed in Zender et al. [156],
where the multi-hierarchical representation is replaced by a single hierarchy rang-
ing from sensor-based maps to a conceptual abstraction, which is encoded in a Web
Ontology Language (OWL)–DL ontology defining an office domain. To categorize
objects, they rely on a SIFT-based approach, while rooms are grounded according
to the objects detected therein. In Nüchter and Hertzberg [88] a constraint network
implemented in Prolog is used to both codify the properties and relations among the
different planar surfaces in a building (wall, floor, ceiling, and door) and classify
them, while two different approaches are considered for object recognition: a SVM-
based classifier relying on contour-based features, and a Viola and Jones cascade of
classifiers reckoning on range and reflectance data.

These works set out a clear road for the utilization of ontologies to codify se-
mantic knowledge, which has been further explored in more recent research. An ex-
ample of this is the work by Tenorth et al. [138], which presents a system for the
acquisition, representation, and use of semantic maps called KnowRob-Map, where
Bayesian Logic Networks are used to predict the location of objects according to their
usual relations. The system is implemented in SWI-Prolog, and the robot’s knowledge
is represented in an OWL-DL ontology. In this case, the recognition algorithm clas-
sifies planar surfaces in kitchen environments as tables, cupboards, drawers, ovens
and dishwashers [127]. The same map type and recognition method is employed in
Pangercic et al. [95], where the authors focus on the codification of object features
and functionalities relevant to the robot operation in such environments. The paper
by Riazuelo et al. [112] describes the RoboEarth cloud semantic mapping which also
uses an ontology for codifying concepts and relations, and rely on a Simultaneous
Localization and Mapping (SLAM) algorithm for representing the scene geometry
and object locations. The recognition method resorts to SURF features, and performs
by only considering the object types that are probable to appear in a given scene (the
room type is known beforehand). In Günther et al. [45], the authors employ an OWL-
DL ontology in combination with rules defined in the Semantic Web Rule Language
(SWRL) to categorize planar surfaces.

It has been also explored the utilization of humans for assisting during the seman-
tic map building process through a situated dialog Examples of works addressing this
are those by Bastianelli et al. [9], Gemignani et al. [40], or the aforementioned one
by Zender et al. [156]. The main motivation of these works is to avoid the utiliza-
tion of recognition algorithms, given the numerous challenges that they have to face.
However, they themselves argue that the more critical improvement of their propos-
als would arise from a tighter interaction with cutting-edge recognition techniques.
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The interested reader can refer to the survey by Kostavelis and Gasteratos [67] for an
additional, comprehensive review of semantic mapping approaches for robotic tasks.

The semantic mapping techniques discussed so far rely on crispy categorizations
of the perceived spatial elements, e.g. an object is a cereal box or not, a room is a
kitchen or not, etc., which is typically exploited by (logical) reasoners and planners
for performing a variety of robotic tasks. As commented before, these approaches: (i)
can lead to an incoherent robot operation due to ambiguous recognition results, and
(ii) exhibit limitations to fully exploit the contextual relations among spatial elements.
The contributions in the previous chapter propose a solution for probabilistic symbol
recognition to cope with both, the uncertainty inherent to the recognition process,
and the contextual relations among spatial elements. Perhaps the closet work to this
approach addressing semantic mapping is the one by Pronobis and Jensfelt [103],
which employs a Chain Graph (a graphical model mixing directed and undirected
relations) to model the grounding problem from a probabilistic stance, but that fails
at fully exploiting contextual relations. This thesis contributes, among others, a novel
representation called Multiversal Semantic Map (MvSmap), in order to accommodate
and further exploit the outcome of the probabilistic symbol grounding.

Suitable datasets

Datasets containing sensory data are needed for a thorough evaluation of semantic
mapping techniques, since they set a common framework for their fair comparison.
Mobile robots have traditionally resorted to intensity images to categorize objects
and/or rooms, which motivated the collection of datasets providing this kind of in-
formation [27, 125, 124]. Nowadays, the tendency is for the datasets to also include
depth information [57, 5, 72], given the proved benefits of exploiting morphological
and spatial information in assisting recognition methods [114]. These datasets can be
roughly classified as: object-centric, view-centric, and place-centric.

Object-centric datasets, like ACCV [51], RGBD Dataset [72, 71], KIT object
models [62], or BigBIRD [132], provide RGB-D observations in which a unique ob-
ject spans over each image. The exploitation of these images for robotic recognition
exhibits some drawbacks: (i) they are not representative of the typical images gath-
ered by a robot at a real environment, (ii) they prevent the utilization of valuable
contextual information of objects, and (iii) they are not suitable for the room recogni-
tion problem. These shortcomings also narrow their utilization by semantic mapping
benchmarks.

On the other hand, view-centric datasets as Berkeley-3D [57], Cornell-RGBD [5],
NYU [130, 131], TUW [3], or UBC VRS [77], consist of isolated RGB-D images,
or a sequence of them, which cover a partial view of the working environment. This
information permits the exploitation of contextual information but only from a local,
reduced perspective, since information of the entire scene is not collected. Therefore,
their use for contextual recognition is still limited, as well as their utilization for
semantic mapping purposes.
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Table 4.1: Summary of related datasets (CR: Collected by a robot, DT: Dataset type, EOC:
Enables object context exploitation, ERC: Enables room categorization).

Dataset CR DT EOC ERC
ACCV [51] object-centric
Berkeley-3D [57] view-centric X(local) X(limited)
BigBIRD [132] object-centric
Cornell-RGBD [5] X view-centric X(local) X(limited)
KIT object models [62] object-centric
Multi-sensor 3D Object Dataset [39] object-centric
NYUv1 [130] view-centric X(local) X(limited)
NYUv2 [131] view-centric X(local) X(limited)
RGBD Dataset [72] object-centric
RGBD Dataset 2 [71] object-centric
TUW [3] X view-centric X(local) X(limited)
SUN3D [153] place-centric X X
UBC VRS [77] X view-centric X(local)
Robot@Home X place-centric X X

Finally, place-centric datasets like SUN3D [153] provide comprehensive infor-
mation from the inspected room, or even the entire work environment, typically
through the registration of RGB-D images. This type of datasets conforms the best
option as a testbed for semantic mapping taking advantage of both depth and con-
textual information, albeit, unfortunately their number is quite limited. A dataset
worth to mention at this point is ViDRILO [75], which comprises 5 sequences of
RGB-D observations of two office buildings collected by a robot combining object
and environment-centric perspectives. This dataset annotates each observation with its
room type and the objects found within it, although this labeling is not per-pixel and
the number of object categories is reduced. Table 4.1 shows a summary of datasets
applicable to the semantic problem and their characteristics, which also includes the
one contributed by this thesis: the place-centric Robot@Home dataset.

Available dataset management tools

The tedious object labeling task within RGB-D datasets is carried out in different
ways. Some works resort to Amazon Mechanical Turk (AMT) to label their intensity
images [57, 130, 131], usually through a labeling tool like LabelMe [125], but this
merely divides the workload, and the annotated information still needs to be thor-
oughly checked to fix incoherent labels. Another approach is the manual labeling of
key intensity frames from a sequence, propagating these labels to the remaining RGB-
D observations [77, 153], but this is only suitable for sequences with simple sensor
trajectories, and additionally shows the same limitations as the AMT option. There
are also works that reconstruct a 3D representation of the inspected scene and anno-
tate the objects appearing on it [5], but there is not a labeling feedback to the RGB-D
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Object Labeling Toolkit

Figure 4.1: OLT logo.

observations’ sequence(s). In the works by Lai et al. [72, 71] the ground truth anno-
tations over a reconstructed scene are also propagated to the individual RGB-D ob-
servations employing an ad-hoc software which, to the best of the author knowledge,
is not publicly available. In the next section it is described an open source solution
conveniently divided into configurable components, which provides the robotic com-
munity with a number of functionalities towards an efficient labeling of arbitrarily
large collections of RGB-D data.

4.3 Contributions

Three contributions are outlined in this chapter, all of them in the scope of the se-
mantic mapping problem. First, the Object Labeling Toolkit (OLT) is described. It
consists of a set of software solutions for the labeling of sequential RGB-D datasets,
especially relevant to semantic mapping. Then, we describe a novel place-centric
dataset, named Robot@Home, which contains raw and processed data from domes-
tic settings compiled by a mobile robot. Finally, the Multiversal Semantic Map is
presented, an environment representation able to handle uncertainty and contextual
relations, in which the contributions of the previous chapter are integrated.

4.3.1 The Object Labeling Toolkit

A comprehensive dataset is a valuable benchmark tool for tuning, testing, and com-
paring robotic algorithms and systems in a convenient and fair way. Although public
datasets consisting of intensity images [27, 125, 124] have largely helped researchers
to push ahead the state-of-the-art in object recognition or scene interpretation, nowa-
days new particularly oriented datasets are required given the increasing number
of capabilities and applications that are demanded to a mobile robot, e.g. seman-
tic mapping [104], high-level decision making [36], or contextual object recogni-
tion [116, 114, 115, 119].

RGB-D cameras have become a key source of information for such robotic datasets.
Although the sensory data of these datasets may be conveniently gathered by the
mobile robot itself, human supervision is still needed to segment objects and to
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Figure 4.2: First column, reconstructed scenes from two RGB-D sequences. Second column,
labeled reconstructed scenes. Third-fifth columns, examples of individual point clouds from
RGB-D observations labeled by the propagation of the annotations within the reconstructed
scenes.

label them, i.e. to add annotations over portions of the observed data as belong-
ing to a certain object class, e.g. floor, table, lamp, etc. This is the motivation for
the development of the Object Labeling Toolkit (OLT, see Figure 4.1), i.e. to pro-
vide the robotic community with a tool to efficiently label datasets compound of
sequences of RGB-D observations, gathered from an arbitrary number of RGB-D
sensors. OLT is publicly available under a GNU General Public License at: http:
//mapir.isa.uma.es/work/object-labeling-toolkit.

For achieving such efficient labeling, the toolkit builds a 3D reconstruction of
each RGB-D sequence within a given dataset, and allows the user to graphically label
objects within that reconstruction (see the two first columns in Figure 4.2). Then, this
ground truth annotations are automatically propagated to all the RGB-D observations
without requiring human supervision, resulting in a dense labeling of both intensity
and depth data (see the three last columns of Figure 4.2). More information about this
pipeline can be found in the publication by Ruiz-Sarmiento et al. [118].

OLT comprises a number of software components covering the following func-
tionality: i) dataset pre-processing, ii) localization of RGB-D observation poses, iii)
3D scene reconstruction, iv) labeling of the reconstructed scene, and v) automatic
propagation of annotated labels. Some of these functionalities can exploit additional
information coming from sensors usually present in a robotic platform, e.g. the robot
pose estimation computed from 2D laser scans. All the components are highly cus-
tomizable in order to fit the particularities of robotic datasets, and can be easily ex-
pandable to integrate other algorithms of interest. The toolkit resorts to the Mobile
Robot Programing Toolkit (MRPT [58]) and the Point Cloud Library (PCL [126]) for
point cloud registration and smoothing algorithms, and for data representation and vi-

http://mapir.isa.uma.es/work/object-labeling-toolkit
http://mapir.isa.uma.es/work/object-labeling-toolkit
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sualization purposes. The most time-consuming components of OLT have been also
parallelized employing OpenMP.

Aiming to illustrate the toolkit suitability, it was utilized for segmenting and label-
ing a robotic dataset from a home environment (indeed, a part of the Robot@Home
dataset, see Figure 4.2) consisting of 77 RGB-D observations. Regarding the time
spent in labeling, the human operator needed 2 hours to annotate both the kitchen
and the bedroom scenes, spending on average 2 minutes per object (this has been re-
duced to 1 minute in the last toolkit version). To compare this with the labeling of all
the RGB-D observations individually, it was followed the typical intensity image la-
beling approach and they were annotated 5 non-consecutive observations from each
sequence, extrapolating the results to the whole dataset. This yielded a total of ∼3
hours needed for the labeling of the kitchen sequence, and∼7 hours for the bedroom,
which clearly illustrated the benefits of the toolkit utilization. When following such a
typical approach problems appeared to accurately label the objects’ boundaries, and
with objects partially occluded and/or with an unclear belonging class, drawbacks
that are mitigated with the utilization of the proposed toolkit.

4.3.2 Robot@Home dataset

The Robot-at-Home (Robot@Home) dataset, is a collection of raw and processed
data from five domestic settings compiled by the commercial mobile robot Giraff,
equipped with 4 RGB-D cameras and a 2D laser scanner, Its main purpose is to
serve as a testbed for semantic mapping algorithms through the recognition of ob-
jects and/or rooms, so it is publicly available at http://mapir.isa.uma.es/work/
robot-at-home-dataset. This dataset is unique in three aspects: (i) the sensory
system employed for its gathering, (ii) the diversity and amount of provided data, and
(iii) the availability of dense ground truth information.

The provided data were captured with a rig of 4 RGB-D sensors with an overall
field of view of 180◦ horizontally and 58◦ vertically, and with a 2D laser scanner
(see Fig. 4.3). In order to yield accurate information within the dataset, the sensors
mounted on the robot were calibrated both intrinsically and extrinsically [30, 42, 137].
Detailed information concerning this calibration in particular, and about the dataset
in general, can be found in the paper by Ruiz-Sarmiento et al. [123].

This robotic platform was employed to explore 5 dwelling apartments, which
have been named as anto, alma, pare, rx2, and sarmis. In this way, a total of 36
rooms were completely inspected (some of them several times), so the dataset is rich
in contextual information of objects and rooms. This is a valuable feature, missing in
most of the state-of-the-art datasets, which can be exploited by, for instance, semantic
mapping systems that leverage relationships like pillows are usually on beds or ovens
are not in bathrooms. This information was processed by OLT, which also supposes
a mechanism to conveniently access and manage the data.

The ground-truth information provided by OLT comes in two flavors. On the one
hand, it is provided (per-point) annotations of the categories of the main objects and
rooms appearing in the scenes reconstructed from the RGB-D sequences (recall the

http://mapir.isa.uma.es/work/robot-at-home-dataset
http://mapir.isa.uma.es/work/robot-at-home-dataset


4.3. CONTRIBUTIONS 47

Figure 4.3: Giraff robot while collecting sensory information. The basic robotic platform was
endowed with a rig of 4 RGB-D sensors mounted on the robot’s neck, and a 2D laser scanner
on its base.

second column of Figure 4.2). A total of ∼1,900 objects belonging to 157 different
categories were manually labeled from the 36 visited rooms. These rooms are also
labeled as belonging to one of 8 possible types: bathroom, bedroom, kitchen, living-
room, etc. On the other hand, Robot@Home also includes (per-pixel) annotations of
the objects appearing in the 69,000+ gathered RGB-D images. The objects and rooms
are also annotated with identifiers, so they can be individually tracked along the video
sequences.

Summarizing, the content of the dataset, which comes in different formats acces-
sible by the open source Mobile Robot Programming Toolkit1 (MRPT), as well as in
(human readable) plain text files and PNG images, is as follows:

• 81 sequences of observations containing ∼75min. of recorded data. The total
number of observations is 87,000+ (18,000+ laser scans and 69,000+ RGB-D
images), which are saved in rawlog format as well as in plain text (see the three
first rows of Figure 4.4).

• 41 2D geometric maps saved in text files (36 for individual rooms, and 5 maps
covering each apartment, see fourth row of Figure 4.4).

• 72 3D reconstructed scenes in scene format and plain text (see fifth row of
Figure 4.4).

• 72 Labeled 3D reconstructed scenes in scene format and plain text, containing
∼1,900 labeled objects (see sixth row of Figure 4.4).

• 72 Labeled RGB-D sequences in rawlog format and plain text (see seventh row
of Figure 4.4).

1http://www.mrpt.org
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Figure 4.4: Excerpts of information provided by Robot@Home. From top to bottom, exam-
ples of 2D laser scans, RGB images, depth images, 2D geometric maps, reconstructed rooms,
labeled reconstructed rooms, and labeled depth information. Taken from [123].
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Moreover, a number of particular characteristics have been intentionally included
in each scenario to provide additional data for testing different object recognition
algorithms and techniques. Concretely,

• Inclusion of distinctive objects. A number of patterns/objects have been placed
at different rooms within these houses, concretely: teddies in alma, fruits in
anto, numerical patterns in pare and geometric patterns in rx2.

• Varying lighting conditions. Each of the three sessions in sarmis house was
conducted at a different time of the day, which means that the objects were
visualized under different lighting conditions.

• Varying sets of objects. In these three sessions, the set of objects placed in
each room from session to session differs, with objects dis/appearing as well as
being moved.

Although its main application is the aforementioned semantic mapping, it can be
also useful for the recognition of instances of objects/rooms, object segmentation, or
data compression/transmission algorithms. Moreover, typical robotic tasks like 3D
map building, localization, or SLAM can be tested with Robot@Home, since the
robot localization can be accurately estimated from the sequence of 2D scans. Finally,
the distinctive patterns and objects placed on purpose can be used, for example, to test
object-finding algorithms.

4.3.3 Multiversal Semantic Maps

The third contribution of this chapter is a novel semantic map representation, called
Multiverse Semantic Map (MvSmap). This representation handles uncertainty by con-
sidering the different combinations of possible groundings of objects and rooms in the
robot workspace, or universes, as instances of ontologies with belief annotations on
their grounded concepts and relations. These beliefs are provided by the probabilistic
recognition techniques described in Chapter 3. According to them, it also encodes
the probability of each ontology instance being the right one. Thus, MvSmaps can be
exploited by logical reasoners performing over such ontologies, as well as by prob-
abilistic reasoners working with the CRF representation. This ability to manage dif-
ferent semantic interpretations of the robot workspace, which can be leveraged by
probabilistic conditional planners (e.g. those in [61] or [2]), is crucial for a coherent
robot operation.

The proposed MvSmap (see Figure 4.5) is inspired by the multi-hierarchical se-
mantic map presented in Galindo et al. [37]. This map considers two separated but
tightly related hierarchical representations containing: (i) the semantic,
meta-information about the domain at hand, e.g. refrigerators keep food cold and
are usually found in kitchens, and (ii) the factual, spatial knowledge acquired by the
robot and its implemented algorithms from a certain workspace, e.g. obj-1 is per-
ceived and recognized as a refrigerator. These hierarchies are called terminological
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Figure 4.5: Example of Multiversal Semantic Map for a simple scenario.

box (see T-Box in Figure 4.5) and spatial box (see S-Box in Figure 4.5), respectively,
names borrowed from the common structure of hybrid knowledge representation sys-
tems [7].

MvSmaps enhance this representation by including uncertainty, in the form of
beliefs, about the groundings (recognitions) of the spatial elements in the S-Box to
concepts in the T-Box. For example, a perceived object, represented by the symbol
obj-1, could be grounded by the robot as a microwave or a nightstand with beliefs
0.65 and 0.35, respectively, or it might think that a room (room-1) is a kitchen or
a bedroom with beliefs 0.33 and 0.66. Moreover, in this representation the relations
among the spatial elements play a pivotal role, and they have also associated compat-
ibility values in the form of beliefs. To illustrate this, if obj-1 was found in room-1,
MvSmaps can state that the compatibility of obj-1 and room-1 being grounded to
microwave and kitchen respectively is 0.95, while to microwave and bedroom is 0.05.
These belief values are provided by the proposed probabilistic inference techniques.

Furthermore, MvSmaps assign a probability value to each possible set of ground-
ings, creating a multiverse, i.e. a set of universes stating different explanations of the
robot environment (see Multiverse in Figure 4.5). An universe codifies the joint prob-
ability of the observed spatial elements being grounded to certain concepts, hence
providing a global sense of certainty about the robot understanding of the environ-
ment. Thus, following the previous example, an universe can represent that obj-1
is a microwave and room-1 is a kitchen, while a parallel universe states that obj-1
is a nightstand and room-1 is a bedroom, both explanations annotated with differ-
ent probabilities. Thereby, the robot performance is not limited to the utilization of
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the most probable universe, like traditional semantic maps do, but it can also con-
sider other possible explanations with different semantic interpretations, resulting in
a more coherent robot operation.

The symbol grounding problem, i.e. linking portions of sensory data, represented
by symbols (e.g. obj-1 or room-2), to concepts in the KB (e.g. Microwave or
Kitchen), is faced by an anchoring process [18] that relies on the proposed recog-
nition techniques and a simple tracking algorithm to make the symbols and their
groundings consistent over time. In a nutshell, the result of this process is a set of
the so-called anchors, which keep geometric/appearance information about the spa-
tial elements (location, features, relations, etc.) and establish links to their symbolic
representation. Additionally, in a MvSmap, anchors are in charge of storing the be-
liefs about the grounding of their respective symbols, as well as their compatibility
with respect to the grounding of related elements.

Given the ingredients of MvSmaps previously provided, a Multiversal Seman-
tic Map can be formally defined by the quintuple M vS map = {R,A ,Y ,O,M },
where:

• R is a metric map of the environment, providing a global reference frame for
the observed spatial elements (objects and rooms).

• A is a set of anchors internally representing such spatial elements, and linking
them with the set of symbols in Y .

• Y is the set of symbols that represent the spatial elements as instances of con-
cepts from the ontology O .

• O is an ontology codifying the semantic knowledge of the domain at hand.

• M encodes the multiverse, containing the set of universes.

Notice that the traditional T-Box and S-Box are defined in a MvSmap by O and
{R,A ,Y } respectively. Since the robot is usually provided with the ontology O
beforehand, building a MvSmap consists of creating and maintaining the remaining
elements in the map definition.

The suitability of the proposed semantic map representation was assessed with
the challenging Robot@Home dataset. On the one hand, the reported success while
grounding object and room symbols respectively without considering contextual re-
lations was of ∼ 73.5% and ∼ 57.5%, whereas including them these figures in-
creased up to a success of ∼ 81.5% and 91.5%. They have been also evaluated
some of the most popular classifiers also resorting to individual object/room features,
namely: Supported Vector Machines, Naive Bayes, Decision Trees, Random Forests,
and Nearest Neighbors, demonstrating the reported results the higher success of CRF
approaches.

On the other hand, they were also shown two sample scenarios of different com-
plexity where it was illustrated the building of MvSmaps according to the information
gathered by a mobile robot (see Figure 4.6). For a detailed description of this results,
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Figure 4.6: Grounding results and their belief values for the spatial elements perceived during
the robot exploration of a bedroom from Robot@Home at two time instants: t1 and t4.
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as well as of the building of MvSmaps, please refer to the work by Ruiz-Sarmiento et
al. [120].

The main purpose of the proposed MvSmap is to provide a mobile robot with
a rich representation of its environment, empowering the efficient and coherent exe-
cution of high-level tasks. MvSmaps can be exploited for traditional semantic map ap-
plications by considering only an universe, albeit its potential to measure the
(un)certainty of the robot understanding can be exploited for an intelligent, more effi-
cient robotic operation. A clear example of this arises when considering the work by
Galindo and Saffiotti [36], which envisages an application of semantic maps where
they encode information about how things should be, also called norms, allowing
the robot to infer deviations from these norms and act accordingly. The typical norm
example is that "towels must be in bathrooms", so if a towel is detected, for exam-
ple, on the floor of the living room, a plan is generated to bring it to the bathroom.
This approach works with crispy information, e.g. an object is a towel or not. Instead,
the consideration of a MvSmap would permit the robot to behave more coherently,
for example gathering additional information if the belief of an object symbol being
grounded to Towel is 0.55 while to Carpet is 0.45. In this example, a crispy approach
could end up with a carpet in our bathroom, or a towel in our living room. Other appli-
cations where MvSmaps could be useful are task planning, planning with incomplete
information, navigation, object search, human-robot interaction, or robotic localiza-
tion.

4.4 Discussion

This chapter has outlined the thesis’ contributions to the semantic mapping field. A
novel semantic representation, called Multiversal Semantic Map (MvSmap), has been
described, which was designed to take advantage of the outcome for probabilistic
recognition techniques. This permits the robot to propagate the uncertainty coming
from different sources like its sensory system, or its internal models of the spatial
elements, to the recognition results. MvSmaps also allow the tracking and exploitation
of contextual relations among the elements in the robot workspace. The utilization of
the uncertainty concerning the types of recognized spatial elements enables the robot
to consider different semantic interpretations of its environment, resulting in a more
coherent operation.

Additionally, it has been also described the Robot@Home dataset, a large repos-
itory of data collected by a mobile robot in domestic settings. The provided raw data
come from two different types of sensors: a 2D laser scan mounted on the robot base,
and a rig of 4 RGB-D cameras on the robot’s neck. The processed information in-
cludes 2D and 3D reconstructions of the fully inspected houses, as well ground truth
annotations about the type of the objects and rooms therein. Thus, this dataset is rich
in contextual relations among spatial objects given the wide coverage of the provided
data, so it is specially suitable for the evaluation of semantic mapping systems. To
evaluate the proposed MvSmaps, the recognition techniques in the previous chapter
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were integrated into a semantic mapping system building those representations, and
Robot@Home was used as a testbed.

Robot@Home contains a huge number of observations whose processing by tradi-
tional techniques is prohibitive. Thereby, it was developed the Object Labeling Toolkit
(OLT), a set of software components that greatly minimizes the operator intervention
for processing sequential RGB-D observations. The developed/integrated algorithms
for image processing, point cloud registration, scene reconstruction, scene labeling,
and automatic propagation of labels to individual observations, really helped to keep
the effort low for processing Robot@Home. Both dataset and toolkit are publicly
available.



5
Summary of included papers

This chapter outlines the content of the included papers, available
at the second part of the thesis Part II: Included papers, as well as
the author’s contributions to each of them.

5.1 Paper A: Learning CRFs with data from

Semantic Knowledge

Outline: This paper studies the applicability of CRFs trained with synthetic data, gen-
erated from Semantic Knowledge, for contextually modeling the scene object recog-
nition problem. The proposed learning approach aims at avoiding the collection of
real data for training object recognition systems, which is a highly time-consuming,
cumbersome, and even unfeasible task, since the gathered information must be rep-
resentative enough of the domain at hand. To face this issue, Semantic Knowledge
is represented by means of an Ontology, which defines the domain object classes,
their properties, and their relations, and is used to generate synthetic training samples
for tuning CRFs. The suitability of the learning approach has to be assessed through
real datasets, so UMA-Offices and NYUv2 conformed the benchmark for answer-
ing questions like: How much do the context relations contribute to the recognition
performance?, How much does the size of the training dataset affect the recognition
performance?, or Do the generated synthetic data capture actual object properties
and relations?.

Contribution by the author: Studied the state-of-the-art approaches for address-
ing the scene object recognition problem through Probabilistic Graphical Models or

55
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Semantic Knowledge. Designed the way in which the relevant information can be
encoded in an Ontology for its posterior exploitation. Implemented the algorithm for
the automatic generation of an arbitrary number of synthetic training samples. Pro-
cessed the UMA-Offices dataset, and performed the experiments to demonstrate the
suitability of the approach.

5.2 Paper B: Joint recognition of objects and

rooms

Outline: This work extends the previous one by including rooms in the equation.
Motivated by recent studies that highlight the convenience of jointly modeling the
object and room recognition problems (in view of the mutual influence between the
types of the recognized rooms and the the types of the objects therein), the ontology
defined in Paper A is augmented to also consider room classes, their attributes, and
relations among them as well as among objects and rooms: e.g. that bedrooms are
usually connected to corridors and beds can be found therein. The CRF models are
also conveniently adapted for dealing with different types of random variables (taking
values from object or room types) and contextual relations. To validate the approach
the paper resorts to home scenes from the NYUv2 dataset.

Contribution by the author: Studied state-of-the-art techniques for jointly modeling
the object and room recognition problems. Designed the expansion of the Ontology in
the previous paper, as well as of the CRF formulation and the algorithm implemented
for generating synthetic training samples. Performed the experiments to support the
paper claims.

5.3 Paper C: Exploiting Semantic Knowledge

for a coherent and e�cient recognition

Outline: The complexity of CRF models increases considerably when applied to
cluttered scenarios. This implies the utilization of approximate inference methods
for retrieving the recognition results, which in some cases supposes a decrease in
the recognition success when compared with exact inference solutions. This paper
proposes the utilization of Semantic Knowledge to decrease the CRF inference com-
plexity. This knowledge, encoded in an Ontology, is exploited for the generation of
hypotheses about the most probable belonging classes of the objects according to
their features. For example, a planar, vertical surface could be a wall or a screen, but
not a table. Then, these hypotheses are considered by the CRF as the only possible
candidate types. The consequence of this is a considerable reduction in the number of
possible assignments, decreasing the inference complexity, even enabling exact infer-
ence in some cases. Additionally, prior information about the frequency of occurrence
of the different object classes is also encoded into the Ontology. This information re-
veals that, for example, it is more likely to encounter a computer than a couch in an
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office environment, while it is quite unlikely to find an ironing table. A modification
to the usual CRF formulation is proposed to exploit such source of prior information.
The gain in efficiency and coherence by this approach is measured against the UMA-
Offices and NYUv2 datasets.

Contribution by the author: Designed the framework for, employing the hypothe-
ses generated by logical inference over the ontology, reduce the complexity of the
CRF model. Adapted the CRF formulation to also consider prior information about
the frequency of occurrence of the different object types from the Ontology. Evalu-
ated the achieved complexity reduction and enhanced recognition coherence with two
different repositories.

5.4 Paper D: UPGMpp library for managing

PGMs

Outline: This paper presents the Undirected Probabilistic Graphical Models in C++
(UPGMpp) library, a software package for working with Undirected PGMs, as is the
case of CRFs. The library was specially designed and implemented for efficiently
tackling the object/room recognition problem. The paper describes how to apply UP-
GMpp to this issue, and overviews its three main software packages: base (imple-
ments the functionality for building and managing PGM graphs), training (permits
the definition of training datasets to tune a PGM), and inference (implements algo-
rithms to perform inference queries over PGMs). To show the flexibility and usability
of the library, the paper describes the processes needed for training and testing (per-
forming inference) CRFs, including code snippets, and reports the recognition results
yielded by the implemented inference methods dealing with information from the
NYUv2 repository. Execution time performance is also discussed.

Contribution by the author: Studied the theory behind Undirected PGMs, as well
as related libraries and software solutions for dealing with them. Designed and imple-
mented the library packages, with the goal of being efficient, versatile, extensible, and
easy to use. Made the library publicly available. Exemplified how to use the library,
and measured its success and execution time performance.

5.5 Paper E: OLT toolkit for managing

sequential RGB-D datasets

Outline: In this work it is presented the Object Labeling Toolkit (OLT), a set of
software components for the efficient labeling of datasets compound of sequences
of RGB-D observations, gathered from an arbitrary number of sensors of that type.
For that, the toolkit builds a 3D reconstruction of the scene explored in each RGB-D
sequence, and allows the user to graphically label objects within that reconstruction.
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Once the scene is labeled, such annotations are automatically propagated to each ob-
servation in the sequence. The paper describes its main components, namely: dataset
pre-processing, 2D map building, localization of observation poses, sequential vi-
sualization, scene labeling, and labels propagation, of which only scene labeling
requires a human operator. It is also depicted the toolkit usage for effortlessly label-
ing two sequences of observations, also analyzing its virtues with respect to a typical
labeling approach.

Contribution by the author: Designed the toolkit and its components. Studied and
implemented/adapted techniques for processing RGB and depth images, building 2D
geometric maps, building 3D reconstructions, visualizing and interacting with recon-
structions, and automatically propagating information through a sequence of sensory
data. Compared the time saved when employing the toolkit with respect to a typical
labeling approach.

5.6 Paper F: Semantic Map representation

handling uncertainty

Outline: This paper proposes a semantic map representation that handles uncertainty,
also taking advantage of contextual relations among spatial elements (objects and
rooms), coined Multiversal Semantic Map (MvSmap). The paper reports a compre-
hensive survey on semantic mapping approaches, as well as on grounding techniques
for populating those maps. MvSmaps are described in detail and formally defined,
along with the algorithms involved in their building, where the recognition techniques
presented in previous works play a pivotal role. Moreover, this paper includes al-
gorithms for efficiently tackling the uncertainty modeled by these maps. The novel
Robot@Home dataset is used for both, testing the symbol grounding success, as well
as illustrating the building of MvSmaps from scenarios with different complexity.

Contribution by the author: Designed the Multiversal Semantic Map representation
for storing and managing uncertain information. Integrated the previously developed
object and room recognition techniques within a symbol grounding process. Designed
and implemented the pipeline for building MvSmaps according to the information
perceived by a mobile robot. Processed the Robot@Home dataset for being useful
for testing symbol grounding algorithms, as well as for illustrating the building of
MvSmaps.



6
Conclusions and future work

Reaching the end of the thesis, it is time to draw conclusions and
think about the future.

This thesis has explored and made contributions to the fascinating world of se-
mantic mapping applied to mobile robots. This type of maps aims to provide a robot
with a sense of understanding of what is going on in its surroundings, which sets the
basis for an intelligent, autonomous, and efficient operation. Particular emphasis has
been placed on the population of semantic maps with information about the spatial
elements in the robot workspace, namely objects and rooms, through the combination
of techniques from Machine Learning and Artificial Intelligence. These fields are at
a great point, evidenced by a growing number of studies and successful applications,
as recently commented by Ralf Herbrich – Amazon’s director of machine learning –
“We’re in a golden age of machine learning and AI, ... , as a scientific community,
we are still a long way from being able to do things the way humans do things, but
we’re solving unbelievably complex problems every day and making incredibly rapid
progress.”. In the author’s opinion, the research of systems exploiting the synergy of
these two fields, boosting their advantages and mitigating their limitations, can lead
to remarkable advances profitable by the robotic community. That is the case of the
techniques developed in this thesis.

In order to be aware of its surroundings, a mobile robot must be able to recognize
the elements that are observed through its sensory system. The second chapter of this
thesis described the contributions done in this regard, which focused on the combi-
nation of Conditional Random Fields (CRFs), a discriminative, undirected variant of
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Probabilistic Graphical Models (PGMs), and Semantic Knowledge of the domain at
hand codified in an Ontology. These two frameworks have reached a notable success
in different classification applications.

CRFs master the modeling of contextual relations among spatial elements, also
handling the uncertainty coming from the robot sensory system and the employed
models, and supporting the execution of probabilistic inference methods. Precisely,
one of the earliest contributions of this thesis was the Undirected Probabilistic Graph-
ical Models in C++ (UPGMpp) library, developed as a consequence of the lack of
software tools for handling Undirected PGMs in general, and CRFs in particular,
providing the features demanded by a recognition system running on board of a mo-
bile robot. This library, which is publicly available, implements popular algorithms
for building, learning and performing inference over graphical models. The possible
choices of training and inference methods for CRFs motivated the thorough study
of different learning strategies, in order to find the most successful configuration
for the scene object/room recognition problem. This study provided valuable con-
clusions, not only for the appropriate utilization of these models in the remaining
contributions, but also for those in the robotic community aiming to quickly set-up a
working-system as successful as possible for such problem.

Despite their successful utilization in different fields, CRFs exhibit a number of
shortcomings when applied to recognition. First of all, to be properly tuned, they
require a considerable amount of training data comprehensively covering the ele-
ments within the domain at hand. The collection of a dataset is a tedious, heavily
time-consuming, and (in some domains) unfeasible task, as the author experienced
when processing the UMA-Offices dataset. Such dataset, consisting of 25 scenes cap-
tured by a mobile robot from office facilities within the University of Málaga, was
collected to evaluate the developed recognition techniques in conjunction with other
state-of-the-art repositories containing information from the trending topic sensors,
#RGB-D_cameras. To avoid the dependency of datasets containing real data, it was
shown how Semantic Knowledge, conveniently codified in an Ontology, can be used
to effortlessly generate an arbitrary number of training samples representative of the
domain at hand. Ontologies provide a natural way to encode Semantic Knowledge,
and suppose a compact, human-readable, and ready-to-use representations in high-
level reasoning tasks. However, they are unable to handle uncertainty, and it is dif-
ficult to fill the gap between the low level sensory data and the codified information
without introducing additional ad-hoc processes. Their synergy with CRFs removes
these limitations, setting a mutual benefit relationship.

This thesis has exhibited that Ontologies have much to offer to its marriage with
CRFs. For example, they have been employed to generate hypotheses about the pos-
sible types of the objects/rooms within a scene, drastically reducing in that way the
complexity of the CRFs modeling such scene. This increases the efficiency of ap-
proximate inference methods over CRFs, also broaden the scenarios where exact in-
ference is feasible. Notice that the efficiency of the recognition method is key for the
proper robot operation, since it must share the (usually limited) robot resources with
other algorithms in execution like those performing navigation or localization. On-
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tologies may encode different types of information about the elements of the domain
of discourse, and this has been leveraged to codify the frequency of occurrence of the
different object classes. The usual CRF formulation has been accordingly adapted
to exploit this source of prior information, allowing these models to achieve more
coherent recognition results. Encoded Semantic Knowledge has been also used to de-
tect incoherences in such results, and learn from them in collaboration with a human.
This approach overcomes the CRF inability to learn from experience, and permits it
to improve its performance and robustness in the long-term operation within home
environments.

Once the mobile robot was able to recognize the elements in its surroundings
with guarantees, such recognition framework was integrated into a semantic mapping
system. For that, it was designed the Multiversal Semantic Map (MvSmap), a rep-
resentation of the robot workspace able to accommodate and take advantage of the
probabilistic outcome of the developed recognition techniques. This map considers
different interpretations of the spatial elements, called universes, as instantiations of
Ontologies, creating a multiverse. These Ontologies are further annotated with the
probabilities yielded by the recognition framework, as well as with their probability
of being the true one. Thereby, the robot performance is not limited to the utiliza-
tion of the most probable universe, like traditional semantic maps do, but it can also
consider other possible explanations with different semantic interpretations, resulting
in a more coherent robot operation. A way to keep the complexity of the multiverse
tractable has been also presented, enabling its utilization in complex environments.

Two additional resources related to semantic mapping have been also made pub-
lic. The first one is a dataset, coined Robot@Home, containing among others: 87,000+
time-stamped observations gathered by a mobile robot endowed with a rig of 4 RGB-D
cameras and a 2D laser scanner, 3D reconstructions and 2D geometric maps of fully
explored houses, topological information about the connectivity of rooms, and ground
truth annotations about the type of the surveyed rooms and objects. The dataset is rich
in contextual information of the contained spatial elements, a valuable feature missing
in most of the state-of-the-art datasets, which can be exploited by semantic mapping
systems. The second contribution in this regard is the Object Labeling Toolkit (OLT),
a set of software components to efficiently process sequences of sensory informa-
tion, including RGB-D observations. Such components are highly customizable and
expandable, facilitating the integration of already-developed algorithms, and have
proven to drastically reduce the time and effort needed for processing that type of
datasets.

As a final remark, it is worth to say that although all the techniques described in
this thesis have been assessed with data repositories from domestic and office envi-
ronments, their utilization is not restricted to these domains, but they can be exploited
in any scenario exhibiting rich semantic information as hospitals, shopping centers, or
other human-like environments. Moreover, their use is not restricted to mobile robot
applications, but they could be exported to other fields that would benefit from the
exploitation of semantic maps as assistance to visual impaired or elderly people, aug-
mented reality, and more applications to appear in the era of portable devices able
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to execute this kind of techniques. Nowadays, in fact, our smartphones are almost as
powerful as our desktop computers. The research efforts in semantic mapping, along
with the new technological advances, ensure the emergence of breakthrough and ex-
citing applications. Stay tuned!

Future work

The work done in this thesis leaves a number of research lines open. Some of the
most interesting ones are outlined below.

Hypotheses generation. The generation of hypotheses employing the informa-
tion encoded in the Ontology could be so restrictive in some situations, mainly with
objects showing unusual properties. Let’s suppose a scene with a book placed on the
floor. In that situation the logical reasoner does not yield the type Book as a hypoth-
esis, given that its height largely differs from the expected one. An option could be
to consider the result of the logical inference as a score to be introduced in the CRF
formulation, at the cost of compromising the exact inference option.

Exploitation of MvSmaps. The real potential of Multiversal Semantic Maps (in
the author’s opinion) is still to come. Several proof-of-concept applications have been
designed and tested, but it should be studied the benefits of this representation in real
world problems like efficient navigation and object search, robot localization, task
planning with uncertain/incomplete information, etc.

Learning from experience. There is significant room to explore possible im-
provements to the proposed system for learning from experience. Firstly, it should be
conducted a thorough evaluation of the system with complex CRFs and ontologies,
including information from objects and rooms, during long periods of time. Since the
human is in the learning loop, it could be also studied how possible incorrect indica-
tions by the user affect the performance. The system could also benefit from a study
of when would be more appropriate to ask the user about inconsistent results in order
to not bother him/her.

Further development of UPGMpp. Some additional features regarding the per-
formance of the UPGMpp library could be explored. For example, although the most
time-consuming parts of the library are parallelized through OpenMP, some repeti-
tive operations intensively employing data could also benefit for a parallelization at a
lower level, aiming to also take advantage of GPU cores through, for example, CUDA
or OpenCL. Visualization tools for inspecting the underlying graphs would be also
useful for understanding what is on in the code and during execution. The implemen-
tation of sampling techniques for drawing samples from the probability defined by a
PGM (like Markov Chain Monte Carlo), are also in the spotlight. Of course, any con-
tribution to UPGMpp from the computer vision or robotic communities is welcome.
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Improvements in OLT. The incorporation of algorithms for a globally consistent
alignment of the RGB-D observations used to reconstruct a scene would lead to even
more accurate models. The user experience could be also improved with the addition
of geometric primitives like spheres or cylinders to the currently used one (boxes) to
segment and label scenes. Moreover, the time needed for labeling would be reduced
if an initial segmentation of the scene as well as tentative labels for the objects/rooms
therein are provided beforehand.
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Exploiting Semantic Knowledge for Robot
Object Recognition

J.R. Ruiz-Sarmiento, C. Galindo and J. Gonzalez-Jimenez

Machine Perception and Intelligent Robotics Group, System Engineering and Auto.
Dept., University of Málaga, Campus de Teatinos, 29071, Málaga, Spain.

This paper presents a novel approach that exploits semantic knowledge to en-
hance the object recognition capability of autonomous robots. Semantic knowl-
edge is a rich source of information, naturally gathered from humans (elicitation),
which can encode both objects’ geometrical/appearance properties and contex-
tual relations. This kind of information can be exploited in a variety of robotics
skills, especially for robots performing in human environments. In this paper we
propose the use of semantic knowledge to eliminate the need of collecting large
datasets for the training stages required in typical recognition approaches. Con-
cretely, semantic knowledge encoded in an ontology is used to synthetically and
effortless generate an arbitrary number of training samples for tuning Probabilis-
tic Graphical Models (PGMs). We then employ these PGMs to classify patches
extracted from 3D point clouds gathered from office environments within the
UMA-offices dataset, achieving a ∼ 90% of recognition success, and from of-
fice and home scenes within the NYU2 dataset, yielding a success of ∼ 81% and
∼ 69.5% respectively. Additionally, a comparison with state-of-the-art recogni-
tion methods also based on graphical models has been carried out, revealing that
our semantic-based training approach can compete with, and even outperform,
those trained with a considerable number of real samples.

Keywords: Semantic Knowledge, Human Elicitation, Object Recognition, Proba-
bilistic Graphical Models, Autonomous Robots

1 Introduction

Object recognition is one of the key abilities of a mobile robot intended to perform
high-level tasks in human environments, where objects are usually placed according
to their functionality, e.g., tv-sets are in front of couches, night tables are near beds,
etc. As reported by other authors [11], the exploitation of these contextual relations,
that can be seen as a form of semantic knowledge, can improve the performance of
traditional object recognition methods which only rely on sensorial features.

To illustrate the benefits of using semantics, let’s consider a robot coping with the
task of recognizing the objects placed in its surroundings. This may become complex
for a number of reasons, including the large number of possible object classes and
features to extract, their similarity, etc. Suppose now that the robot knows that it is
in an office and has some semantic knowledge related to that particular domain, for
example the type of objects usually present in a typical office environment and their
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contextual relations. This simplifies the recognition problem, drastically reducing the
range of possible objects classes, and even more importantly, enabling the recognition
system to exploit particular object relations to gain in effectiveness and robustness.
For instance, an object that resembles an office table according to its geometry can be
more confidently recognized as such if objects typically found near it, e.g. a computer
screen and/or a chair, are also detected and fulfill certain contextual relations, for
example, the computer screen is on the table and the chair is close to it.

In this work we present a novel approach that exploits semantic knowledge en-
coded by human elicitation to train Probabilistic Graphical Models (PGMs) [16] for
object recognition. PGMs form a machine learning framework that is widely applied
to object recognition given its capabilities for modelling both uncertainty and objects
relations. These systems need a vast amount of training data in order to reliably en-
code the gist of the domain at hand, however, the gathering of that information is an
arduous, time-consuming, and – in some domains – not a tractable task. To face this
issue, we codify semantic knowledge by means of an ontology [30], which defines
the domain object classes, their properties, and their relations, and use it to generate
training samples for a Conditional Random Field (CRF) [16]. These training samples
reify prototypal scenarios where objects are represented by a set of geometric primi-
tives, e.g., planar patches or bounding boxes, that fulfill certain geometric properties
and relations, like proximity, difference of orientation, etc.

Aiming to show the performance of CRFs trained with the proposed approach,
they have been integrated into an object recognition framework. This framework op-
erates by processing point clouds provided by a RGB-D camera, in order to extract
geometric primitives (see figure A.1-a), which are then recognized as belonging to
a certain object class through an inference process over the trained CRF. We have
obtained promising results in office and home environments, employing both planar
patches and bounding boxes as geometric primitives, though our methodology can be
applied to other scenarios and sensorial data types.

In the literature, PGMs are used, in general, to learn the properties of the differ-
ent object classes and their contextual relations using data from previously collected
datasets. In contrast, the work presented here drives this learning phase by provid-
ing synthetic training samples extracted from the semantic knowledge of the domain
at hand. This knowledge can be naturally provided by humans and encoded into an
ontology, and exhibits three advantages with respect to other related approaches:

• It eliminates the usually complex and high resource-consuming task of col-
lecting the large number of training samples required to tune an accurate and
comprehensive model of the domain.

• Ontologies are compact and human-readable knowledge representations. In
that way, extending the problem with additional object classes is just reduced
to codify the knowledge about the new classes into the ontology, generate
synthetic samples considering the updated semantic information, and train the
CRF. This process can be completed in a few minutes, in contrast to the time
needed for gathering and processing real data.
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• The recognized objects are anchored to semantically defined concepts, which
is useful for robot high-level tasks like reasoning or task planning [10, 8, 4].

We have conducted an evaluation of our work employing two datasets: one from
our facilities, called UMA-offices, which counts 25 office environments, and the
NYU2 dataset [28], from which we have extracted 61 offices and 200 home scenes.
The performance of CRFs trained with our methodology have been also compared
with two state-of-the-art methods, namely i) a standard formulation of CRFs trained
and tested with real data [16], and ii) the CRF presented in [34]. The results show that
our approach can compete with, and even outperform, those trained with a consider-
able number of real samples.

In the next section we put our proposal in the context of other related works.
Section 3 introduces probabilistic graphical models applied to object recognition,
while in section 4 we present the proposed method to train these models using se-
mantic knowledge. In section 5, the evaluation results of the method considering two
datasets comprising office and home environments are shown, and a comparison with
other state-of-the-art approaches is presented. Finally, section 6 ends with some con-
clusions and future work.

2 Related work

Object recognition is a key topic in robotics and computer vision that, in many cases,
has been successfully addressed by only using the visual features of isolated objects,
i.e. without considering information from the rest of the scene. Some remarkable ex-
amples are the Viola and Jones boosted cascade of classifiers [32], the SIFT object
recognition algorithm [19] or the Bag of Features [21] models. However, the cur-
rent trend also considers the exploitation of contextual information between objects,
aiming to improve the recognition results (see [11]).

Throughout this section, we discuss related works on object recognition systems
that resort to graphical models or semantic knowledge to model contextual informa-
tion. Also, some works reporting different alternatives to the utilization of ontologies
as a source of semantic information for object recognition are commented.

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) [16] is one of the most resorted frameworks
to manage contextual information. The earliest works using this tool for object recog-
nition are based on intensity information of the scene, like [33], where the context
between pixels in a given RGB image is modelled by a discriminative Conditional
Random Field (CRF). Another work also relying on intensity images is the pre-
sented in [25] that proposes a CRF framework which incorporates hidden variables
for part-based object recognition. The work in [20] also builds part-based models
of objects, and represents their interrelations with a PGM. More recent is the work
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presented in [7] which employs stereo intensity images in a CRF formulation. Three-
dimensional information from stereo enables the exploitation of meaningful geomet-
ric properties of objects and relations. However, stereo systems are unable to perform
on surfaces/objects showing an uniform intensity, which can negatively affect the
recognition performance.

With the emergence of inexpensive 3D sensors, like Kinect, a new batch of ap-
proaches have appeared leveraging the dense and relatively accurate data provided by
these devices. For example, the work presented in [1] builds a model isomorphic to a
Markov Random Field (MRF) according to the segmented regions from a scene point
cloud and their relations. The authors did the tedious work of gathering information
from 24 office and 28 home environments, and manually labelled the different object
classes. Interestingly, it is shown in [26] that the accuracy of a MRF in charge of
assigning object classes to a set of superpixels increases as the amount of available
training data augments. In [31] a meshed representation of the scene is built on the
basis of a number of depth estimates, and a CRF is defined to classify mesh faces.
CRFs are also used in [15] and [34], where Decision Tree Fields [23] and Regression
Tree Fields [14] are studied as a source of potentials for the PGM. The CRF structure
for representing the scenes in [34] is similar to the one presented here. In that work,
a CRF is used to classify the main components of a facility, namely clutters, walls,
floors and ceilings.

All the methods mentioned above require the collection of large datasets that ad-
equately capture the variability of the domain, which can be a tedious, repetitive, and
time-consuming task that consists of moving the robot from one scene to another,
gathering the data, and post-processing it accordingly to the type of information ex-
pected by the training algorithms. The claim of this work is the utilization of semantic
knowledge codified into an ontology as a valuable source of information for the gen-
eration of synthetic training samples that, being representative of the domain, also
can capture its variability.

2.2 Semantic Knowledge

In the literature, some alternatives to PGMs for object context modelling have been
also reported. For example, in [12] a system relying on an ontology plus rules defined
into the Semantic Web Rule Language [13] is used to generate object hypotheses.
These hypotheses are subsequently checked in a matching process with CAD models.
Another example is [24], where a constraint network implemented in Prolog classifies
the main structural surfaces, i.e. walls, floors, ceilings and doors, using contextual
relations like orthogonal, parallel, above, etc. Nevertheless, these methodologies are
unable to handle uncertainty, and exhibit difficulties to leverage all the potential of
the contextual relations.
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2.3 Alternative sources of information

Additionally to the use of semantic knowledge, other sources of information can be
also considered to codify and manage the knowledge from a given domain. For exam-
ple, in [35], a web mining knowledge acquisition system is presented as a mechanism
to obtain information about the location of objects. In [5] the authors describe PGMs
that are trained with images from the Google’s image search engine. They reported
that the high percentage of low quality search results (e.g images where the object of
interest appears occluded or is missing, cartoons instead of real objects, etc.) repre-
sents a serious drop in the recognition performance. Knowledge bases, like Concept-
Net [29], and language models, like TypeDM [2], have been also studied for visual
recognition tasks in [18], concluding that they can be inconsistent with the expecta-
tion of the presence of objects in the real world if insufficient objects and/or relations
are included. Another example of exploitation of encoded information about objects’
relations is [17], where the search of a given object is directed by a previously learnt
Gaussian Mixture Model (GMM).

In comparison with those methods, the codification of the domain knowledge
through human elicitation as presented in this work enables a truly and effortless en-
coding of a large number of objects’ features and relations between them. Moreover,
since the source of semantic information (a person or a group of people) is trustwor-
thy, in contrast to online search or web mining-engine based methodologies, there is
less uncertainty about the validity of the information being managed. This enables
the use of such a semantic information for generating training data which is well rep-
resentative of the domain. In addition, the use of an ontology to structure that knowl-
edge permits the robot to take advantage of it for other high level applications [9, 10].

3 Scene object recognition through Conditional

Random Fields

Conditional Random Fields (CRF) [16] are a particular case of Probabilistic Graphi-
cal Models that relies on conditional probability distributions. When applied to object
recognition, a CRF computes the posterior P(y|x), where x = [x1,x2, ...,xn] are obser-
vations of elements in the scene, and y = [y1,y2, . . . ,yn] are random variables repre-
senting the classes of these elements from the set L of the possible object classes.
Figure A.1-b shows an example where L = {computer_screen, table,chair_back,
chair_rest, f loor,wall}.

The posterior P(y|x) can be calculated by computing the probability of each pos-
sible assignation to the variables in y conditioned to x, which can become unfeasible if
the number of possible assignations is high. CRFs overcome this issue by compactly
encoding P(y|x) through a graph structure that captures the dependence relations
among random variables. Concretely, a CRF factorizes P(y|x) over an undirected
graph H = (V,E), where V is a set of nodes, one per each random variable in y, and
E is the set of edges linking nodes that are contextually related. These relations are
established according to the semantics of the domain and the geometry of the scene.
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Figure A.1: a) Example of a scene segmented into planar patches (labeled with an ID and de-
limited by yellow lines). b) Scene objects recognized by our method. c) Graphical model built
for the planar patches shown in a). Each patch is associated to a node y0, ..,y5, whose proba-
bilistic distributions are conditioned to their respective patch observations x0, ..,x5 (observation
xi corresponds to patch ID_i). Near patches are linked by an edge. The blue box encapsules
the scope of a particular unary factor, while the red one shows the scope of a pairwise factor.
d) The resultant graphical model after the execution of the recognition method, when random
variables take a value according to their most probable assignation.

For example, in the CRF structure of figure A.1-c defined from the observations in
figure A.1-a, the nodes y3 and y5 are linked due to the proximity in the scene of their
related observed planar patches ID3 and ID5. The intuition behind this is that only the
neighbors of an object will directly influence its recognition, as stated by the Markov
properties [16].

According to the Hammersley-Clifford theorem [16], the factorization of P(y|x)
over a CRF can be expressed as a product of factors. A factor is a function associated
to a random variable or a set of variables that represents a probability distribution
over it/them. In this work we consider two types of factors: unary and pairwise (see
figure A.1-c). Unary factors encode knowledge about the properties of the object it-
self and therefore affect to single nodes. On the other hand, pairwise factors act over
connected variables, and encapsulate knowledge about the objects’ relations. In other
words, unary factors model how likely an object yi belongs to a certain class in L
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Table A.1: Unary and pairwise features used in this work to characterize planar patches of the
scene.

id Unary features
l1 Centroid height from the floor.
l2 Orientation w.r.t. the horizontal.
l3 Area of its bounding box.
l4 Elongation.
id Pairwise features
i1 Perpendicularity.
i2 on/under relation.
i3 Vertical distance of centroids.
i4 Ratio between areas.
i5 Ratio between elongations.

based only on the observed properties xi, whereas pairwise factors state the compati-
bility of an object assignation with respect to the classes of its neighboring objects.

More concretely, we define an unary factor, denoted by U(·), as a linear model:

U(yi,xi,ω) = ∑
l∈L

δ (yi = l)ω l f (xi) (A.1)

where f (xi) computes a vector of features that characterizes the object xi, ω l is a
vector of weights for the class l obtained during the training phase, and δ (yi = l) is
the Kronecker delta function, which takes value 1 when yi = l and 0 otherwise. Ta-
ble A.1-top shows the unary features used in this work. As an example, let’s consider
the planar patch ID_0 representing a computer screen in figure A.1, which corre-
sponds to observation x0. In this case, the outcome of the f (·) function is f (x0) =
[1.06,0,0.17,1.83], where 1.06 stands for its centroid height, 0 its orientation, and so
on.

On the other hand, we define the pairwise factor I(·) as:

I(yi,y j,xi,x j,θ) = ∑
l1∈L

∑
l2∈L

δ (yi = l1,y j = l2)θ l1l2g(xi,x j) (A.2)

where the function g(xi,x j) computes pairwise features between the observations xi
and x j, and θ l1l2 is a vector of weights for the pair of classes l1 and l2. Table A.1-
bottom enumerates the pairwise features used to characterize the objects’ relations.

For convenience, the product of factors over the posterior probability P can be
expressed by means of log-linear models as:

P(y|x,ω,θ) =
1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (A.3)

where Z(·) is the normalizing partition function so
∑ξ (y) p(y|x,ω,θ) = 1, being ξ (y) an assignation to the variables in y, and ε(·) the
so-called energy function defined as:
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ε(y,x,ω,θ) = ∑
i∈V

U(yi,xi,ω)+ ∑
(i, j)∈E

I(yi,y j,xi,x j,θ) (A.4)

3.1 Training the model

Training a CRF consists of estimating the vectors of weights ω and θ that maximize
the likelihood function:

max
ω,θ

LP(ω,θ |D) = max
ω,θ

∏
d∈D

P(yd |xd ,ω,θ) (A.5)

where D = {d1,d2, ...,dm} is a dataset composed of m training samples. Each training
sample contains the observations to be recognized xd labeled with their ground truth
object classes in yd . Solving equation A.5 requires the calculation of the partition
function Z, which becomes computationally intractable in practice. To overcome this
problem, it is common to resort to the pseudo-likellihood, instead [16]. It consist
of an alternative, tractable objective function for which the estimation of ω and θ

converges to those computed by the likelihood one if a sufficient large number of
samples is provided.

As commented, the training dataset must be comprehensively enough to accu-
rately capture the characteristics and variability of the domain. At this point, the ex-
ploitation of semantic knowledge brings two interesting advantages: (i) it provides
synthetic training samples that naturally encode the variability of the domain (as it
is shown in section 4.2), and (ii) it eliminates the task of gathering, processing and
labelling sensorial data to generate a sufficiently comprehensive dataset.

3.2 Inference

Given the observation of a scene, the graph H = (V,E) is built according to the sensed
elements x and the conditional dependencies between the random variables y, as de-
scribed above. Thereby, the recognition problem consists of finding the assignation
to the variables in y that maximizes the posterior, that is:

ŷ = argmax
y

P(y|x,ω,θ)

= argmax
y

1
Z(x,ω,θ)

e−ε(y,x,ω,θ)
(A.6)

Since the partition function does not depend on the assignations to y, we can
simplify this expression to:

ŷ = argmax
y

e−ε(y,x,ω,θ) (A.7)
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Figure A.2: Overview of the developed framework for object recognition. The shadowed area
delimitates the proposed components for the generation of training samples. Boxes represent
processes, whereas ovals are generated/consumed data.

This equation is known as the Maximun a Posteriori (MAP) query or Most Proba-
ble Explanation (MPE). Although we avoid the computation of the partition function,
the exact computation of this query is still unfeasible, as the number of possible con-
figurations is exponential with the number of nodes in V . To overcome this issue, we
use the Iterated Conditional Modes (ICM) algorithm [3].

As an illustrative example, figure A.1-d displays the values taken by the nodes of
the graph in figure A.1-c after the inference process, and figure A.1-b shows these
results in the scene.

4 Using Semantic Knowledge for training

The proposed method for training PGMs according to semantic knowledge follows
a top-down methodology (see figure A.2). The design starts with the definition of an
ontology for the knowledge domain at hand, e.g. an office environment, through hu-
man elicitation, stating the typical objects, their geometrical features, and relations.
Then, the encoded semantic knowledge is used for generating sets of synthetic sam-
ples, which replace the real datasets required for training.

Once the PGM is trained, and aiming to show its performance, it is integrated
into an object recognition framework that works following a bottom-up stance (see
figure A.2). During the robot operation, a plane-based mapping algorithm [6] extracts
planar patches, which are characterized through a number of features, e.g., size, ori-
entation, position or contextual relations. These characterized planar patches feed the
inference process described in section 3.2.
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Figure A.3: a) Hierarchy of concepts defined in the office ontology used in this work. b)
Definition of the Table_top concept based on properties, relations and annotations.

The next section details the process for encoding the semantic knowledge pro-
vided by human elicitation into an ontology, and then section 4.2 describes its utiliza-
tion for generating an arbitrary number of synthetic training samples.

4.1 Ontology de�nition through Human Elicitation

An ontology is a representation of a conceptualization related to a knowledge do-
main that consists of a number of concepts arranged hierarchically, relations among
them, and instances of concepts, also called individuals [30]. For example, an office
environment can be represented by an ontology of concepts defining rooms and ob-
jects, e.g. meeting_room, office_table or printer, and instantiations of such
concepts, e.g. meeting _room-1, which refers to a particular meeting room. Ontolo-
gies also comprise relations among concepts like �Object has_location Room�,
which establishes that the instances of the concept Object are (can be) located at a
particular instance of Room. For instance, a possible relation can be �office_table-2
has_location meeting_room-1�. The ontologies used in this work are defined by
human elicitation, a process that enables the exploitation of its experience and knowl-
edge1 for setting the features and relations among the domain concepts.

Figure A.3-a) depicts part of the office ontology defined in our experiments. The
root concept is Object, with three subconcepts: Device, Furniture and Building,
which represents the objects that are typically found in office environments. Notice
that the person can vary the granularity of the defined concepts, as it is the case of

1Please notice that the source of this information could be also a large number of humans, i.e. crowd-
sourcing.
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Table A.2: Properties defined into the ontology.

Name Meaning
has_area Area of the object in m2.
has_centroidHeight Height of the object centroid w.r.t. the floor in m.
has_elongation Ratio between the object length in its two main directions.
has_frequencyOfOccurrence How often an object appears in the studied environment.
has_orientation Main orientation of the object.
is_nearTo An object is near to other one.
is_on An object is placed on another one.
is_under An object is placed under another one.

the concept Table that has been split into two related concepts: Table_top and
Table_side.

The geometrical properties considered by the human to describe these concepts
and their relations are enumerated in table A.2. Such properties can be interpreted
as restrictions to be fulfilled by instances belonging to that concepts. Additionally,
they compound the minimum set of properties that permits a human to distinguish
between the object classes employed during the method evaluation (see section 5).
For example, figure A.3-b) shows the definition of the concept Table_top, restricting
the geometric features and relations considered for a standard table top.

The geometric features defined over the concepts are useful to describe the typical
shape, size or relative position of their instances. However, not all the instances of a
particular concept have exactly the same appearance in the real world. To quantify
objects’ variability, the person may also annotate the encoded restrictions with a dis-
crete value from the set RA = {null, veryLow, low, medium,high,veryHigh}. Thus,
according to the Table_top definition given in A.3-b), its height shows a low vari-
ability around the established value of 0.7m, indicating that most tables share this
typical height. The area, however, can largely vary from the averaged value, i.e. 1m2,
expressing the differences in size of the tables that can be found in an office. Given
that the same set of geometric features is employed for describing all the concepts
during the elicitation process, the time needed for their definition scales linearly with
the number of object classes. It is also worth to mention that, although the definition of
the objects’ variability by means of elements of the set RA could seem subjective (i.e.
dependant on the person): the objectiveness can be increased through crowd-sourcing;
the crispy values from RA are relevant but not determinant during the generation of
synthetic data – see section 4.2.

Proximity restrictions between objects are also incorporated into the ontology
with a value from the RA set, but with a different meaning. In this case, it is indicated
how frequently a particular relation holds. For instance, the person establishes that a
computer screen and a table top likely appear close to each other by adding an anno-
tation with the value veryHigh (see figure A.3-right). Note that it is not needed to set
the proximity relations among all the considered object classes, which would lead to
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Concept has_frequency
OfOccurrence 

P(appearing) Sample 

Floor high 0.8 appearing 

Wall high 0.8 appearing 

Table_top veryHigh 0.9 appearing 

Table_side low 0.25 not_appe. 

Chair_back high 0.8 not_appe. 

Chair_seat medium 0.6 appearing 

Computer
_screen 

high 0.8 appearing 

is_nearTo Frequency P(near) Sample 

Floor null 0 not_near 

Wall high 0.75 near 

Chair_seat high 0.75 near 

Computer_s
creen 

veryHigh 0.9 near 

Figure A.4: Left, example of discrete probability distributions built according to the
has_frequencyOfOcurrece relation of each concept. These distributions determine which
objects are included into the synthetic scenario. Right, context creation for an object of the
class table_top according to the objects included in the synthetic scenario.

a quadratic increment in the time spent in their definition, but just between the objects
that are more commonly encountered together. Thus, extending the previous exam-
ple, the person could avoid the definition of the relation between computer screens
and trash bins, since they seldom appear close in an office.

4.2 Generation of training samples

Upon the semantic knowledge encoded in the ontology, the system generates samples
in the form of synthetic scenes following four steps (notice that the stage presented
here does not involve the human participation):

1. Inclusion of objects in the scene. The set of objects that appear in the synthetic
scene is selected according to the relations has_frecuency- OfOcurrence

defined in the ontology. For that, we use a discrete probability distribution that
establishes the likelihood of the presence of each object. For example, follow-
ing the Table_top definition where has_frecuencyOfOcurrence=high, such
a probability distribution can be defined by the person as P(Table_topappearing)=
0.8 and P(Table_topnotAppearing) = 0.2. Samples from these distributions are
drawn, yielding the set of objects included in the scene as illustrated in fig-
ure A.4-left. In this example the objects included are: parts of the floor and a
wall, a table top, a chair seat and a computer screen.

2. Object characterization. The geometrical features of the objects included in
the synthetic scene in the previous step are reified according to their concepts’
definitions in the ontology. To this end, a Gaussian distribution, N(µ,σ), is con-
sidered for each defined concept and for each defined geometric property, i.e.
has_area, has_centroidHeight, has_elongation and has_orientation,



A14 PAPER A. EXPLOITING SEMANTIC KNOWLEDGE FOR OBJECT RECOGNITION

0 1 2 
0 

0.5 

1 

0 1 2 
0 

0.5 

1 

0 1 2 
0 

0.5 

1 

0 1 2 
0 

0.5 

1 

table_top 

floor 

chair_seat 

Computer 
screen 

wall 

y0 

y1 y2 

y3 

y4 

area centroid_height elongation orientation 

fs (l2)=[1.2,0.74,1.68,1] 

Unnormalized 
probability 

distributions 

variability 

1.2                                      0.74                                     1.68                                      1  

fs (l0) 

fs(l1)=[2.1,1,1.41,1] 

fs (l3) 

fs (l4) 

high                                      low                                  medium                                null 

samples 

gs(f1,f2) 

gs(f0,f1) 
gs(f2,f3) 

gs(f2,f4) 

gs(f3,f4) 

gs(f1,f3) 

gs(f0,f3) 

Figure A.5: Top, samples drawn (red lines) from the probability distributions for an object of
the class Table_top, built according to its geometrical restrictions and the annotated variabil-
ity in the ontology (see figure A.3-b). Bottom, graphical model that results from the objects
included in figure A.4-left and their generated relations.

where the mean µ is the value of that concept for that property in the ontology,
and the standard deviation σ is a quantification of the respective annotated vari-
ability. For instance, for the has_area property of the Table_top concept, the
person implicitly encoded a Gaussian distribution with µ = 1 and a high stan-
dard deviation, e.g. σ = 0.75. Then, samples drawn from these distributions
are used as features of the included objects (see figure A.5-top). These syn-
thetic features are computed by the fs(li) function, where li is the class of the
included object i. This function replaces f (xi) during the training phase (recall
equation A.1 in section 3).

3. Context creation. The contextual relations between the included objects are
established according to the is_nearTo properties and their frequency anno-
tations. For example, if the scene contains a Table_top and a Chair_backRest,
they will be placed near one to another into the synthetic scene with a high

probability, as stated by the ontology. Figure A.4-right shows an example of
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the definition of the contextual relations for a Table_top object according to
the objects previously included in the scene (see figure A.4-left), its is_nearTo
relations and their frequency annotations.

4. Context characterization. Different features for the relations established in
the previous step are computed, adding valuable contextual information. Ex-
amples of these features are: difference between centroid heights, perpendic-
ularity, difference between areas, areas ratio, difference between elongations,
etc. To compute them, the information produced in the objects characteriza-
tion step is used. For example, if a Table_top with a height of 0.7 m. and a
Chair_backRest showing a height of 0.32 m. are placed near in a synthetic
scenario, their context can be characterized with the difference between the
heights of their centroids: 0.38 m.

Two additional binary features are considered to establish that an object is
placed on or under other, according to the is_on and is_under relations of
the ontology. Notice that these features characterize the context of a pair of
objects that have been previously related in the synthetic scenario according to
their proximity.

The set of contextual features for objects (i, j) are yielded by the function
gs( fi, f j), where fi = [ fs(li), li], being fs(li) the features computed in the object
characterization step for object i, and li the class of that object. This function
replaces the g(xi,x j) one in equation A.2 (section 3).

Figure A.5-bottom shows the components of a synthetic scene produced by the
steps described above in the form of a graphical model, compound of nodes represent-
ing the included objects, and edges stating their relations. Notice that the characteriza-
tion of a Table_top illustrated in figure A.5-top is in fact carried out by fs(l2). As an
example of context characterization, let’s consider the context established by the ob-
jects wall (node y1) and table_top (node y2). Supposing that the contextual features
employed are, for instance, difference between centroid heights, perpendicularity, is
on and is under, then such a characterization is generated as gs( f1, f2) = [0.9,1,0,0],
which sets that: their centroids are separated by a vertical distance of 0.9 m.; given
that the wall is vertical and the table_top is horizontal they are perpendicular; any
object is located on or under the other one.

5 Evaluation

In order to evaluate our approach, we have trained a number of CRFs with synthetic
data and assessed their suitability to recognize objects from: i) office scenarios within
the UMA-offices dataset (section 5.1), and ii) office and home scenes within the
NYU2 dataset [28](section 5.2).
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RGB-D camera 

Figure A.6: The mobile robot Rhodon gathering 3D data within an office room.

5.1 Results with the UMA-o�ces dataset

The UMA-offices dataset was acquired with the mobile robot Rhodon, equipped with
a Kinect device mounted on a pan-tilt unit (see figure A.6), and entails 25 office
environments from the University of Málaga. In the experiments, seven object classes
were considered: L = {floor, wall, table, table_side, chair_back_rest, chair_seat and
computer_screen}, and the ground-truth was provided by an human operator. It is
worth to mention that the person that carried out the human elicitation process in the
experiments (section 4.1) has worked in different office environments, but he did not
visit the offices from the gathered dataset.

In our implementation, we rely on the UGM library [27] for training the CRF
using the optimization of the pseudo-likelihood function (see section 3.1). Concretely,
a Quasi-Newton method with Limited-Memory BFGS [22] is used, which is able to
optimize complex objective functions with a high number of parameters.

The performance of CRFs trained with the proposed method is assessed through
the micro/macro precision/recall metrics [1] computed for the results yielded by the
recognition process. Briefly, the precision of a given class of objects ci is defined as
the percentage of objects recognized as belonging to ci that really belong to that class.
Let recognized(ci) be the set of objects recognized as belonging to the class ci, gt(ci)
the set of objects of that class in the ground-truth, and | · | is the cardinality of a set,
then the precision of the classifier for the class ci is defined as:
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precision(ci) =
|recognized(ci)

⋂
gt(ci)|

|recognized(ci)|
(A.8)

On the other hand, the recall of a class ci expresses the percentage of the objects
that belonging to ci are recognized as members of that class:

recall(ci) =
|recognized(ci)

⋂
gt(ci)|

|gt(ci)|
. (A.9)

Precision and recall are metrics associated to a single class. It is also of interest to
know the performance of the proposed method for all the considered classes. This can
be measured by adding the so-called macro/micro concepts. Macro precision/recall
represents the average value of the precision/recall for a number of classes, and it is
defined in the following way:

macro_precision =
∑i∈L precision(ci)

|L|
(A.10)

macro_recall =
∑i∈L recall(ci)

|L|
(A.11)

Finally, micro precision/recall represents the percentage of objects in the dataset
that are correctly recognized with independence of their belonging class, that is:

micro_precision(ci) =
∑i∈L |recognized(ci)

⋂
gt(ci)|

∑i∈L |recognized(ci)|
(A.12)

micro_recall(ci) =
∑i∈L |recognized(ci)

⋂
gt(ci)|

∑i∈L |gt(ci)|
(A.13)

Since we assume that objects belong to a unique class, then
∑i∈L |gt(ci)| = ∑i∈L |recognized(ci)|, and consequently the computation of both mi-
cro precision/ recall metrics gives the same value.

In our experiments we have trained five CRFs using the same synthetic dataset
that comprises 1000 training samples including a total of 7170 objects and 16700 re-
lations among them. CRFs differ in the combination of the selected pairwise features
(configurations), aiming to analyze their suitability to the given environment.

The trained CRFs with synthetic data have been used to recognize the objects
from the UMA-offices dataset. The results of the recognition process using the above
metrics are shown in table A.3. Observe that the achieved micro precision/recall is
above 81%, with a best value of 90.91% for the configuration #2. Figure A.8 shows
some scene objects recognized with this configuration, while figure A.7-left illustrates
its confusion matrix. Note that in this case, the most challenging class to recognize
is table_side, since it may not be clearly differentiated from other object classes
like chair_back. Next, we highlight some meaningful comparisons and results of
our approach.
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Table A.3: Results of the recognition process with different sets of pairwise features (con-
figurations) and methods for the UMA-offices dataset. For the convenience of the reader,
these features, previously listed in table A.1, are: i1–Perpendicularity, i2–on/under relation,
i3–Vertical distance of centroids, i4–Ratio between areas, and i5–Ratio between elongations.
The features employed in each configuration are: #1={None}, #2={i1, i2, i3}, #3={i1, i2, i3, i4},
and #4={i1, i2, i3, i4, i5}.

Configurations
Method Metric #1 #2 #3 #4

micro p./r. 81.82 90.91 86.06 84.85
CRF trained with synthetic data macro p. 80.17 89.25 84.91 81.82

macro r. 83.78 89.99 86.69 83.95
micro p./r. 83.19 87.50 86.65 84.47

CRF trained with real data macro p. 81.93 85.84 85.19 81.90
[16] macro r. 82.76 86.36 85.72 82.46
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Figure A.7: Left, confusion matrix that relates the ground truth to the recognition results in
the second configuration. Right, influence of the number of training samples on the recognition
success as it is measured by the F-measure.

Comparison with state-of-the-art methods. We have compared the results of
our method with two state-of-the-art alternatives: i) a standard formulation of a CRF
trained and tested with real data [16], and ii) the CRF presented in [34]. The results for
both recognition systems were obtained through a 5-fold cross-validation and average
process using the UMA-offices dataset. Such a process firstly splits the 25 offices into
5 groups. Then, four of these groups are used for training, and the remaining one for
testing. This process is repeated five times shifting the group used for testing, and
finally the results are averaged. Table A.3 shows the results for the evaluation with
the CRFs in [16], while the CRF with the configuration presented in [34] achieved
a micro p./r. of 82.46%. These figures reveal that CRFs trained with the proposed
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Desktop 5
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Figure A.8: Examples of scene object recognitions performed by our method. Left column,
observed scenes with the detected planar patches delimited by yellow lines. Right column,
recognition results of such scenes.

method can compete with, an even outperform the results of the other two state-of-
the-art alternatives.

How much does the context relations contribute to the recognition perfor-
mance? We have trained a CRF that does not consider pairwise factors, i.e., only
taking into account the geometric properties of the planar patches (unary factors).
The recognition results of using this CRF correspond to the first configuration in
table A.3, which shows a significantly lower success than the other configurations
exploiting contextual relations.

What pairwise features are more discriminative? Notice that, in the results
shown in table A.3, the best ones are obtained when using perpendicularity, on/under
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and centroid height difference relations (configuration #2), whereas the inclusion of
the area and elongation ratios (configurations #3 and #4) deteriorates the method
performance. This indicates that both features have a low discriminant capability,
influencing negatively to the recognition process. It is important to underscore that
this conclusion only holds for systems employing the set of object classes L, so these
contextual features could be useful in other applications or domains relying on a
different set of object classes.

How much does the size of the training dataset affect the recognition per-
formance? Given that our method can generate an arbitrary number of samples, we
have trained several CRFs with datasets of different sizes. To facilitate the compari-
son of their outcomes, the previous macro precision/recall metrics has been combined
through the computation of their harmonic mean, also known as the F−measure. The
harmonic mean, that mitigates the impact of large measures and increments the influ-
ence of small values, is defined as follows:

F = 2∗ macro_precision∗macro_recall
macro_precision+macro_recall

(A.14)

Figure A.7 shows the results of such outcomes, where the F value increases from
the 66.68 obtained with 10 training samples up to 89.61 with 1000 samples. Notice
that in this experiment the improvement reaches an upper limit for 1000 samples. This
result remarks the importance of using large datasets to properly capture the variabil-
ity of the domain as well as the convenience of techniques to reduce the burden of
data gathering.

Do the generated synthetic data capture actual object properties and rela-
tions? In order to test the validity of the synthetic data generated for training CRFs,
that is, how well the elicited ontology and the proposed method capture the real world,
we have employed a CRF trained with our approach for recognizing objects from
both real and synthetic datasets. Concretely, we have considered the CRF with con-
figuration #2, the 25 offices from the UMA-offices dataset, and 25 synthetic scenarios
generated with the approach described in section 4.2. The performance testing with
the synthetic dataset yielded a micro precision/recall of 91.85%, a macro precision
of 90.30%, and a macro recall of 90.39%. Note that these figures are similar to those
obtained for the real dataset (see table A.3, configuration #2), which reveals the suit-
ability of both the ontology defined by the person and our approach for the generation
of synthetic scenarios through the exploitation of semantic knowledge.

Computational performance. The training process, including the generation of
synthetic samples, takes from 0.21 seconds when using 10 samples, up to 39.62 sec-
onds for 1500 in a PC with an Intel®Core™i5 3330 microprocessor at 3GHz and 8
GB DDR3 RAM memory at 1.6 GHz. Notice that the training process is performed
only once, and does not take place during the robot operation. On the other hand,
the inference process takes, on average, less than 0.2 milliseconds, which enables its
integration in object recognition frameworks aiming to operate on-line.

Time saving using human elicitation plus synthetic samples generation. The
results obtained in our experiments justify our claim that the proposed method can
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Table A.4: Results of the recognition process with different sets of pairwise features (configu-
rations) and methods for the NYU2 dataset. No pairwise features are used within configuration
#1. #2 resort to i1–Perpendicularity, i2–on/under, relation, and i3–Vertical distance of centroids.

Configurations
Method Metric #1 #2

micro p./r. 76.23 81.37
CRF trained with synthetic data macro p. 73.72 79.21

macro r. 76.32 80.35
micro p./r. 74.21 76.03

CRF trained with real data macro p. 65.57 67.65
[16] macro r. 66.70 69.57

successfully replace the time-consuming and arduous tasks of gathering and process-
ing real datasets. In order to also support its advantage for saving time/cost in the
process, we have measured the time consumed by the human elicitation and samples
generation processes.

In our experiments, the human elicitation process for the office domain took 20
minutes, including the collection of the knowledge from the person and its codifica-
tion into an ontology.

On the other hand, the time employed in the synthetic samples generation is neg-
ligible, since our method is capable of generating hundreds of samples in a less than
a second (e.g., 1500 samples in 0.11sec.). Thus, summing up the time spent for hu-
man elicitation, synthetic samples generation, and CRF training, our object recog-
nition system can be ready to work in less than 21 minutes. Thereby, the presented
methodology reduces dramatically the time required for training with real data, which
involves the navigation of the robot through a number of locations (large enough to
capture the variability of the domain), collecting the data, and its posterior processing.
In our case, the gathering and processing of the 25 offices within the UMA-offices
dataset took more than 7 hours, that is, 20 times higher than the time needed by our
method.

5.2 Results with the NYU2 dataset

Our approach has been also evaluated considering 61 scenes from office-environments,
and 200 home-environment scenes, all of them from the NYU2 dataset [28].

Office-environments. For the tests within the office domain, two of the five CRFs
trained during the evaluation with the UMA-offices have been reused, concretely the
ones with configurations #1 and #2. Notice that the same set of objects classes L has
been considered.

Table A.4 depicts the results of these tests. We can see how the integration of
contextual information increments the micro p./r. value in a ∼ 5%. This is lower
than the ∼ 9% achieved with UMA-offices, which can be explained by the limited
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contextual information obtained from one-shot observations in NYU2 w.r.t. the multi-
shot registered scenarios gathered in the UMA-offices dataset.

The performance of our approach has been also contrasted with: i) the results
yielded by a standard CRF [16] trained and tested with office data from NYU2, and
ii) the CRF configuration from [34], following again a 5-fold cross-validation and
average methodology. The second row of table A.4 shows the outcome of CRFs from
[16], while the configuration in [34] reached a micro p./r. of 73.10% relying on unary
features, and of 75.42% also integrating the pairwise ones. Both systems improve
their results a ∼ 2% when contextual information is introduced, however, they are
still under the performance reached by the proposed methodology.

Home-environments. The aim of the testing with home scenes is to validate the
applicability of the proposed approach to a different domain. For that, human elic-
itation has been used to define a new home ontology, publicly available at http:
//goo.gl/mz51ho, which contains 20 object classes typically found in a home en-
vironment, e.g. bottle, cabinet, faucet, sink, toilet, sofa, pillow, bed, clothes, etc.
These objects exhibit arbitrary shapes, so the recognition framework shown in fig-
ure A.2 has been modified to work with object bounding boxes as geometric primi-
tives, instead of the planar patches used in offices. In this case, the following prop-
erties replace those in table A.2 for defining objects’ concepts: hasBiggestArea,
hasColorVariation, hasElongation, hasHeight, hasOrientation, hasSize
and isPlanar. The contextual relations were codified in the same way as with the
office ontology (recall section 4.1).

The resultant ontology was exploited to generate synthetic training data, and two
CRF were tuned. The first CRF considers the following unary features to characterize
an object: orientation, planarity, and size of its bounding box, area of its two principal
directions, height from the floor, and color hue variation, and the second CRF also in-
cludes contextual relations characterized by: difference between principal directions,
vertical distance of centroids, volume ratio, connectivity and object-object compati-
bility. These configurations yielded a micro p./r. of 64% and a 69.44% respectively.

Additionally, a CRF following the standard formulation [16] has been trained and
tested through the above described 5-fold cross-validation and average process using
the 200 home-environment scenes. In this case, the system achieved a 61.67% of mi-
cro p./r. relying only on unary features, and a 65.42% also considering contextual re-
lations. A comparison with the CRF from [34], as conducted in the previous sections,
does not make sense here since it relies on planar patches. These figures support our
claim that the proposed training approach can be applied to different environments
compound of objects showing arbitrary shapes.

6 Conclusions and future work

Collecting real data for training object recognition systems is a highly time-consuming
and cumbersome task, since the gathered data must be representative enough of the
given domain. The approach presented in this paper overcomes this issue by replac-
ing the data gathering task with the generation of synthetic samples. These samples

http://goo.gl/mz51ho
http://goo.gl/mz51ho


implicitly capture the semantics of the scene by exploiting the knowledge codified in
an ontology by a human. Our proposal has also the advantage of avoiding the pro-
cessing of the collected sensorial information, which usually involves: segmentation,
feature extraction, creation of contextual relations (if the recognition method lever-
ages them), and finally regions’ labeling by a human. In order to support our claim,
we have trained and evaluated a number of Conditional Random Fields, with different
sets of pairwise features and two datasets.

The results obtained in the conducted evaluations achieve a recognition success of
∼ 90% within the UMA-offices dataset, and of ∼ 81% and ∼ 69.5% using office and
home scenes from the NYU2 dataset respectively, revealing that the use of semantic
knowledge can be exploited for the suitable training of recognition systems. Our ap-
proach has been also compared with other state-of-the-art approaches based on CRFs
yielding a substantial improvement. A number of additional, related issues have been
also addressed. Firstly, the discriminant capability of different sets of contextual fea-
tures has been studied, showing their positive effect on the system performance. Also,
the relation between the size of the training datasets and the system performance has
been analyzed, obtaining the expected conclusions: the larger the dataset is, the bet-
ter the system outcomes are. It has been also reckoned the computational efficiency,
evidencing the suitability of the proposed system for real time robot applications. Fi-
nally, we have studied the time saving gained with the use of human elicitation plus
synthetic samples generation processes, resulting 20 times lower than the time spent
in collecting real data from the UMA-offices dataset.

In the future we plan to exploit the symbolic representation of the recognized
objects to perform higher-level robot tasks, such as efficient task planning or knowl-
edge inference. We also plan to include temporal relations in the ontology as well as
enabling crowdsourcing for the human elicitation process.
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In general, the problems of objects’ and rooms’ categorizations for robotic appli-
cations have been addressed separately. The current trend is, however, towards a
joint modelling of both issues in order to leverage their mutual contextual rela-
tions: object→ room (e.g. the detection of a microwave indicates that the room
is likely to be a kitchen), and room→ object (e.g. if the robot is in a bathroom,
it is probable to find a toilet). Probabilistic Graphical Models (PGMs) are typ-
ically employed to conveniently cope with such relations, relying on inference
processes to hypothesize about objects’ and rooms’ categories. In this work we
present a Conditional Random Field (CRF) model, a particular type of PGM, to
jointly categorize objects and rooms from RGBD images exploiting object-object
and object-room relations. The learning phase of the proposed CRF uses Human
Knowledge (HK) to eliminate the necessity of gathering real training data. Con-
cretely, HK is acquired through elicitation and codified into an ontology, which
is exploited to effortless generate an arbitrary number of representative synthetic
samples for training. The performance of the proposed CRF model has been as-
sessed using the NYU2 dataset, achieving a success of∼ 70% categorizing both,
objects and rooms.

1 Introduction

A robot performing in human environments has to manage a rich representation of its
surroundings for the execution of tasks like navigation, fetch-and-carry, surveillance,
etc. Such a world representation has to support the semantics of the human concepts
and their relations. That is, the robot must be able to understand human knowledge,
e.g. “A kitchen is a room where you can find an oven”, permitting the human to ex-
press his/her orders using natural, and probably incomplete, sentences, e.g. “Please
check the oven”. The spatial awareness needed by the robot to accomplish this task
must account for the existing close relations between objects and their typical loca-
tions. Thus, in this context, the robot should solve i) the so-called room categorization
problem, i.e. to infer the type of space where it is, and ii) the object categorization
problem, i.e. to classify the perceived objects.

Recent publications (e.g. [1, 2]) have shown that the joint modelling of the object
and room categorization problems can outperform other methods that address them

1Work funded by the Spanish grant program FPU-MICINN 2010 and the Spanish projects TAROTH
(DPI2011-25483) and PROMOVE (DPI2014-55826-R), both co-founded by Fondo Europeo de Desarrollo
Regional.
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separately [3, 4, 5, 6]. Holistic approaches exploit the fact that objects are located in
rooms according to their functionality, so the presence of an object of a certain type
is a hint for the room categorization [7, 8, 9]. Likewise, the category of a room is a
good indicator of the object categories that can be found inside [10]. Besides, objects
are not placed randomly, but following configurations that make sense from a human
perspective [11, 12]. Thereby, the exploitation of these object-object and object-room
contextual clues provides categorization methods with useful information.

A recurrently resorted framework to model contextual information is the so-called
Probabilistic Graphical Models (PGMs) [13]. PGMs permit a categorization system
to conveniently model a room, the objects inside, and their contextual relations. Such
a representation handles the uncertainty latent in the robot sensing system, and sup-
ports the execution of probabilistic inference algorithms (e.g. ICM [14] or LBP[15]).
However, a significant drawback of these models is that they require a learning phase
where the training dataset must be large and comprehensive enough to properly cap-
ture the variability of the domain at hand.

In this work we present a Conditional Random Field model (CRF) [13], a par-
ticular type of PGM, which enables the joint categorization of objects and rooms by
exploiting their contextual relations. A distinctive feature of our approach is the uti-
lization of Human Knowledge (HK) during the training phase, removing, thus, the
arduous task of gathering real datasets. Concretely, we rely on the acquisition of HK
about objects’ and rooms’ categories through elicitation and its codification into an
ontology [16]. The advantage of using HK for training CRFs has been proven in [17].

Our approach has been tested with home RGBD scenes from the NYU2 dataset
[18] (see figure B.1-left). This dataset is employed as a testbed by state-of-the-art
methods given its size and challenging features. For example, it is utilized in [1], also
employing a CRF, and achieving a success of ∼ 60.5% and ∼ 58.7% recognizing
objects and rooms respectively. Although a fair comparison is not possible since the
authors consider a different set of object categories and room types, it permits us
to qualitatively confirm the promising performance of our approach, which yields a
success of ∼ 70% for categorizing both objects and rooms.

2 Conditional Random Fields. Application to

the joint categorization of objects and rooms

The joint room and object categorization problem can be stated as the assignation
of classes to both a given area of the robot workspace and the objects within, taking
into account their observed geometric/appearance features and contextual relations.
The following definitions are required in order to set the problem from a probabilistic
stance:

• Let o = [o1, ..,on] be a vector of n observed objects, each one characterized
through a number of features: size, height, orientation, etc.

• Let r be the observed room described by a set of features: size, color, etc.
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Figure B.1: Left, a coloured point cloud of a room (r) with a number of segmented objects
(from o1 to o7), extracted from the NYU2 dataset. Right, the graph structure of a CRF mod-
elling the objects in that room, the room itself, and their contextual relations. Each random
variable yi is associated to an observed object oi, while z is related to r. The coloured parts
indicate the scope of: an object unary factor – blue, a room unary factor – green, an object-
object pairwise factor – red, and an object-room pairwise factor – orange. Bottom, result of a
probabilistic inference process over the CRF.

• Define Lo = {lo1 , .., lok} as the set of the k considered object categories (e.g.
bed, oven, towel, etc.)

• Define Lr = {lr1 , .., lr j} to be the set of the j considered room categories (e.g.
kitchen, bedroom, etc.).

• Define y = [y1, ..,yn] to be a vector of discrete random variables assigning a
category from Lo to each object in o.

• Let z | z ∈ Lr be a discrete random variable assigning a room category from Lr
to r.
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Thereby, the joint categorization process, modelled through a Conditional Ran-
dom Field (CRF), consists of maximizing the probability distribution P(y,z | o,r), i.e,
to find the most probable room’s and objects’ categories given their characterized ob-
servations. CRFs exploit the concept of independence to break this distribution down
into smaller pieces, since its high dimensionality prevents an exhaustive definition. A
CRF is represented as a graph H = (V,E), where V is a set of nodes representing ran-
dom variables, and E a set of edges linking dependant/related nodes. In the addressed
problem, a node represents a random variable, i.e. yi or z, while an edge can set two
types of dependencies: (a) between two close objects in the room, or (b) between an
object and the room containing it. In figure B.1, an example of a relation of type (a)
is the one between the night stand (o3) and the lamp (o4), while all the relations be-
tween the objects (from o1 to o7) and the room (r) are examples of relations of type
(b). Thus, the categorization of an object affects the categorization of nearby objects,
but not those placed far away, while the categorization of a room and its constituent
objects has a mutual influence.

According to the Hammersley-Clifford theorem [13], the distribution P(y,z|o,r)
can be factorized over H as a product of factors, being a factor a function that repre-
sents a probability distribution over a part of H. In this work we have considered four
factor types: two unary factors applicable to nodes (object and room unary factors),
and two pairwise factors associated to edges (object-object and object-room pairwise
factors).

For convenience, the factorization of P(y,z|o,r) over the graph H is expressed by
means of log-linear models as:

P(y,z|o,r,ω,θ) =
1

Z(o,r,ω,θ)
e−ε(y,z,o,r,ω,θ) (B.1)

where Z(·) is the normalizing partition function so ∑ξ (y,z) p(y,z|o,r,ω,θ) = 1, be-
ing ξ (y,z) an assignation to the variables in y and z, and ε(·) the so-called energy
function, which in this work is defined as:

ε(y,z,o,r,ω,θ) = ∑
i∈Vo

Uo(yi,oi,ω)+Ur(z,r,ω)+

∑
(i, j)∈Eo

Io(yi,y j,oi,o j,θ)+ ∑
(i, j)∈Eor

Ior(yi,z,oi,r,θ) (B.2)

being Vo the subset of V containing the nodes associated to variables from y, Eo the
subset of E entailing the edges that link nodes in Vo, and Eor = E−Eo, i.e. the edges
connecting nodes representing objects with a room node. Uo(·), Ur(·), Io(·) and Ior(·)
define the employed factors (see figure B.1).

Object unary factor (Uo(·)). This factor encodes the likelihood of assigning objects
categories from Lo to the random variable yi, given the features extracted from the
object oi, e.g. height, size, elongation, etc. It is defined as a linear classification model
as follows:
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Uo(yi,oi,ω) = ∑
l∈Lo

δ (yi = l)ω l fo(oi) (B.3)

where fo(oi) is a function that computes the features’ vector f oi
, ω l = [ω1,l , ..,ω| f oi

|,l ]

is a vector of weights for each class l ∈ Lo obtained during the training phase, and
δ (yi = l) is the Kronecker delta function that takes value 1 when yi = l and 0 other-
wise. The features used to characterize an object are: orientation, planarity, and size
of its bounding box, area of its two principal directions, height from the floor, and
color hue variation.

Room unary factor (Ur(·)). The factor represented by the following linear model:

Ur(z,r,ω) = ∑
l∈Lr

δ (z = l)ω l fr(r) (B.4)

encodes the likelihood of the random variable z to belong to the different room types
from Lr given the features extracted from the observation r, e.g. size, number of
objects, color hue variation, etc. In this case, fr(r) is the function that computes such
a vector of features f r, being the vector of weights ω l = [ω1,l , ..,ω| f r |,l ] associated to
the classes in Lr. The features used are: size of the room bounding box, number of
objects within the room, and variation of color hue.

Object-object pairwise factor (Io(·)). Nodes related with objects that appear close
in the scene are linked by an edge in the CRF. Thus, the object-object pairwise factor
is in charge of stating the compatibility of a pair of categories assigned to these nodes.
Again, a linear classification model is employed:

Io(yi,y j,oi,o j,θ) = ∑
l1∈Lo

∑
l2∈Lo

δ (yi = l1)δ (y j = l2)θ l1,l2 go(oi,o j) (B.5)

where go(oi,o j) computes a vector of features f oio j
to characterize the relation be-

tween objects oi and o j, and θ l1,l2 = [θ1,l1,l2 , ..,θ| f oio j
|,l1,l2 ] is a vector of weights,

learnt during the training phase, for each pair of classes in Lo. The features charac-
terizing object-object relations are: difference between principal directions, vertical
distance of centroids, volume ratio, connectivity and object-object compatibility.

Object-room pairwise factor (Ior(·)). This encodes the compatibility of finding an
object of a certain category into a room of type lri , as well as the compatibility of
being in a room of a certain category having perceived an object of type loi . Its linear
classification model is defined as:

Ior(yi,z,oi,r,θ) = ∑
l1∈Lo

∑
l2∈Lr

δ (yi = l1)δ (z = l2)θ l1,l2 gor(oi,r) (B.6)

being gor(oi,o j) a function that yields a fixed value foir. Therefore, the learnt vector
of weights θ l1,l2 for each pair of classes in (l1, l2) | (l1 ∈ Lo, l2 ∈ Lr) states the object-
room compatibility.
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Figure B.2: Top, excerpt of the used ontology. Bottom, definition of the concept Microwave.

Training and Inference over the CRF. The training of the CRF model, i.e. the learn-
ing of the vectors of weights ω and θ , is performed by means of the optimization of
the so-called pseudo-likelihood function, a tractable, alternative objective function to
the computationally high-demanding likelihood one [13]. To fed this learning pro-
cess we employ representative synthetic samples of the domain, which are generated
as explained in the next section.

Once trained, the CRF is used to categorize rooms and objects through probabilis-
tic inference. We resort to the Iterated Conditional Modes (ICM) algorithm [14], an
efficient, approximated inference method that performs by maximizing local condi-
tional probabilities. Figure B.1-bottom shows the results yielded by this method over
the CRF of the figure B.1-right.

3 From Human Knowledge to training data

The proposed CRF model for the categorization of rooms and objects is tuned follow-
ing a top-down design. First, knowledge of the domain at hand is collected through
human elicitation. This information is codified into an ontology by means of the defi-
nition of concepts, e.g. Kitchen, and relations, e.g. Microwave isIn Kitchen (see
section 3.1), and then exploited for the generation of an arbitrary number of repre-
sentative, synthetic training samples (see section 3.2). The generated data feed an
optimization process that iteratively tunes the CRF parameters defined in section 2.
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On the other hand, the categorization process performs in a bottom-up fashion.
Given a RGBD observation of a room, its constituent objects are segmented and
characterized through a set of features (e.g. their size, height, etc.). The RGBD ob-
servation itself is also processed in order to characterize the room according to its
geometry and appearance. Then, a number of object-object and object-room relations
are computed according to the objects’ features and locations. Finally, a probabilistic
inference process over the trained CRF yields their most probable categories employ-
ing: i) objects’ features, ii) room’s features, and iii) contextual relations.

3.1 Codi�cation of Human Knowledge

In this work we rely on human knowledge (HK) encoded in an ontology. An on-
tology is an explicit specification of a conceptualization related to a domain, which
entails concepts, relations, and individuals. In the case of a home domain, exam-
ples of concepts are Kitchen, or Microwave, a relation can be stated as Microwave
isIn Kitchen, and kitchen-1 or microwave-3 identify individuals, i.e. instanti-
ations of concepts. The use of HK encoded in ontologies for mobile robotics exhibits
significant advantages for a variety of applications, as reported in [19, 20].

Figure B.2-top depicts an excerpt of the ontology used during the conducted ex-
periments, showing some concepts and relations2. Figure B.2-bottom shows the def-
inition of the Microwave concept setting their usual features (geometry and appear-
ance), as well as their contextual relations. It states, for example, that microwaves
usually share a medium size, and are placed near counters, within kitchens. This in-
formation is collected from humans through an elicitation process, and it is straight-
forwardly codified into the ontology given its capability to naturally encode notions
from natural language. Nevertheless, some human concepts need to be transformed
into crispy values as required in our system. For that, the hasValue property is added in
the ontology to quantify human concepts, like for instance Vertical, Horizontal,
or Diagonal. These concepts allow an easy codification of object properties such as
Floor hasOrientation Horizontal or Picture hasOrientation Vertical.
The hasValue property assigns a crispy value to these concepts (in degrees) that is also
gathered through elicitation, e.g. Vertical hasValue 90, Horizontal hasValue

0, and Diagonal hasValue 45.
In order to cope with the inherent variability of the considered domain, our ap-

proach annotates properties and relations with an element from the set RA ={null,
veryLow, low, medium, high, veryHigh}. For example in the definition of the mi-
crowave concept (see figure B.2-bottom) the size feature has been annotated with a
veryLow variability indicating that most of microwaves exhibit similar dimensions.
Similarly, these annotations are also used to express the frequency of the object-
object and object-room relations. For example, the annotation Microwave isNear

Counter freq:high sets that microwaves are usually found close to a counter,

2This ontology and other resources are available online at: http://mapir.isa.uma.es/work/objects-rooms-
categorization.
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Table B.1: Top, example of objects included in a room of type kitchen. Bottom, objects related
with an included microwave.

Concept frequency P(appearing) sample
Bottle medium 0.5 not appearing
Cabinet veryHigh 0.95 appearing
Chair medium 0.5 not appearing
Counter veryHigh 0.95 appearing
Dishwasher high 0.8 not appearing
Floor always 1 appearing
Microwave high 0.8 appearing
Picture low 0.2 not appearing
Refrigerator veryHigh 0.95 appearing
Stove veryHigh 0.95 appearing
Table medium 0.5 not appearing
Concept frequency P(related) sample
Cabinet high 0.8 near
Counter veryHigh 0.95 near
Floor veryLow 0.05 not near
Refrigerator medium 0.5 not near
Stove medium 0.5 near

while the definition Microwave isIn Kitchen freq:veryHigh expresses that it
is highly probable to find a microwave in a kitchen.

3.2 Generation of training data

Once the HK about the home domain has been encoded, we use it for the generation of
synthetic training data. The presented process can be repeated to generate an arbitrary
number of samples, and no human participation is longer required [17]. For clarity
sake, it is explained the process for the generation of a synthetic sample reifying a
kitchen, but the methodology is the same for any room category:

1. Room characterization. The first step is the computation of the room features
which, in the used ontology, includes its size (m3) and color hue variation. For
that, a Gaussian distribution N (µ,σ) is considered for each feature, where the
mean µ corresponds to the crispy value of the property, while the standard devi-
ation σ symbolizes the annotated variability. For example, given a definition of
kitchens where they show a Medium size, being Medium_RoomSize hasValue

25, and an annotation of medium variability3, the Gaussian distribution results
N (25,5) (see figure B.3-left). The function fsr(lr) draws a sample from this
distribution to get the size of a particular room (see figure B.3-right), where lr
represents the kitchen category in this case, and repeats this process with the

3To get the standard deviation (σ ) of a feature, the variabilities are considered to be a percentage of the
crispy values of the properties that they are annotating within the ontology. In this case, being the crispy
value 25, and corresponding medium to its 20%, the standard deviation is 5.
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Figure B.3: Left, unnormalized Gaussian distribution for the size of a kitchen (in m3) built
according to its definition into the ontology. Right, samples drawn from that distribution to
characterize the size of 10 kitchens.

remaining room features. This function replaces fr(r) in equation B.4 during
the CRF training.

2. Inclusion of objects in the room. The inclusion of objects in the synthetic
room is decided according to the isIn property. Only objects that contains the
property isIn value Kitchen in their definitions are possible candidates.
The inclusion of candidates depends on a probability distribution based on their
frequency annotations. For example, the Microwave category is defined as
isIn value Kitchen freq:high, which is translated to
P(Microwaveappearing) = 0.8 and P(MicrowavenotAppearing) = 0.2. Samples
drawn from these distributions yield the final set of included objects, as it is
illustrated in table B.1-top.

3. Object characterization. This step is similar to 1), but considering the prop-
erties defined over the objects included in the second step. A number of Gaus-
sian distributions N(µ,σ) are built according to the different objects’ geo-
metric/appearance properties and their annotations, while the function fsoi(loi)
draws samples from them to characterize each included object oi. This function
is used instead of fo(oi) for learning the model (recall equation B.3).

4. Object-object context creation. The contextual relations between objects are
established by the isNear properties and their annotations. In a similar way
to the inclusion of objects, the likelihood of these relations is modelled by a
probability distribution according to how frequently two objects appear close
to each other in a Kitchen. For example, following the definition of the concept
Microwave, they are often found near a counter, though it is more uncommon
to find them near a table. As an illustrative example, table B.1-bottom shows
the relations established for a microwave and the rest of objects included in a
kitchen (in table B.1-top).
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Figure B.4: Example of a CRF resultant from the generation of a synthetic room. The room
type is a kitchen, with a total of 6 objects included (see table B.1). The resultant room’s features
are fsr(r) = [22.5,109,6], which correspond to its size, color hue variation, and number of
objects.

5. Object-object context characterization. Different features can be computed
to add valuable contextual information to the relations between two objects, e.g.
difference of size, difference of height, perpendicularity, etc. These features can
be easily computed from the object features extracted in the third step.

In addition to these context features, two boolean properties are added: isOn
and isUnder, which state if an object is placed on/under another one.

The function in charge of compiling and yielding this information is gso( foi , fo j),
being foi = [ fsoi(loi), loi ], which replaces go(oi,o j) in equation B.5.

6. Object-room context characterization. The relation between the room and
its objects is characterized by a fixed value, as it is the training process of the
CRF which learns automatically the likelihood of finding an object of a certain
type into a kitchen. The function gsor(loi ,r) provides this value, and plays the
role of gor(oi,r) during training (recall equation B.6).

In summary, the above six steps yield the objects, room and contextual features
needed to feed the unary and pairwise factors during the training of the CRF (equa-
tions B.3-B.6). Figure B.4 shows an example of a synthetic room represented in the
form of a graphical model. It depicts the objects’ and room’s types, the functions in
charge of characterizing them, and their contextual relations.
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Table B.2: Method evaluation results.

Our approach Trained with real data
Configuration Object Room Object Room
Appearance 17.86 27.88 17.79 27.66
Geometry 62.50 46.63 43.85 41.91
App.+geo. 63.87 50.96 47.70 47.22
App.+geo.+obj-obj 66.29 50.96 48.88 47.22
App.+geo.+obj-room 67.48 61.22 49.61 58.09
All combined 69.61 69.71 56.08 62.65

4 Evaluation results

In order to evaluate our approach, a number of CRFs have been tuned using syn-
thetic samples (see section 3.2). These CRFs differ in the type of features and factors
employed, aiming to contrast the performance achieved by different configurations.

We have resorted to the NYU2 dataset as a testbed, which is widely employed in
the literature given its number of scenes and their diverse nature. Concretely, we have
extracted 208 RGBD scenes resembling rooms perceived by a robot visiting a home
environment, equally divided into four categories: bathroom, bedroom, kitchen and
living-room. These rooms are compound of a total of 1692 objects belonging to 26
different categories provided by the dataset, including bottle, sink, toilet, towel, sofa,
bed, microwave, etc.

In our experiments, the CRFs were trained with a dataset compound of 400 syn-
thetic rooms, and their performance were measured by categorizing objects and rooms
from the 208 NYU2 scenes. The implementation uses the Undirected Probabilistic
Graphical Models library (UPGMpp) [21].

Table B.2 (left part) shows the results obtained for the different CRF configu-
rations employing our model. Note how the integration of additional features and
contextual relations progressively increases the performance. The first group of con-
figurations only considers unary factors, the second one includes object-object or
object-room pairwise factors, while the last integrates all of them. A closer look at
the data reveals how the integration of object-object contextual relations boosts the
performance in categorizing objects a 2.5% w.r.t. a configuration relying only on
object local features (appearance and geometry), while the categorization of rooms
increases a 10.2% if the object-room relations are considered. The combination of
both contextual relations augments these figures to 5.7% and 18.7% respectively,
which highlights the benefits of a joint categorization of objects and rooms. Exam-
ples of rooms and objects categorized by this last configuration are depicted in fig-
ure B.5-top. Figure B.5-bottom-right reports the rooms’ confusion matrix for the last
configuration, where rows represent the ground truth information and columns the
categorization results.
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Figure B.5: Top, examples of a kitchen and a living-room correctly categorized as yielded by
the method. Bottom-left, categorization success w.r.t. the number of samples used for training.
Bottom-right, rooms’ confusion matrix.

In order to validate the use of synthetic samples for training, the CRFs have been
also trained and tested with the 208 NYU2 scenes following a 5-fold cross validation
methodology. The results shown in the right part of table B.2 reveal that despite the
positive effect of using contextual relations, these CRFs exhibit a lower performance.

Notice that the proposed training methodology based on HK permits a robot to
effortless generate the training dataset, which size largely influences on the results.
Figure B.5-bottom-left shows the categorization success yielded by a CRF trained
with synthetic datasets of different sizes. It can be observed how the addition of more,
representative training data boost the performance, from a 60.55% and 51.50% of
success for object and room categorization respectively – 40 samples, up to 69.75%
and 66.4% – 480 samples. This increment attenuates when the number of training
samples approaches 500, which suggests that a success upper-limit can be reached
despite the utilization of more samples. Notice that each training sample is compound
of a room and its constituent objects so, for example, in the case of training with 480
rooms the number of objects is ∼4,900.



5 Conclusions and future work

This work has presented a Conditional Random Field (CRF) model to jointly cate-
gorize objects and rooms into the workspace of a robot. A key feature of this model
is that we rely on Human Knowledge to replace real training data with prototypal,
synthetic samples of the domain codified in an ontology, which removes the tedious
and time-consuming task of gathering a real dataset. Additionally, the utilization of
an ontology enables the execution of high-level robotic tasks. The approach has been
validated against home scenes from the NYU2 dataset, reaching a categorization suc-
cess of∼ 70% for both objects and rooms. It is worth to mention that the applicability
of the approach is not limited to robots working at home environments, but it is suit-
able to perform in other domains which properties and semantics can be defined by
human elicitation, e.g. office facilities or hospitals.

From here, we plan to endow the system with the capability to identify new cat-
egories of rooms and objects. A first step towards this could be the utilization of a
logical reasoner over the yielded categorization results in order to check their coher-
ence w.r.t. the set of defined objects and rooms within the ontology.
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Scene object recognition is an essential requirement for intelligent mobile robots.
In addition to geometric or appearance features, modern recognition systems
strive to incorporate contextual information, normally modelled through Proba-
bilistic Graphical Models (PGMs) or Semantic Knowledge (SK). However, these
approaches, separately, show some weaknesses that limit their application, e.g.,
the exponential complexity of the probabilistic inference over PGMs or the in-
ability of SK to handle uncertainty. This paper presents a hybrid PGM-SK system
for object recognition that integrates both techniques reducing their individual
limitations and gaining in probabilistic inference efficiency, performance robust-
ness, uncertainty handling, and providing coherent results according to domain
knowledge codified by a human expert. We support this claim with an extensive
experimental evaluation according to both recognition success and time require-
ments in real scenarios from two datasets (NYU2 and UMA-offices). The yielded
figures support the suitability of the hybrid PGM-SK recognition system, and its
applicability to mobile robotic agents.

Keywords: object recognition, semantic knowledge, probabilistic graphical mod-
els, mobile robotics, expert systems, autonomous agents.

1 Introduction

Mobile robots aiming to perform in human environments need both to conveniently
represent information about its surroundings (i.e. managing a knowledge base) and
to reason about it. In this paper we focus on the robot ability for scene object recog-
nition which becomes crucial for the intelligent performance of the robot. In order
to cope with such capability, a robotic agent must account for a knowledge base and
an inference system able to manage the inherent contextual relations found in hu-
man environments, emulating thus, the decision-making capability of human beings.
For instance, a black, thin and elongated object with buttons could be identified as
a remote control or as a calculator. The exploitation of additional, contextual infor-
mation helps to disambiguate the recognition [92, 19]: if one finds the object near
to a notebook and a pen, the calculator option is the most plausible, while if it is on
a sofa or close to a TV-set, the remote control option should be the expected result.
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Being a valuable source of information, modern recognition systems strive to incor-
porate contextual information through different methodologies in order to boost their
success.

A well-known framework to model contextual relations is Probabilistic Graph-
ical Models (PGMs) [23], which provide a mathematical grounded mechanism to
manage the inherent uncertainty of the robot’s perception. In short, PGMs encode a
knowledge base of the domain by learning a set of weights associated to the appear-
ance/geometry of object classes, as well as to their usual relations with other object
classes. Once this knowledge base is created, the learnt weights feed a probabilistic
inference process, aiming at finding the most likely class-labelling for the perceived
objects. A major drawback arises when the knowledge inherent in the domain at hand
is complex, i.e., when the system has to deal with a high number of: i) possible object
classes, ii) objects in the scene, and/or iii) features used to describe the objects and
their context. In these cases, the inference process is computationally expensive, even
intractable, due to its exponential nature. As an illustrative example, let us consider a
scene with 8 objects to be recognized, which can belong to 10 different object classes.
The application of exact probabilistic inference requires the computation of the like-
lihood of the 108 possible objects’ labellings in order to find the most probable one.
Approximate methods can be applied to cut down such complexity, like Iterated Con-
ditional Modes (ICM) [5], Graph Cuts [7], or Loopy Belief Propagation (LBP) [27],
but at the expense of compromising the system performance.

An alternative to PGMs is the use of Semantic Knowledge (SK) in the form of on-
tologies [39], which codifies the domain knowledge of a human expert through def-
initions of: concepts, like for instance Calculator, Notebook, etc., class attributes
like Calculator hasVolume small, and contextual relations, like Calculator

isNear

Notebook. These definitions can be used by an expert system for object recognition
employing logical reasoners, for instance Pellet [38], and their results can be directly
exploited for further high-level robotic modules, like a task planner [14, 15]. An ad-
vantage of this approach is that semantic knowledge is common-sense, compact, and
human-readable, facilitating in this way the information exchange between humans
and robots. This methodology, though, entails some drawbacks: it is difficult to fill the
gap between the low level sensor information and the SK base without introducing
additional ad-hoc processes, and it is not suited to handle uncertainty.

In this work we present a hybrid PGM-SK system for object recognition that ex-
ploits the advantages of both techniques, while mitigating their individual drawbacks.
Concretely, we exploit the synergy between Conditional Random Fields (CRFs) (a
particular type of PGM), and SK encoded in an ontology. In this combination, the
CRF provides the recognition system with the ability to manage uncertainty and fully
exploit contextual relations through probabilistic inference, while SK offers a com-
prehensive representation of expert knowledge that contributes:

1. A reduction of the CRF inference complexity. The SK is used to generate hy-
potheses about the most probable belonging classes of the objects according to



C4 PAPER C. SCENE OBJECT RECOGNITION FOR MOBILE ROBOTS

their features. For example, an horizontal surface with a medium height from
the floor could be hypothesized as belonging to the Chair_seat, Table or
Counter classes, but not to Wall or Computer_screen. These hypotheses are
then taken by the CRF as the only possible candidates. This leads to a con-
siderable reduction in the number of combinations, decreasing the inference
complexity, even enabling, in some cases, exact inference.

2. Prior information about the frequency of occurrence of the different object
classes. Ontologies may encode different types of information, as for example,
the occurrence frequency of object classes in a given domain. This information
reveals that, for example, it is more likely to encounter a computer than a couch
in an office environment, while it is quite unlikely to find an ironing table. A
modification to the usual CRF formulation is proposed in this paper to exploit
this prior information from the ontology.

3. A ready-to-use representation for high-level reasoning tasks. Interestingly from
the AI point of view is the capability of the presented system to enable the di-
rect exploitation of the gathered semantic information by high-level reasoning
procedures, as reported in [14, 15, 16].

In this paper we extend our previous work [32], where this idea was initially ex-
plored as a proof-of-concepts, by including a thorough validation aimed to: i) demon-
strate the suitability of our approach within a wider set of realistic environments and
ii) conduct a deeper analysis of its performance under different situations. Concretely,
we contribute:

1. Tests with an additional state-of-the-art dataset, NYU2 [37], in addition to the
initially resorted UMA-offices one. Such a dataset consists of 1,449 densely
labelled RGB-D images gathered from a wide range of commercial and res-
idential buildings employing a Kinect sensor. Contrarily to the UMA-offices
dataset, scenes from NYU2 are limited to one-shot Kinect observations. This
supposes an additional challenge since contextual information is confined to the
narrow field-of-view of such cameras (57o horizontal by 43o vertical). Addi-
tionally, not only the planar patches employed in UMA-offices are considered,
but regions with arbitrary geometries.

2. An analysis of the feasibility of the exact inference. In our previous work, pre-
liminary results were obtained with the UMA-offices dataset, where the infer-
ence complexity reduction always enabled exact inference. This is not the case
for the NYU2 dataset, where a higher number of classes and objects per scene
are normally present. Thus, we have analysed when the complexity reduction
is enough to enable exact inference conditioned to time consumption require-
ments.

3. A study of two approximate probabilistic inference methods, namely ICM and
Graph Cuts, which can be applied whenever exact inference is not possible.
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Concretely, we have studied the benefits of using SK for generating hypotheses
in the performance of these state-of-the-art approximate approaches.

It is worth to mention that although the datasets considered in this work consist of
colored point clouds, our system can be also adapted to other scene representations
like RGB images.

Next section relates our approach with previous works in the field. Section 3 de-
scribes the application of PGMs for object recognition, while section 4 presents the
proposed recognition system detailing how SK and PGMs are combined. Section 5
presents a thorough evaluation of such a system and its suitability for mobile robotic
applications. Finally, section 6 highlights some conclusions and future work.

2 Related work

Scene object recognition is a widely studied topic in computer vision and robotics.
Local object recognition systems, i.e. those only relying on the features of the objects
like their geometry or appearance, have traditionally focused the research efforts due
to their acceptable performance. Objects’ characterization widely differs in the litera-
ture, resulting in a broad range of available approaches. For example, the work in [41]
uses an integral image representation to encode the objects’ appearance. Other popu-
lar options are SIFT features [25], employed in works like [8], which show a relative
invariance to translation, scale, rotation, illumination, or partial occlusion of objects,
and SURF features, which are faster to retrieve and, as claimed in [22], even more
robust against those image transformations than SIFT features. A different, type of
feature is such of Local Binary Pattern (LBP), which is fast to compute and describe
the texture of a given portion of an image [10]. Some recognition approaches have
been built based on these primary features, like Mixture Models [6]. Another example
of these approaches is The Bag of Words (BoW) one [28], which works with sparse
vectors of occurrence counts of codewords/features [20]. There also exist works that
study the automatic learning of low level features, e.g. using neuronal networks, as is
the case of [3].

Despite the success of local recognition systems for certain applications, their in-
tegration into mobile robots can lead to ambiguous recognitions, i.e. they are prone to
fail in identifying classes with similar features, as analysed in [30, 9, 17, 35]. This is
mainly due to only rely on features of the objects themselves, disregarding valuable
contextual information that is also available. Therefore, a significant, growing body
of current research aiming to overcome this issue is considering contextual informa-
tion of the scene objects in addition to their usually employed individual features,
and a number of applications dealing with this source of information have came out,
e.g. [43] or [34]. Some works have attempted to exploit this information by providing
ad-hoc or preliminary solutions, like in [26], where the co-occurrence of objects ap-
pearing in distinct types of rooms are implicitly modelled. However, these works lack
a consistent theoretical background, compromising among others their comparison,
generalization, reusability, or scalability. Moreover, their output consists of a set of
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objects’ labels, which do not carry any semantic information profitable by high-level
AI robotic components. Well grounded alternatives for modelling/exploiting contex-
tual relations are Probabilistic Graphical Models and Semantic Knowledge, which
are combined in the recognition system presented here with the goal of mitigating the
aforementioned drawbacks and boosting their virtues.

2.1 Recognition systems based on Probabilistic Graphical
Models

Probabilistic Graphical Models (PGMs) are suitable mathematical tools to model and
exploit contextual relations between scene objects. The first works introducing PGMs
relied on intensity RGB images, like [31] that extends the Conditional Random Fields
(CRFs) framework for the recognition of parts of objects by incorporating hidden va-
riables, or [44], which presents a novel discriminative CRF for tackling the Automatic
Image Annotation problem. Both methods do not require any segmentation step since
they respectively work with i) local scale-invariant features of intensity images, and
ii) the information in the images as a whole. However, their potential for exploiting
the geometric properties of objects and relations is limited by the use of intensity
images.

The arrival of RGB-D sensors, like Kinect, opened a new horizon for a more
suitable modelling of contextual information. For example, 3D point clouds are used
in [45] to extract and classify planar patches into four-coarse classes: clutter, wall,
floor and ceiling, through a CRF formulation and the approximate inference algo-
rithm ICM [5]. The work presented in [2] relies on a model isomorphic to a Markov
Random Field (MRF) to recognize 17 object classes in both office and home envi-
ronments. In this case, the inference problem is tackled by a Graph Cuts method [7].
The same approximate algorithm is chosen in [40], where a mesh representation of
RGB-D depth measurements is built, and whose mesh faces are classified by a CRF,
and in [36], which resorts to a octree representation of the scene. In [42] a densely
connected CRF is defined over a set of voxels extracted from RGB-D information,
and the inference process is driven by a mean field approximation approach. These
works have in common the utilization of approximate methods to reduce the PGMs’
inference complexity, hence compromising the overall performance of the recogni-
tion system. Particularly related to us is the work in [1], where the authors derive
an object-to-object contextual MRF model based on Flickr labels co-occurrence. The
authors cut down the exponential search space by considering the results from a pre-
vious classifier, conditioning the robustness of the whole system to its performance.

In comparison with those methods, the CRF employed in this work is part of
a more sophisticated recognition system, completed by a ontology encoding expert
knowledge. This combination reduces the burden of the probabilistic inference, in-
creasing the situations/scenes where the desired exact inference is applicable, as well
as to increase the success of approximate methods when it is not. Moreover, the works
found in the literature bet on a certain approximate inference approach, without fur-
ther comparisons with other methods. Such study is performed in this paper, involving



3. SCENE OBJECT RECOGNITION THROUGH CONDITIONAL RANDOM FIELDS C7

two widely used approaches: ICM and Graph Cuts. Finally, involving expert knowl-
edge in the system ensures the coherence of the recognition results according to the
knowledge base encoded into the ontology, and makes them profitable by high-level
reasoning tasks [14, 15, 16].

2.2 Semantic Knowledge for contextual object recognition

A different trend in the literature resorts to Semantic Knowledge (SK) for both rec-
ognizing objects and exploiting their contextual information. For example, the work
described in [19] codifies contextual information in an ontology, combined with a set
of rules defined with the Semantic Web Rule Language, to generate objects’ candi-
date classes. These hypotheses are subsequently validated through a matching process
with CAD models. Another example is [29], which defines a constraint network in
Prolog to classify the main structural surfaces of buildings, i.e. walls, floors, ceiling
and doors, using contextual relations like orthogonal, parallel, above, etc. In [14],
data codified into an ontology about scene objects and their relations are used to in-
fer new high-level information. The work introduced in [11] recognizes segmented
regions that have been previously characterized through a set of features in RGB im-
ages. These features are defined in an ontology, and their usual values for the different
object types are learnt by symbolic supervised machine learning tools. In this case, a
specific procedure matches characterized regions with semantically defined concepts,
but although the authors propose the use of contextual relations, they are neither de-
fined nor exploited. An ontology is also used in [12] for the recognition of isolated
objects and their subparts, which manually establishes the association between ge-
ometric features and numeric values. This ontology is populated through machine
learning techniques like Perceptrons and Support Vector Machines.

A common characteristic of these approaches based on SK is that they show lim-
itations in quantifying the uncertainty of their results, and in exploiting the encoded
contextual relations. The proposed approach faces these issues through collaboration
with a CRF, which provides the robotic agent with a recognition system endowed
with a probabilistic inference mechanism, able to manage uncertainty and adequately
exploit contextual relations.

3 Scene object recognition through Conditional

Random Fields

From a probabilistic stance, the object recognition process can be formulated as fol-
lows. Let us have a scene with x = [x1, ..,xn] observed objects (see figure C.1-a),
each one characterized by a vector of features f xiu = [ fxiu1 , .., fxium ] (e.g. height, area,
etc.), and L = {l1, .., lk} the set of classes to which the objects can belong to.. Let
y = [y1,y2, ..,yn] | yi : Lk → {0,1}k be a vector of discrete random variables cor-
responding to the class assignment to x. Thus, the recognition process consists of
maximizing the joint probability distribution P(y,x), i.e., to find the most probable
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Figure C.1: a) Planar patches x extracted from a scene within the UMA-offices dataset, de-
limited by yellow lines. b) The CRF built for that scene, where each yi is associated with its
respective xi, and conditioned by its extracted features fxiu ( fxix j p stands for the pairwise or
contextual features). Blue shapes represent an example of the scope of an unary factor, while
green ones identify the scope for a pairwise factor. c) Recognition result obtained through
probabilistic reasoning over the CRF.

classes assignation to y, also maximizing a number of probability distributions over
the features extracted from x. Such a joint distribution has a high dimensionality, so its
exhaustive definition is prohibitive. Probabilistic Graphical Models (PGMs) permits
to break down such a definition into smaller pieces exploiting the concept of indepen-
dence. To further simplify the problem, we employ a particular type of PGM called
Conditional Random Field (CRF) [23], which factorizes the distribution P(y|x), in-
stead of encoding the probability distribution P(y,x). This avoids the definition of
the probability distributions over the object features extracted from x, which usually
exhibits complex dependencies.

In general, a CRF is represented through a graph H = {V,E}, built upon two el-
ements: a set of nodes V , and a set of edges E. Nodes V represent random variables,
and edges E link nodes that keep some kind of relation, i.e., they are dependent. Typ-
ically, for modelling contextual information in visual object recognition, the nodes
correspond to the random variables y, and two nodes yi and y j are connected if their
associated objects xi and x j are close in the scene (see figure C.1-b). The rationale of
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this is that the recognition of an object condition the recognition of nearby objects,
but not those far away.

According to the Hammersley-Clifford theorem [23], the distribution P(y|x) can
be factorized over H as a product of factors, being a factor a function that represents
a probability distribution over a part of H. In this work we use two kinds of factors:
local and pairwise. Local factors refer to nodes, and express how probable is that an
observed object xi belongs to a certain class from L according to its extracted features.
On the other hand, pairwise factors are associated to pairs of nodes, and codify the
compatibility of the classes assigned to a given pair.

Concretely, we define an unary factor, denoted by U(·), as a linear classification
model:

U(yi,xi,ω) = ∑
l∈L

δ (yi = l)ω l f (xi) (C.1)

where f (xi) is the function in charge of computing the features f xiu for the object
xi, ω l = [ω1,l , ..,ω fm,l ] is a vector of weights for each class l ∈ L obtained during the
training phase, and δ (yi = l) is the Kronecker delta function, which takes value 1
when yi = l and 0 otherwise. Table C.1-top shows the unary features used in this
work. Note that we consider different features according to the characteristics of
the segmented regions in each dataset, i.e., planar patches in the UMA-offices, and
arbitrary-shaped regions in the NYU2 dataset.

On the other hand, a pairwise factor I(·) is defined as:

I(yi,y j,xi,x j,θ) = ∑
l1∈L

∑
l2∈L

δ (yi = l1)δ (y j = l2)θ l1,l2g(xi,x j) (C.2)

where the function g(xi,x j) computes a set of pairwise features f xix j p = [ fxix j p1 , .., fxix j pq ]
capturing the relation between objects xi and x j (see the considered relations in ta-
ble C.1-bottom), and θ l1,l2 = [θ1,l1,l2 , ...θq,l1,l2 ] is a vector of weights for each pair of
classes in L.

The CRF training consist of the estimation of the vectors of weights ω and θ ,
which in this work is performed through the optimization of the so-called pseudo-
likelihood function [23].

For convenience, the factorization of P(y|x) over the graph H is expressed by
means of log-linear models as:

P(y|x,ω,θ) =
1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (C.3)

where Z(·) is the normalizing partition function so ∑ξ (y) p(y|x,ω,θ) = 1, being ξ (y)
an assignation to the variables in y, and ε(·) the so-called energy function defined as:

ε(y,x,ω,θ) = ∑
i∈V

U(yi,xi,ω)+ ∑
(i, j)∈E

I(yi,y j,xi,x j,θ) (C.4)
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Table C.1: Unary and pairwise features used to characterize regions and their relations for the
two datasets used: UMA-offices and NYU2.

id Unary features for UMA-office
fxiu1 Centroid height from the floor.
fxiu2 Orientation w.r.t. the horizontal.
fxiu3 Area of its bounding box (b.b.).
fxiu4 Elongation.

id Unary features for NYU2
fxiu1 Centroid height from the floor.
fxiu2 Orientation w.r.t. the horizontal.
fxiu3 Area of its b.b. biggest face.
fxiu4 Minimum height of its b.b.
fxiu5 Maximum height of its b.b.
fxiu6 Volume of its b.b.
fxiu7 Planarity.
fxiu8 Linearity.
fxiu9 Hue variation.

id Pairwise features for both datasets
fxix j p1 Perpendicularity.
fxix j p2 on/under relation.
fxix j p3 Vertical distance of centroids.
fxix j p4 Ratio between areas.
fxix j p5 Ratio between elongations.

Given an observation of the scene, the CRF graph H = {V,E} is built according
to the observed objects x and their proximity (objects at a distance below a given
threshold are linked together), which sets the conditional dependencies between the
random variables in y. Thus, the object recognition problem is that of finding the
assignation to y that maximizes the posterior, that is:

ŷ = argmax
y

P(y|x,ω,θ) = argmax
y

1
Z(x,ω,θ)

e−ε(y,x,ω,θ) (C.5)

Given that the partition function does not depend on the assignments to y, such
expression can be simplified by:

ŷ = argmax
y

e−ε(y,x,ω,θ) (C.6)

This equation is known as the Maximum a Posteriori (MAP) or Most Probable
Explanation (MPE) problem, and it can be solved by exact or approximate infer-
ence methods. The next section describes how the exact inference method works and
its limitations. Next, two widely used approaches for approximate inference are de-
scribed as an alternative to the former.

3.1 Exact inference

Exact inference refers to a brute force technique where all the possible assignations
to the variables in y are checked in order to find the labelling ŷ that maximizes equa-
tion C.6. This method obviously ensures that the maximum to such an equation is
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always found, as opposite to approximate methods that may yield a local maximum,
or maximize a simplified version of the equation. Unfortunately, in real, complex sce-
narios this approach is unfeasible, because the number of assignations to be checked
grows exponentially with the number of nodes in V (i.e., the number of objects to
be recognized). For example, a scene with 10 objects that can belong to 14 differ-
ent classes sum up a total of 1410 possible assignations. Thereby, the use of exact
inference has been traditionally limited to simple, toy-problems or situations with
undemanding time constraints, which is not the usual case in mobile robotic applica-
tions.

The presented hybrid PGM-SK approach is able to reduce the burden of the exact
inference by exploiting Semantic Knowledge to generate hypothesis (see section 4.2).
Additionally, in section 5, we have conducted an analysis of the conditions in which
such a complexity reduction comes up with a feasible exact inference execution.

3.2 Approximate inference

When the problem at hand is complex, approximate probabilistic inference approaches
can be employed instead of exact inference, which becomes intractable. The next sub-
sections introduce two approximate methods intensively resorted by state-of-the-art
recognition systems: Iterated Conditional Modes and Graph Cuts.

Iterated Conditional Modes

A widely employed method is the Iterated Conditional Modes (ICM, [5]), which max-
imizes local conditional probabilities instead of the whole P(y|x). Briefly, ICM ini-
tializes the assignations to the variables in y to some initial object classes (usually
to those that maximize the unary factors), and iterate over the variables following a
pre-established order, changing such an initial labelling for the one that maximizes
the following local conditional probability:

ŷi = argmax
yi

P(yi|yNH (yi),xi,xNH (yi)) (C.7)

where yNH (yi)
and xNH (yi) are sub-vectors of the original y and x vectors, and contain

the random variables and observations of the neighbour nodes of yi in the graph H.
This algorithm ends when convergence is achieved, i.e., an iteration is completed
without changing the state of any node, or when a given limit of iterations is reached.
Thereby, termination is guaranteed by such an iterations upper limit, although the
method usually needs only a few of them to converge. Figure C.1-c) shows the most
probable classes assignation computed by ICM for the scene objects in figure C.1-a).

Graph Cuts

Techniques based on Graph Cuts [7], as for instance the α-expansion method, are
well-known options for approximate inference. In a nutshell, this method simplifies
the MAP task to instances of the minimum cut problem, which outcomes are used
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to expand1 each of the labels α in L until no expansion exists that produces a higher
likelihood value.

Let Vα be the set of nodes assigned to the class α , and Vᾱ the nodes assigned to
other classes. Thereby, this method relies on graph cuts in each iteration to compute
the minimum cut of the graph Hc = (Vc,Ec), where Vc = {Vᾱ ,s, t}, and Ec = {ei j |
(yi 6= α)∩ (y j 6= α)}∪{esk,ekt ,∀k ∈Vᾱ}2. Notice that for this computation two new
nodes are added to Vc, which are usually called source (s) and sink (t). On the other
hand, the set of edges Eα in the graph is compound of two groups: the edges in H
between nodes that have not been assigned to class α , and the edges linking each of
these nodes to both the source and sink nodes. The nodes connected to the source in
the minimum cut produce an α-expansion to label α , while those linked to the sink
keep their previous label. This process is repeated until no α-expansion can increment
the likelihood, i.e. convergence is achieved, or until a maximum number of iterations
is reached. As in the case of ICM, the execution of this method usually stops after a
few iterations, and most of the class changes are done in the early steps.

4 Exploitation of Semantic Knowledge

The recognition system proposed in this work follows a bottom-up methodology (see
figure C.2). During the robot operation, 3D observations gathered from a Kinect-like
sensor are segmented3, and their constituent regions are characterized through the
set of features shown in table C.1. This information is exploited by the ontology to
hypothesize the most probable class assignments for each region by means of logical
inference4. These hypotheses dramatically reduce the number of potential classes to
be considered by the CRF. Additionally, a modification to the usual CRF formulation
has been carried out in order to also take advantage of prior information about the
frequency of occurrence of the different object classes. Finally, the object recognition
results are provided by probabilistic reasoning over a CRF, managing (i) a number of
characterized regions from the scene, (ii) hypotheses about the most probable classes
of each region, and (iii) prior information about the occurrence of classes.

The next section describes the codification of Semantic Knowledge through on-
tologies, while section 4.2 presents the use of a given ontology to provide hypotheses,
and section 4.3 introduces our approach to integrate prior information in the tradi-
tional CRF formulation.

1An expansion is defined as a change in an object label from ᾱ ∈ L−α to α .
2As previously mentioned nodes correspond to random variables. In this equation yi and y j are the

random variables associated to the nodes vi and v j , respectively.
3In the case of the UMA-offices dataset, previously to their segmentation, such observations are regis-

tered together using the method presented in [13].
4In this work we use Pellet [38] as logical reasoner.
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Figure C.2: Overview of the proposed system for object recognition. Boxes are processes,
while ovals represent generated/consumed data by the processes. Gray shapes identifies the
components that directly make use of semantic knowledge.

4.1 Ontology de�nition through expert elicitation

In this work we have opted for ontologies as a suitable and widely used semantic
knowledge representation. An ontology is commonly defined as a representation of
a conceptualization related to a knowledge domain, which accounts for a number of
classes arranged hierarchically, relations among them, and instances of such classes,
also called individuals [39]. One way to define ontologies is through expert elicita-
tion, where experts in a certain knowledge domain codify their elements and relations.
For example, with the appropriate tool any person having an acceptable background
could model an office environment by defining the type of objects that usually appears
in it (classes), e.g. Table, Chair, Computer_screen, etc., and establishing their
contextual properties (relations), e.g. Table hasOrientation Horizontal. Rela-
tions can also set associations between classes, e.g. Chair isNear Table, which
expresses that chairs are normally placed near tables. Knowledge about the objects
from a particular scenario and their properties can be stated in the ontology through
instances, e.g. table-1, chair-1, and instantiations of relations, “table-1 isNear

chair-1”. Figure C.3-bottom shows part of the ontology used to validate our work
within the UMA-offices dataset, while figure C.3-top depicts, as an illustrative exam-
ple, the definition of the class Table_top through a number of relations using the
Protégè software [18]. This software codifies the resultant ontology into the OWL
language [4].

The relations that characterize a class can be seen as properties, which are useful
to describe the typical shape, size or relative position of its instances. For example,
the relation “Object has_area MetricMeasurement” is used to codify the in-
stances of the class Object that have an area of MetricMeasurement. The subclasses
of MetricMeasurement discretizes real values into intervals, and have the form
MM_AroudXX, which means that the measure is in the interval of the value XX. How-
ever, not all the instances of a class have the same appearance in the real world. To
quantify that variability, properties describing the geometry of a class are annotated
into the ontology with a discrete value from the set RA = {null,veryLow, low,medium,
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Figure C.3: Top, definition of the class Table_top. Bottom, part of the ontology defined by
expert elicitation.

high,veryHigh}. For example, the definition by an expert of the class Table_top in
figure C.3-top, encodes that tables often share a common height around 0.70m, al-
though their area can largely vary around their averaged value, 1m2.

4.2 Hypotheses generation

As previously commented, one of the drawbacks of PGMs is the high computational
complexity of the inference process even for a relative small number of objects in the
scene and considered classes. The common solution is to rely on approximate infer-
ence methods, but jeopardizing the recognition results. Semantic information is used
in this work to mitigate this effect by hypothesizing about the potential classes of the
observed objects, reducing the complexity of the problem at hand. This hypotheses
generation process is as follows.

Given the set L = {l1, . . . , lk} of the considered k classes of the domain, and a
region xi to be recognized, a new instance derived from the Object class is created
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Planar patch Feature extraction Instance creation Logical inference 

fx1u={ 
    fx1u1=0.62, 
    fx1u2=1, 
    fx1u3=1.2, 
    fx1u4=1.11 
   } 

Hx1={ 
    wall, 
    Computer_screen, 
    chair_backRest 
   } 

<Object rdf:ID="object-1"> 
  <has_orientation> 
    <Vertical rdf:ID="Vertical_instance"/> 
  </has_orientation> 
  <has_elongation> 
    <MM_Around05 rdf:ID="MM_Around11_instance"/> 
  </has_elongation> 
  <has_area> 
    <MM_Around01 rdf:ID="MM_Around12_instance"/> 
  </has_area> 
  <has_centroidHeight rdf:resource="#MM_Around06_instance"/> 
</Object> 

1 2 3 

x1 

Figure C.4: Example of hypotheses generation for a given region. New instances are inserted
into the ontology using the OWL language.

into the ontology, e.g. object-1, annotating its unary features f (xi) = f xiui
based

on the relations shown in figure C.3-top. For example, if a region has a centroid
height of 0.73 meters from the floor, the relation “object-1 hasCentroidHeight

MM_Around07” is added to the ontology. Once the instance is properly characterized,
a logical reasoner, Pellet [38] in our implementation, infers a set of classes, Hxi ⊆ L,
which include such a relation in their definitions. This process is performed for all the
n observed objects, obtaining a set of hypothetical classes H = {Hx1 ,Hx2 , ...,Hxn} that
contributes in reducing the complexity of the inference process, as shown in section
5. Figure C.4 shows an example of hypotheses generation for a Chair_backRest.
It is important to underscore that the execution time of such a classification process
is negligible in comparison to the time saved during the exact inference process (it
takes just a few milliseconds in our tests). This is due to the size of the considered
ontology, where the codified object properties are used to quickly accept or reject
the hypotheses. An analysis of the cost of this process for larger and more complex
ontologies is out of the scope of this paper5, however, in each particular application
this analysis should be conducted in order to measure the benefits of the utilization of
the presented system.

According to the ontology definition shown in the previous section, the scene ob-
jects are hypothesized as belonging to concepts that strictly fulfil the defined geomet-
ric constrains. For example, a table with a centroid height of 0.6cm would not be hy-
pothesized as a Table_top since the concept definition states Table_top

hasCentroidHeight MM_Around07 (see figure C.3-top). Thereby, in order to cope
with the variability that objects may exhibit, after the expert elicitation process, the
range of the geometric properties is modified according to their annotations6. As an
illustrative example, let us consider the Table_top definition that encodes a “low”
height variation from the average centroid height value (i.e. 70cm). This semantic
information is used to spread out the definition, widening the interval from 60cm to

5The computational cost of a classification process through logical inference heavily depends on the
particularities of the ontology at hand, so it is difficult to quantify in general. See [21] for further informa-
tion.

6Notice that these annotations could have been introduced as additional relations, e.g.,
has_area_variability. However, given that the logic reasoner is not going to take advantage of them,
and aiming to have a representation as clear as possible, we opted for annotations.
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80cm, codified as: “has_centroidHeight some MM_Around06, MM_Around07

or MM_Around08”. Note that this process is automatically done by the system only
once after the expert elicitation.

It is worth to mention that an additional advantage of using such hypotheses as
class candidates is that the recognition results provided by the probabilistic reasoning
over the CRF will be coherent with the information in the ontology, and consequently,
with the semantic knowledge that the expert encoded about the domain.

4.3 Frequency of occurrence as prior

As commented in section 3, unary factors U(·) in a CRF give information about the
compatibility of a certain object xi w.r.t a set of classes Hi according to its appearance
and geometry, which can be viewed as a way to model the probability distribution
P(yi|xi). On the other hand, pairwise factors codify their compatibility based on rela-
tional (contextual) features, and encode the distribution P(yi,y j|xi,x j). In this section
we propose the addition of information about the frequency of occurrence of objects
to the CRF formulation as a prior probability, which helps in disambiguating the
recognition results in certain situations. Thus, unary factors are given by the product
of two probabilities, i.e:

U(yi,xi,ω)≈ P(yi|xi,ω)P(yi) (C.8)

Prior information is codified into the ontology through the relation
has_frequencyOfOccurrence, which takes values from the set RA. In order to
adapt the probability distribution P(yi) to the linear classification model in equa-
tion C.1, it is replaced by the function fo(yi) : RA → [0..1], which can be consid-
ered as a non-normalized version of the former probability. For example, if the class
Chair_back is defined in the office domain with the relation “Chair_back
has_frequencyOfOccurrence veryHigh”, and Computer_screen with
“Computer_screen has_frequencyOfOccurrence medium”, the fo
function can be defined to produce fo(Chair_back) = 0.9 and
fo(Computer_screen) = 0.5. Thus, we define an unary factor as follows:

U(yi,xi,ω) = ∑
l∈L

δ (yi = l)ω l f (xi) fo(yi) (C.9)

Conversely to the hypotheses generation case, here the function fo(·) is indepen-
dent of the scene, so it can be computed once and stored in a look-up table, hence
speeding up the recognition process.

5 Evaluation of the proposed system

The proposed system has been thoroughly evaluated using two substantially different
datasets: UMA-offices and NYU2. In both cases we have analysed the effects on the
recognition success of: i) the inclusion of object contextual information together with
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RGBD camera 

Figure C.5: Left, mobile robot Rhodon gathering 3D data from an office. Right, two sample
office scenes from the UMA-Offices dataset.

the geometric and appearance features of objects, ii) the generation of hypotheses
about the most promising object belonging classes, and iii) the addition of prior infor-
mation about the frequency of occurrence of the different object classes. Additionally,
for the second dataset, we have also studied the performance of the two approximate
inference methods described above: Iterated Conditional Modes and Graph Cuts. The
success of our approach has been measured using the micro precision/recall metrics.

5.1 Evaluation with UMA-o�ces

The UMA-offices dataset is compound of 25 office scenes, which where gathered
using the mobile robot Rhodon. This robot is endowed with a Kinect-like sensor
mounted on a Pan-Tilt unit, which permits the robot to perceive the world from a
human-like point of view (see figure C.5). In this dataset, planar patches extracted
from registered RGB-D images where manually labelled as belonging to 7 different
object classes LUMA−o f f ices={Floor, Wall, Table_top, Table_side,
Chair_bakRest, Chair_seat, Computer_screen}.

The planar patches extracted from the scene fed a CRF, which is trained following
the approach in [33], and are also employed to generate hypotheses about their most
probable classes, as described in section 4.2.

System performance

The second column of table C.2 shows the results obtained using 4 different recog-
nition variants on the 25 considered scenarios. The first variant only uses appear-
ance and geometric object features, which are modelled through unary factors (recalls
equation C.1), achieving a micro p./r. of ∼ 79%. Contextual relations are integrated
in the second variant by the addition of pairwise factors (recalls equation C.2), in-
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Table C.2: Results of the tests conducted with the UMA-offices and NYU2 datasets.

Variant used UMA-offices NYU2
(1) No context 79.23 53.85
(2) Context 84.07 59.12
(3) Context + Hypotheses 93.45 61.25
(4) Context + Hypotheses + Prior 94.31 65.10

Computer screen Table_top Chair Floor Wall Table_side 
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Figure C.6: Confusion matrix of the actual object classes and the recognition results.

creasing that percentage by ∼ 5%. The third variant incorporates the generation of
hypotheses, reaching a micro p./r. of ∼ 93.5%, and the last one also uses prior in-
formation, obtaining ∼ 94.3% of success. These results proves that contextual infor-
mation improves the recognition of objects in a scene, and that the use of semantic
information prevents the CRF from providing non-coherent results, increasing thus
the recognition success. Prior information also adds a sense of coherence to the sys-
tem operation by yielding the frequency of occurrence of the different object classes
in an office environment, which is reflected as an improvement in the results.

Figure C.6 shows the confusion matrix obtained using the last variant, where the
rows represent the actual class of the objects, and the columns the class to which
they have been assigned. We can notice that erroneous recognitions correspond to
the classes Wall, Table_side and Chair_back, given that, with the considered fea-
tures, it is sometimes difficult to differentiate them.

It is worth to mention that the recognition system also yields the probability asso-
ciated to the results as a measure of uncertainty. Thus, results with high uncertainty
could motivate the execution of further actions by the robot, like gathering additional
data from the scene, in order to reduce such uncertainty.
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Computer screen Table_top Chair Floor Wall Table_side 

Figure C.7: Recognition result in one of the studied scenarios from UMA-offices. Top, 3D
data from an office environment. Bottom, planar patches detected and recognized using our
approach.

Complexity reduction

The above improvements are to a great extend due to the generation of hypotheses
which allow the execution of probabilistic exact inference, i.e., checking all the pos-
sible class assignations for the scene objects. To illustrate this, let us consider the
scenario shown in figure C.7-top, entailing 11 objects. Given that we have consid-
ered 7 object classes, probabilistic reasoning by exact inference consists of comput-
ing equation C.3 a total of 711 times. Such a computation would take several hours,
which is unfeasible for a mobile robot aimed to operate within real environments.



C20 PAPER C. SCENE OBJECT RECOGNITION FOR MOBILE ROBOTS

However, relying on the generated hypotheses as candidate classes, the number of
combinations is reduced, in this example, to 1536, which can be computed in a few
milliseconds. Figure C.7-bottom shows the objects from C.7-top recognized through
an exact inference process.

5.2 Evaluation with NYU2

The NYUv2 dataset [37] is a large collection of RGB-D images from different in-
door scenarios within commercial and residential buildings. From them, we have se-
lected the office scenes, which sum up a total of 61, and have considered a total of 14
different object classes LNYU2 = {Cabinet,Ceiling, Chair, Computer, Desk, Floor,
Keyboard, Light, Monitor, Mouse, Printer, So f a, Table, Wall}. As in the tests with
the UMA-offices dataset, the CRF weights were trained through synthetic samples
following the methodology presented in [33].

System performance

The third column of table C.2 shows the results yielded according to the different
variants. These results are given by an exact inference process when feasible, and by
the ICM approximate method when it is not (see the following sections for further
detail). Without exploiting contextual information, the CRF reached a success of ∼
53.8%, while with its integration it augments to ∼ 59.1%. These numbers are quite
similar to the ones provided in [24] (a 58.92% with the second configuration), which
are outperformed by the following variants: a ∼ 2% of increment is obtained with
the inclusion of the hypotheses generation step, and the final 65.1% is achieved by
also considering prior information about the frequency of occurrence of the different
object classes. Figure C.8 shows some examples of office scenes with the recognition
results produced by the presented approach. These numbers support our claim that the
inclusion of contextual information, hypotheses, and prior knowledge, significatively
increment the system performance when compared to a method that only relies on
features of the objects.

Note the drop in performance experimented with respect to the results obtained
for the UMA-offices dataset which are mainly due to the following factors:

• A limited contextual information. The NYU2 dataset only includes isolated,
one-shot RGB-D observations, and thus the contextual information is more
limited than in the UMA-offices dataset, where several observations were reg-
istered together and a largest portion of the scene was processed.

• A higher intraclass geometric variability. The labelling provided by the NYU2
dataset contains a high number of spurious measures that, even after removing
most of them through different filters, negatively affect the objects’ geomet-
ric characterization. Thereby, objects of the same class exhibit quite different
geometric features.
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Cabinet Ceiling Computer Desk Floor Chair Keyboard 

Light Monitor Printer Sofa Table Mouse Wall 

Cabinet Ceiling Computer Desk Floor Chair Keyboard 

Light Monitor Printer Sofa Table Mouse Wall 

Figure C.8: Some scenes from the NYU2 dataset (left column) and the results yielded by our
recognition system (right column).

• The number of considered classes. Tests with the NYU2 dataset consider twice
the number of classes (from 7 to 14). Additionally, the average number of ob-
jects per scene is considerably higher (from ∼ 6.8 to ∼ 12.3). These factors
compromise the application of the exact inference, resulting in a performance
reduction.
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Table C.3: Number of tests and time consumption (in seconds) necessary to check all the
possible combinations of classes of the objects into a scene demanded by an exact inference
process. Such numbers are conditioned by the amount of objects into the NYU2 scene, and
were taken considering 14 object classes.

#objects 2 3 4 5 6 7 8 9
#tests 196 2,744 3,841e1 5,378e2 7,529e3 1,054e5 1,475e6 2,066e7

reduced #tests 9 68 509 3,774 2,798e1 2,074e2 1,538e3 1,140e4
time 3.5e-3 0.049 0.691 9.680 135.5 1,897 2,656e1 3,718e2

reduced time 1.6e-4 1.2e-3 9.1e-3 0.067 0.503 3.734 27.69 205.31

Complexity reduction

The reduction of the probabilistic inference complexity is critical for improving the
system performance within the NUY2 dataset, due to the aforementioned increment
in the number of both considered classes and average number of objects per scene
with respect to the UMA-offices dataset. In the best case, the complexity reduction
enables exact inference, although this highly depends on: i) the number of possible
belonging classes, ii) the number of objects to be recognized, and iii) time constraints.

An analysis has been carried out considering 14 object classes (| LNUY 2 |), and the
exact inference feasibility is studied depending on the number of objects in the scene.
Table C.3 shows the results of this analysis7. The difference between the first and the
second row illustrates the achieved reduction in the number of possible labellings to
be considered by exact inference. This clearly speeds up such a process, as shown by
the difference between the third and fourth rows. An additional discussion could arise
about the assumable time constraints for the object recognition system. In our exper-
iments, an execution time of 3,7 seconds is permitted, but this figure could change
depending on the tasks to be carried out by the robot. In conclusion, it is clear that
without considering the hypotheses generation, exact inference quickly becomes un-
feasible, but thanks to the proposed approach, its execution can be assumable, in our
tests, for scenes containing up to 7 objects.

A remaining question is if the use of exact inference after the hypotheses gen-
eration step really increases the performance of approximate inference methods. To
check this, we have performed both exact inference and approximate inference over
a subset of the office scenes into the NYU2 dataset, employing the fourth variant in
table C.2. Such a subset was compound by the scenes where exact inference was pos-
sible, concretely 27 out of the initial 61. The gathered results were clear: a ∼ 65.06%
of success was yield using exact inference, while the best number reported by the
ICM and Graph Cuts methods was ∼ 61.57%.

7Execution times higher than one hour was extrapolated by the estimation of the number of tests to be
performed and the time needed for one test, i.e., 1.8e-5 seconds in the computer onboard the robot.
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Table C.4: Results yielded by the ICM and α-expansions approximate inference methods for
the 61 office scenes from the NYU2 dataset. Two different configurations have been tested.

Variant used ICM α-expansion
(1) Context + Prior 63.22 62.03
(2) Context + Hypotheses + Prior 64.53 63.61

Approximate inference

Despite the possibility of carrying out exact inference under some circumstances,
there are still cases where approximate probabilistic inference is needed. In sec-
tion 3.2 we briefly described the ICM algorithm, which can be defined as an iterative
process for maximizing local conditional probabilities. On the other hand, section 3.2
introduced the α-expansion method, an iterative methodology that executes Graph
Cuts in each step. These methods8 and have been widely used for object recognition
purposes, so it is relevant to assess the influence of the generation of hypotheses in
their performance.

To this end, we have collected the results of both methods over the 61 NYU2
office scenes, with and without the hypotheses generation feature. Table C.4 exposes
the output of this study. It reveals that both methods benefit from the inclusion of
hypotheses, increasing a ∼ 1.3% the performance of the ICM method, and a ∼ 1.5%
the success of the α-expansions one. Both methods reach a good performance, but as
shown in table C.2, even a higher success is achieved (65.10%) when executing exact
inference on the 27 office scenes, and ICM over the 34 remaining ones.

6 Conclusions

The presented work has addressed the scene object recognition problem for mobile
robotic agents by combining Probabilistic Graphical Models (PGMs) and Semantic
Knowledge (SK) into a hybrid system. The proposed solution provides robustness
against ambiguous scenarios, uncertainty handling, an improvement in the inference
performance, and it produces coherent results according to the expert knowledge en-
coded in an ontology which can be exploited for other high-level Artificial Intelligent
tasks. Robustness against objects showing similar features is achieved by the use of
Conditional Random Fields (CRF), a particular type of PGM, that leverage contextual
information between objects. Moreover, a modification to the usual CRF formulation
has been presented in order to exploit prior information about the likelihood of find-
ing an object of a certain class, which comes from the SK-base of the domain codified
by an expert into an ontology. To reduce the probabilistic inference burden, the en-
coded ontology is used to hypothesize about the most promising belonging classes of

8We have relied on the ICM and α-expansion methonds’ implementations within the Undirected Prob-
abilistic Graphical Models in C++ (UPGMpp) library [35]
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the scene objects, cutting down the candidate options. This ensures, in addition, that
the system outcome is consistent with such expert knowledge. Finally, the recogni-
tion results provided by the inference process can be instantiated within the ontology,
which supposes a ready-to-use knowledge representation exploitable by other high-
level tasks within the mobile robotic agent.

The claimed virtues of our recognition system have been thoroughly validated
considering two substantially different datasets: NYU2 and UMA-offices. The eval-
uation provides the performance of a local object recognition system as a baseline,
revealing the progressive increment in the performance and robustness as long as
additional information is exploited: contextual information, hypotheses of objects’
classes, and prior information about object category occurrences. Moreover, an analy-
sis of the complexity reduction of the probabilistic inference process has been carried
out by considering the most promising object belonging classes, including the feasi-
bility of exact inference for the considered datasets. The yielded results are promis-
ing, allowing the system to rely on exact inference in a wider variety of scenarios. It
has been also studied the performance of two state-of-the-art approximate inference
methods: Iterated Conditional Modes and Graph Cuts, which have shown to also ben-
efit from the hypotheses generation. The obtained results reveal the suitability of our
approach for highly-demanding applications, as is the case of mobile robot object
recognition.

One source of weakness in the proposed system, which is common to other meth-
ods exploiting objects’ relations, is the case of scenes where the profitable contextual
information is reduced. In these situations the system performance can be compro-
mised, although it would be higher than the expected one from a local recognition
system thanks to the utilization of both, the hypothesis generation, and the prior infor-
mation about the typical occurrence of object classes. One way to face this situation
could be the integration of additional information by means of a more conscientious
inspection of the scene by the robotic agent, e.g. active perception. Other challenge
are scenarios where objects may not fit into their usual description, for instance rec-
ognizing a computer screen which is placed on the floor. In this case, any logical
reasoner will not yield the class Computer_screen as result, given that its proper-
ties largely differs from the expected ones, i.e. it is found on the floor and not on
a table, close to a keyboard. Our next goal is to increase the robustness of the pre-
sented system to deal with this issue. A solution could be to consider the result of
the logical inference as a score in the CRF formulation, at the cost of compromising
the exact inference option, or the periodic revision of the recognition results by an
expert/human operator, which could recognize limitations in the encoded SK and fit
them for a given domain.

An additional aspect to be explored is the inclusion of information about the room
where the objects are found, aiming to build a holistic model that permits the system
to recognize both objects and rooms’ types taking into account their usual relation-
ships.
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Object recognition is a cornerstone task towards the scene understanding prob-
lem. Recent works in the field boost their performance by incorporating contex-
tual information to the traditional use of the objects’ geometry and/or appear-
ance. These contextual cues are usually modeled through Conditional Random
Fields (CRFs), a particular type of undirected Probabilistic Graphical Model
(PGM), and are exploited by means of probabilistic inference methods. In this
work we present the Undirected Probabilistic Graphical Models in C++ library
(UPGMpp), an open source solution for representing, training, and performing
inference over undirected PGMs in general, and CRFs in particular. The UP-
GMpp library supposes a reliable and comprehensive workbench for recognition
systems exploiting contextual information, including a variety of inference meth-
ods based on local search, graph cuts, and message passing approaches. This
paper illustrates the virtues of the library, i.e. it is efficient, comprehensive, ver-
satile, and easy to use, by presenting a use-case applied to the object recognition
problem in home scenes from the challenging NYU2 dataset.

Keywords: contextual object recognition, probabilistic graphical models, proba-
bilistic inference, scene understanding

1 Introduction

Scene understanding systems aim to provide a valid interpretation of the perceived
imagery which can be leveraged by a large variety of innovative technologies, like
robotics, assistance to visual impaired, autonomous driving, etc. Object recognition
is a key component of these systems, whose results become crucial for a proper un-
derstanding of the scene. Modern approaches improve the object recognition perfor-
mance by incorporating contextual information of the objects, in addition to their usu-
ally employed geometry and/or appearance properties [1, 12, 13, 16, 15, 14, 20, 23].
This enables the disambiguation of confusing classifications provided by methods
only relying on properties of the objects themselves [5]. Let’s suppose, for example,
a scene with a brown, cylindrical object. A method relying on geometric/appearance
properties could have problems to classify it as a pot or a flowerpot, however, if it is
found on a stove, the pot option is more probable.

The Probabilistic Graphical Models (PGMs) framework [7] has been widely used
to exploit contextual relations among objects. Concretely, a particular type of PGM,
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namely Conditional Random Field (CRF), has focused the interest of researchers
given its suitability to model this kind of problems. PGMs integrate a compact and
powerful graph-based representation of complex probability distributions defined over
high-dimensional spaces, and employ probabilistic inference algorithms to efficiently
perform queries of interest over it. Of particular concern is the Maximum a Posteri-
ori query (MAP), since it provides the recognition results by computing the most
probable category assignations to the scene objects1. The simplest MAP inference
method, called exact inference, exhaustively tests all the possible objects’ category
assignations, which is an unfeasible approach in many real-world problems. Instead,
approximate methods are exploited, which can be roughly classified into three major
groups: local search [2], graph cuts [4], and message passing algorithms [9].

Most contextual-based object recognition works rely on an ad-hoc implementa-
tions of both the PGMs framework and inference algorithms [1, 12, 20, 23]. This
makes it difficult to conduct a fair comparison between state-of-the-art works, even
when they report results resorting to the same dataset [15]. There are some publicly
available software libraries implementing this framework [11, 18], but they are not
suited for the contextual object recognition problem (e.g. they only handle chain-
structured models), or their applicability to this issue is limited.

This paper presents the Undirected Probabilistic Graphical Models in C++ (UP-
GMpp) library, a software package for working with undirected PGMs, as is the case
of CRFs, and its application to scene object recognition. UPGMpp exhibits a num-
ber of features that make it suitable for facing this particular problem: i) it works
with discrete random variables, like the ones needed to model the possible objects’
categories (e.g. chair, table, book, etc.), ii) it handles unary and pairwise relations,
needed for representing the objects’ features and relationships, and iii) it enables the
representation of arbitrary structures, i.e. it can codify any number of scene objects
and relations among them. This library implements inference methods from the three
major groups mentioned above, including for example Iterated Conditional Modes
(graph search), α-β swaps (graph cuts), or Loopy Belief Propagation (message pass-
ing). Therefore, UPGMpp provides a good basis for their evaluation and integration
into recognition systems exploiting context. From an algorithmic point of view, the
library also includes mechanisms to train PGMs and to perform probability queries
(carry out marginal inference), as well as functionality for storing/loading PGMs from
files through serialization. UPGMpp is designed to be efficient, versatile, extensible,
and easy to use through clear and intuitive APIs, and resorts to well known libraries
for numerical optimization (libLBFGS [10]), matrix operations (Eigen [6]) and mem-
ory handling (Boost [17]). It is entirely open-source, and is publicly available under
a GNU General Public License (http://mapir.isa.uma.es/work/upgmpp-library). The
library is distributed along with a number of code tutorials, so the user can master and
start using it quickly.

As an illustrative example of its suitability to the contextual object recognition
problem, we describe a use-case of recognizing objects from home scenes within the

1Along this paper we employ the term inference to refer to MAP inference.

http://mapir.isa.uma.es/work/upgmpp-library
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Figure D.1: Left, RGB-D image of a kitchen from the NYU2 dataset including the scene
objects marked as x = {x1, ...,x10}. Right, CRF structure built from the scene. The blue shape
represents the scope of an unary factor, while the red one states the scope of a pairwise factor.
Random variables are labeled with the categories assigned by the execution of a probabilistic
inference method over the CRF.

challenging NYU2 dataset [19]. Performance results regarding the execution time of
inference and training methods within UPGMpp are also shown.

The next section describes the application of Conditional Random Fields to the
scene object recognition issue, in order to provide a theoretical background for a bet-
ter understanding of the library components. Then, section 3 presents the UPGMpp
library, as well as the inference algorithms that it implements. Section 4 illustrates
the UPGMpp application to the recognition of objects from scenes within the NYU2
dataset. Finally, section 5 outlines the conclusions and possible future work.

2 Contextual object recognition through

Conditional Random Fields

The object recognition problem can be stated as the assignation of classes (e.g. table,
chair, notebook, etc.) to a number of regions observed in imagery from a given scene.
Let’s consider the following definitions to address this problem from a probabilistic
stance:

• Define x = {x1, ..,xn} as the set of n objects appearing in the scene, where each
xi is characterized through a vector of m features, f xiu = [ fxiu1 , .., fxium ]

T , e.g.
their size, color, orientation, etc.

• Let L = {l1, .., lk} be the set of k possible object classes.

• Define y = {yi, ..,yn} as the set of discrete random variables over L, where each
yi assigns a class from L to its associated object xi.
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Thereby, the object recognition problem, modeled through a Conditional Random
Field [7], is such of maximizing the probability distribution P(y|x), i.e., to find the
most probable classes’ assignation from L to the random variables in y according
to the characterized objects in x. The structure of a CRF is represented by a graph
H = (V,E), where V is a set of nodes associated to random variables, and E stands for
a set of edges liking related variables/nodes. Regarding the problem at hand, a node
represents a variable from y, and an edge connects two variables which associated
objects are contextually related in the scene, i.e. they are placed close to each other.
Figure D.1-left shows an scene with ten objects, which are represented as nodes in
the CRF in figure D.1-right. We can see how, for example, the stove is related to the
cabinet, the wall, and the counter, so their associated nodes are linked. Thereby, the
probability distribution P(y|x) can be factorized over this graph structure H, which is
expressed for convenience by means of log-linear models [7]:

P(y|x,ω,θ) =
1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (D.1)

where Z(·) is known as the partition function, so ∑ξ (y) P(y|x,ω,θ) = 1, being ξ (y)
a possible assignation to the variables in y, ω and θ are vectors of weights learned
during the CRF training, and ε(·) is the energy function, defined as:

ε(y,x,ω,θ) = ∑
i∈V

U(yi,xi,ω)+ ∑
(i, j)∈E

I(yi,y j,xi,x j,θ) (D.2)

being U(·) and I(·) the so-called unary and pairwise factors respectively. These fac-
tors can be seen as functions encoding small parts of the whole P(y|x) over the nodes
and edges of the graph H. Thus, an unary factor gives an intuition about how probable
is for a node yi to belong to a class from L according to the features of the object xi.
On the other hand, a pairwise factor speaks about an edge, and states the compatibil-
ity of two related variables being assigned a certain pair of classes from L. The scope
of these factors is shown in figure D.1-right. They are defined by means of log-linear
models as follows:

U(yi,xi,ω) = ∑
l∈L

δ (yi = l)ω l f xiu (D.3)

I(yi,y j,xi,x j,θ) = ∑
l1∈L

∑
l2∈L

δ (yi = l1)δ (y j = l2)θ l1,l2 f xix j p (D.4)

where δ (yi = l) is the Kronecker delta function, and f xix j p is the vector of pairwise
features characterizing the relationship between the objects xi and x j.

The training of a CRF consist of finding the vectors of weights ω and θ that
maximize the likelihood function:

max
ω,θ

LP(ω,θ : D) = max
ω,θ

∏
d∈D

P(yd |xd) (D.5)
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where D is the set of all the scenes used for training, compound each one of a set of
characterized objects xd , and their respective ground truth classes yd . Solving Eq. D.5
requires the computation of the partition function, which is unfeasible in practise.
Section 3.1 introduces the approaches implemented in the UPGMpp library to face
this issue.

Once the CRF is trained, it can handle the execution of inference algorithms to
contextually recognize objects. Thus, given a scene, its particular graph structure
H = (V,E) is built according to the relations shown by its constituent objects (see
figure D.1). The (MAP) inference goal is to find the classes assignation ŷ that maxi-
mizes the probability distribution P(y|x) factorized over H, that is:

ŷ = argmax
y

P(y|x,ω,θ) (D.6)

Again the computation of the partition function Z(·) is needed. However, since
given a certain scene its value remains constant, this expression can be simplified by:

ŷ = argmax
y

e−ε(y,x,ω,θ) (D.7)

Despite this simplification, to compute an exact solution of such an equation is
still unfeasible due to the huge number of possible assignations to be checked (kn),
which motivates the use of approximate inference methods. The algorithms imple-
mented in the UPGMpp library for this are described in section 3.2.

3 UPGMpp library

The Undirected Probabilistic Graphical Models in C++ (UPGMpp) library is an open-
source software for dealing with undirected PGMs, e.g. Markov Random Fields, or
Conditional Random Fields. The library works with discrete random variables and
handles local and pairwise relations, i.e. first and second order PGMs. UPGMpp pro-
vides tools for: i) defining graph representations, ii) completing a fast training of
models, and iii) performing efficient inference queries (both probability and MAP
queries). This section presents an overview of the most relevant features of the li-
brary and its components (section 3.1), as well as the available inference algorithms
(section 3.2).

3.1 Overview

The UPGMpp library is divided into three packages (see figure D.2):

• base. Implements the functionality for building and managing PGM graphs.

• training. Permits the definition of training datasets to tune a PGM.

• inference. Implements algorithms to perform probability and MAP inference
queries over PGMs.
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Figure D.2: Simplified UML class diagram of the main classes within the base (blue), train-
ing (yellow) and inference (green) packages within the UPMGpp library. For interpretation of
references to color, the reader is referred to the web version of this work.

The base package provides an easy way to create and manage graphs representing
PGM structures. Instances of nodes from V can be created employing the CNode class,
as well as edges from E through the CEdge one. The CNodeType and CEdgeType

classes permit us the definition of typed nodes and edges. Having the sets of nodes
and edges, they can be inserted into an instance of the CGraph class, which represents
the graph structure H = (V,E). The factors within nodes (unary) and edges (pairwise)
have been implemented through log-linear models (recall equations D.3 and D.4), al-
though the user can easily define a different way to compute them through a prototype
function.

The training package provides mechanisms for building datasets employing the
CTrainingDataset class, i.e. sets of graphs along with their ground truth categories
(see the yellow class and methods in figure D.2). Once created and populated, a
dataset can be used to train an undirected PGM, i.e. to find the vectors of weights
ω and θ in equation D.5. Recalling that the computation of such an equation is un-
feasible in practice, two major approaches are considered in the literature: the defi-
nition of tractable alternative objective functions, like the pseudolikelihood, and the
use of approximate inference processes (including MAP and marginal inference) [7].
Both approaches have been implemented and are available to the user in the training
package.
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Finally, the inference package implements a number of state-of-the-art inference
algorithms for performing both, probability and MAP queries (recall equation D.7),
although in this work we focus on MAP since it provides the scene object recognition
results. To facilitate its use and future expansion, every MAP inference algorithm
inherit the same functionality from a base class, CInferenceMAP, and implements
the same abstract method for performing inference (see green classes in figure D.2).
The implemented MAP inference methods are described in section 3.2.

UPGMpp resorts to the also open-source project libLBFGS [10] for performing
numerical optimization, and the Eigen [6] library for performing fast matrix opera-
tions. The Boost library [17] is used to avoid unnecessary re-copy of data across the
library methods by means of shared smart pointers. This library is also used for seri-
alization purposes, which adds the possibility of storing/loading graphs from/to files,
enabling the long-term life of PGMs beyond execution time.

3.2 MAP inference methods

This section briefly describes the theory behind the approximate MAP inference
methods implemented in the UPGMpp library. The interested reader can refer to the
provided citations for further information.

Local search methods.

Local search methods are the simplest approaches for approximated MAP inference,
and they are widely used due to their easy implementation and acceptable results.
In a nutshell, these methods operate over a set of candidate solutions called search
states, which define a search space. In object recognition, a search state can be seen
as a certain assignation ξ (y) to the variables in y, which have an associated likelihood
value, and the search space corresponds to the set of all possible assignations. Thus,
starting at a certain state ξc(y), a local search method checks if there is a state among
the set of similar states, defined as Sim(ξc(y)), showing a higher likelihood value. If
so, the algorithm moves to it as the current search state ξc(y). Thereby, these methods
perform small movements while exploring the search space, always increasing the
expected likelihood, until a local maximum is reached, i.e. there is not a similar state
to the current one with a higher likelihood. Algorithms within this group differ in
how they define the similarity function Sim(ξc(y)) for a given state ξc(y). Next, the
Iterated Conditional Modes (ICM) local search method and its Greedy variant are
described (see [2] for further detail).

Iterated Conditional Modes. ICM operates by giving an initial assignation to
the variables in y, and iterating over those variables to maximize the local conditional
probability:

ŷi = argmax
yi

P(yi|yNH (yi),xi,xNH (yi)) (D.8)
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where yNH (yi)
and xNH (yi) are sub-vectors of the original y and x ones that contain the

random variables and observations of the neighbor nodes of yi in a certain graph H.
Thus, being ξc(·) the current assignation to a set of random variables, the set of similar
states is defined as Sim(ξc(y))= {ξ (y) | ξ (y−i)= ξc(y−i)}. This algorithm ends when
convergence is achieved, i.e., an iteration over all the variables is completed without
changing the search state, or when a given limit of iterations is reached.

Greedy ICM . The greedy variant takes the same initialization and ending criteria,
but instead of performing a movement per random variable in y, it first iterates over
all the variables, and then applies the movement that yields the maximum likelihood
increment. In this case the set of similar states is defined as: Sim(ξc(y)) = {ξ (y) |
di f f (ξ (y),ξc(y)) = 1}, where di f f (ξ (y)− ξc(y)) yields the number of random va-
riables with different assigned classes, i.e. two states are similar if only one random
variable in y shows a different assignation. This algorithm requires on average more
iterations to converge than the original ICM, but it is more robust against getting stuck
in a local maximum.

Graph cuts methods.

Graph cuts [4] have been extensively used to efficiently face early vision problems
that can be formulated as a minimization of an energy function. This approach re-
duces the MAP inference task to instances of the minimum cut problem. Let’s sup-
pose a binary classification problem (yi = {0,1}) with factors codified over a graph
H = (V,E). To apply graph cuts, the graph is modified in the following way: a pair
of nodes, s (source) and t (sink), are added so Vc = {V,s, t}, and two edges linking
each node with s and t are included, obtaining the set Ec = {E}∪{es→i,ei→t ,∀i∈V}.
Then, the minimum cut of this new graph Hc = {Vc,Ec} is computed, which divides
the set of nodes into two sets: the one containing the nodes connected to the source
s, called Vs, and the set of nodes Vt linked to the sink t. Finally, the nodes in Vs are
classified as belonging to the class 0, and those in Vt to the class 1. This method can
be extended to handle non-binary classification problems, as illustrate the α-β swaps
and the α-expansions algorithms [3].

α-β swaps. This algorithm iterates over all the possible class pairs (α ,β ) in L, and
checks if there is a swap among the variables assigned to that classes that increments
the expected likelihood. Let Vα = {Vi = α,∀i ∈ V} be the set of nodes/variables as-
signed to the class α , and Vβ = {Vi = β ,∀i ∈ V} those assigned to β . Then, graph
cuts compute the optimal classes assignation for the graph Hc = (Vc,Ec), where Vc =
Vα ∪Vβ ∪{s, t} and Ec = {ei j ∈ E | (i = α)∩( j = β )}∪{es→k,ek→t ,∀k ∈ (Vα ∪Vβ )}.
In this case, a node connected to the source s in the minimum cut is classified as be-
longing to the class α , and to β otherwise. A change in the assignation of a node in
the minimum cut with respect to its previous one produces an α-β swap move. The
algorithm ends when no swap moves increasing the likelihood can be performed.
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α-expansions. This method iterates over the classes α in L performing α-expansions,
i.e. changing the class assigned to a node from Lᾱ ∈ L−α to the class α . Thus,
for each class, graph cuts are used to compute the minimum cut of the graph Hc =
(Vc,Ec), where in this case Vc = {Vᾱ ,s, t} is the set of nodes not assigned to the
class α plus the source s and the sink t, and Ec = {ei j ∈ E | (yi 6= α)∩ (y j 6= α)}∪
{es→k,ek→t ,∀k ∈Vᾱ}. The nodes connected to the source s in the minimum cut pro-
duce an α-expansion, i.e. they replace their assigned class by α , while those linked
to the sink t keep their initial class. This process is repeated until no α-expansion can
increase the current expected likelihood.

Message passing methods.

The message passing approach, also called Belief Propagation (BP) or max-product
[22], is based on the exchange of statistical information among related nodes. This
is performed by passing messages from node yi to node y j, denoted as mi j(y j), indi-
cating the belief of node yi about the belonging class of node y j. These messages are
computed in the following way:

mt
i j =U(yi,xi,ω)I(yi,y j,xi,x j,θ) ∏

yk∈NH (yi)\y j

mki(yi) (D.9)

where NH(yi) \ y j is the set of neighbors of yi in the graph H less y j, and t is an
iteration counter. Thus, the BP algorithm keeps sending messages between nodes
following a certain message scheduling until the graph is calibrated, i.e. the messages
exchanged between nodes are the same in two consecutive algorithm iterations. Once
calibrated, the belief of each node is computed as:

b(yi) = κU(yi,xi,ω) ∏
y j∈NH (yi)

m ji (D.10)

being κ a normalization component so the beliefs for node yi sum to 1. Then, each
node yi is assigned to the class with the highest belief value in b(yi).

In the case of tree-structured graphs, such a message updating rule yields the op-
timal maximum. On the other hand, when it is applied to graphs with loops it adopts
the name of Loopy Belief Propagation (LBP), and it is able to approximate a solution
with a reasonable success. Next, we briefly describe the Tree-Based Reparametriza-
tion message passing algorithm (TRP) [21].

Tree-Based Reparametrization. This method pursuits a more global exchange
of statistical information, not only between related nodes, aiming to reach a faster
calibration even in cases where traditional BP methods fail. For that, a set of trees
T = {T1, ..,Tt} are spanned over the original graph H = {V,E} in such a way that
every node in V belongs to (at least) one tree.

Once the set of trees T is obtained, the algorithm iteratively selects a tree and
calibrates it, keeping fixed all the messages from the variables out of the tree. The
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Figure D.3: Processing pipeline when training and exploiting a CRF model using the UPGMpp
library. Colored shapes are processes and data handled by the library (see figure D.2), while
gray shapes are problem specific and, therefore, defined by the user.

calibration of a tree can lead to the miscalibration of other trees, so the algorithm
has to be repeated until global calibration is reached. Once calibrated, the inference
results are obtained in the same way as the original LBP algorithm. The interested
reader can refer to [21] for more detail.

4 Contextual object recognition using the

UPGMpp library

This section shows the flexibility and usability of the UPGMpp library when ap-
plied to the scene object recognition problem exploiting contextual information. First,
we introduce the NYU2 [19] dataset which has been used to test the library (sec-
tion 4.1). Then, we describe the processes needed for training and testing (performing
inference) Conditional Random Fields (CRFs) employing the UPGMpp library (sec-
tion 4.2). Finally, the recognition results yielded by the different inference methods
within UPGMpp are shown (section 4.3), including performance information, which
support the suitability of the application of the presented library for the scene object
recognition problem.

4.1 The NYU2 dataset

In this work we employ RGB-D images from the NYU2 dataset, which contains a
total of 1,449 densely labeled pairs of intensity and depth data. The dataset has been
widely used in the literature (e.g. [8]) due to its challenging cluttered scenes from
commercial and residential buildings. In this work, we have used 208 scenes belong-
ing to rooms typically found in houses, namely: bedrooms, bathrooms, kitchens and
living rooms, containing 1,692 objects that belong to 22 objects classes, e.g. cabinet,
counter, bottle, toilet, sofa, lamp, clothes, etc.
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4.2 CRFs creation and operation with UPGMpp

Figure D.3 shows the general processing pipeline when training a CRF model and
exploiting it to perform object recognition. The colored shapes in the image comprise
the processes and data provided/managed by the UPGMpp library, and the involved
package (as before, blue represents the base package, yellow the training one, and
green the inference package). On the other hand, the gray shapes are problem-specific,
so they have to be defined by the user. We have instantiated this pipeline for the case
of the NYU2 dataset, although it can be replaced by any other.

The NYU2 dataset has been split into training and testing scenes which have to
be processed in order to extract the features of the objects appearing in them and their
relationships. These features are defined by the user, and in this work we have used
the following object/node ones: orientation, planarity, linearity, minimum, maximum
and centroid heights from the floor, volume, area of its biggest face, and hue variation,
while the chosen contextual/edge features have been: difference of orientation, verti-
cal distance, is on relation2, and a bias value that states the compatibility of the related
object classes. The extracted features from the training scenes are used to build their
respective CRF representations (instances of CGraph), which together with ground
truth information are inserted into an instance of the CTrainingDataset. Then,
the selected training method computes the vectors of weights of the CRF model.
In UPGMpp these weights are stored within the node and edge types (instances from
CNodeType and CEdgeType respectively), so all the CRF graphs employing these
node and edge types share the same vectors of weights.

On the other hand, for each scene into the testing data, its CRF structure is built
according to the features shown by their constituent objects. Figure D.4 lines 1-22
shows a code snippet where two scene objects/nodes are created and characterized
(concretely, x6 and x7 from figure D.1), as well as their contextual relation/edge, and
then inserted into a CRF structure. Notice that both nodes share the same node type,
object, and the used edge type is defined as edgeBetweenObjects. The same pro-
cess is repeated for all the objects and relations appearing in the scene. Finally, the
chosen inference process over the CRF structure gives the object recognition results,
which are obtained for every scene within the testing data. As an illustrative example,
figure D.4 lines 25-27 shows the definition of an ICM inference object, and its use to
get the recognition results for a given CRF structure.

4.3 Contextual Object Recognition results

This section shows the results of applying the UPGMpp to the NYU2 dataset excerpt,
as well as the computational time required for training and inference. This outcomes
come from a 4-random-fold cross-validation, i.e. the 208 scenes were randomly di-
vided into 4 folds with equal size, then three out of the four folds were used to train
a CRF model, while the remaining fold was used to evaluate its performance. This
process is repeated a total of 100 times, and the results are computed as the average

2This feature takes the value 1 if an object is placed on the other one, and 0 otherwise.



4. CONTEXTUAL OBJECT RECOGNITION USING THE UPGMPP LIBRARY D13

Figure D.4: A simple example of the use of the UPGMpp library.

of all the evaluations. The training of the CRF models has been done through the
optimization of the pseudolikelihood function.

Table D.1 shows the results yielded by the different inference methods. Note that
all the methods yielded the same outcome when considering only the features of the
objects themselves. In this case, only nodes are added to the CRF graph structure,
and all the methods chose the class assignation that maximizes the unary factor for
each node (recall equation D.3). On the other hand, when contextual information
is considered, the performance increases in all of the cases. It can be seen how the
outcome of the Greedy method is slightly better than the ICM one, and similar to
the α-expansions, being the α-β swaps the method with worse results. In contrast,
LBP and TRP shows the better figures, improving the recognition results in more
than a ∼ 5% with respect to only using the objects’ features (with no contextual
information). Regarding the execution time consumed by these methods, the average
ranges from the 0.46ms. of the ICM method up to the 37.39ms. of the α-β -swaps3.

Despite of the results achieved by the inference methods in these tests, their gen-
eral performance is affected by a number of factors, e.g. the features used to model
the problem, the training method employed, or the domain at hand. Thus, for a differ-

3These figures were obtained using an Intel®Core™i5 3330 microprocessor at 3GHz and 8 GB DDR3
RAM memory at 1.6 GHz.
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Table D.1: Scene object recognition results employing the different inference methods within
the UPGMpp library with/without contextual information. It is also shown their mean execu-
tion time as well as the execution time in the worst cases (in ms.).

Method ICM Greedy α-expansions α-β swaps LBP TRP
Objects 65.71% 65.71% 65.71% 65.71% 65.71% 65.71%

Objects+context 68.37% 68.60% 68.99% 66.72% 71.45% 71.16%
Mean ex. time 0.46 2.92 7.78 37.39 2.16 11.05
Max ex. time 4.85 26.30 26.73 181.26 10.80 130.67

ent application, the performance of each individual method should be tested in order
to employ the one giving the better results.

Regarding the time spent training the CRF models, its average over the 100 exe-
cutions is 585.46 seconds. Notice that the training process has to be performed only
once, and the resulting CRF model can then be used to recognize objects within any
scene.

5 Conclusions and Future Work

This paper has presented the Undirected Probabilistic Graphical Models in C++ li-
brary (UPGMpp), a software library for dealing with the scene object recognition
problem exploiting contextual information. A description of the main software pack-
ages of UPGMpp has been detailed, with especial emphasis on the implemented prob-
abilistic inference algorithms, giving a practical idea about the library features and
capabilities. This work also contributes with the application of the UPGMpp library
to a use-case to both: train CRF models, and obtain object recognition results through
the execution of a number of inference processes. The challenging NYU2 dataset
is used to train and test the CRF models within the use-case, proving the virtues
of the library, which is publicly available under a GNU General Public License at
http://mapir.isa.uma.es/work/upgmpp-library.

Some additional features regarding the performance of the UPGMpp library are
currently under work. For example, some parts could greatly reduce their execution
time with the utilization of multi-core parallelization mechanisms, like OpenMP. Sup-
port for GPUs using CUDA and/or OpenCL could be also advantageous in that sense.
We also plan to include visualization tools for PGM graphs, as well as sampling tech-
niques to draw samples from the probability distribution defined by a PGM. We wel-
come any contribution to the UPGMpp library from the computer vision community.
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In this work we present the Object Labeling Toolkit (OLT), a set of software
components publicly available for helping in the management and labeling of
sequential RGB-D observations collected by a mobile robot. Such a robot can
be equipped with an arbitrary number of RGB-D devices, possibly integrating
other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot
observations to generate a 3D reconstruction of the scene from which object seg-
mentation and labeling is conveniently accomplished. The annotated labels are
automatically propagated by the toolkit to each RGB-D observation in the col-
lected sequence, providing a dense labeling of both intensity and depth images.
The resulting objects’ labels can be exploited for many robotic oriented appli-
cations, including high-level decision making, semantic mapping, or contextual
object recognition. Software components within OLT are highly customizable
and expandable, facilitating the integration of already-developed algorithms. To
illustrate the toolkit suitability, we describe its application to robotic RGB-D se-
quences taken in a home environment.

1 Introduction

A comprehensive dataset supposes a valuable benchmark tool for tuning, testing,
and comparing robotic algorithms and systems in a convenient and fair way. Pub-
lic datasets consisting of intensity images [1, 2, 3] have largely helped researchers to
push ahead the state-of-the-art in object recognition or scene interpretation. Nowa-
days, given the increasing number of capabilities and applications that are demanded
to a mobile robot, e.g. semantic mapping [4], high-level decision making [5], or con-
textual object recognition [6, 7, 8, 9], new particularly oriented datasets are required.

RGB-D cameras have become a key source of information for such robotic datasets.
Although the sensory data of these datasets may be conveniently gathered by the mo-
bile robot itself, human supervision is still needed to segment objects and to label
them, i.e. to add annotations over portions of the observed data as belonging to a cer-
tain object class, e.g. floor, table, lamp, etc. This is the motivation for the software
toolkit that we have developed and is described in this paper.

More specifically, we present the Object Labeling Toolkit (OLT) to provide the
robotic community with a tool to efficiently label datasets compound of sequences
of RGB-D observations, gathered from an arbitrary number of RGB-D sensors. For
that, the toolkit builds a 3D reconstruction of each RGB-D sequence within a given
dataset, and allows the user to graphically label objects within that reconstruction (see
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Figure E.1: Example of a kitchen reconstructed from a sequence of RGB-D observations
within a robotic dataset. The appearing objects have been labeled (colored boxes). Gray spheres
stand for RGB-D sensor poses.

Fig. E.1). This ground truth annotations are automatically propagated to all the RGB-
D observations without requiring human supervision, resulting in a dense labeling of
both intensity and depth data.

OLT comprises a number of software components covering the following func-
tionality: i) dataset pre-processing, ii) localization of RGB-D observation poses, iii)
3D scene reconstruction, iv) labeling of the reconstructed scene, and v) automatic
propagation of annotated labels (see Fig. E.2). Some of these functionalities can ex-
ploit additional information coming from sensors usually present in a robotic plat-
form, e.g. the robot pose estimation computed from 2D laser scans. All the com-
ponents are highly customizable in order to fit the particularities of robotic datasets,
and can be easily expandable to integrate other algorithms of interest. OLT is publicly
available under a GNU General Public License at (http://mapir.isa.uma.es/work/object-
labeling-toolkit), and it resorts to the Mobile Robot Programing Toolkit (MRPT [10])
and the Point Cloud Library (PCL [11]) for point cloud registration and smoothing
algorithms, and for data representation and visualization purposes. Aiming to illus-
trate the toolkit suitability, we show how it is employed for segmenting and labeling a
robotic dataset from a home environment, and also describe its impact on the required
processing time w.r.t. a typical manual solution.

2 Related work

In general, RGB-D datasets providing labeled objects information can be grouped
into: object-centric, single-view, and sequential-view datasets. Object-centric datasets
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[12, 13, 14, 15] provide labeled RGB-D observations of isolated objects, a poor
source of information for many robotic applications like scene understanding or con-
textual object recognition. On the other hand, single-view datasets [16, 17, 18, 19, 20],
are compounded of labeled RGB-D observations of particular scenarios (e.g. a room
or an office). This information is richer from the point of view of those applications,
but data of the whole robot environment is not available. Finally, sequential-view
datasets [21, 22] provide a sequence of labeled observations covering the whole in-
spected workspace, which is the best suitable option for testing trending robotic al-
gorithms or systems. Unfortunately, their number is quite limited mainly due to the
arduous labor that entails the data processing.

RGB-D datasets carry out the tedious object labeling task in different ways. Some
works resort to Amazon Mechanical Turk (AMT) to label their intensity images [16,
18, 19], usually through a labeling tool like LabelMe [2], but this merely divides
the workload, and the annotated information still needs to be thoroughly checked
to fix incoherent labels. Another approach is the manual labeling of key intensity
frames from a sequence, propagating these labels to the remaining RGB-D observa-
tions [21, 22], but this is only suitable for sequences with simple sensor trajectories,
and additionally shows the same limitations as the AMT option. There are also works
that reconstruct a 3D representation of the inspected scene and annotate the objects
appearing on it [17], but there is not a labeling feedback to the RGB-D observations’
sequence(s). Similar works to our approach are [12] and [15], where the ground truth
annotations over a reconstructed scene are also propagated to the individual RGB-
D observations employing an ad-hoc software which, to the best of our knowledge,
is not publicly available. We contribute in this paper with an open source solution
conveniently divided into configurable components, which provides the robotic com-
munity with a number of functionalities towards an efficient labeling of arbitrarily
large collections of RGB-D data.

3 Dataset management: OLT toolkit

The Object Labeling Toolkit (OLT) is a set of software components aimed to facili-
tate the management and processing of robotic sequential-view datasets. Concretely,
it provides robotic researchers with the needed tools for achieving a dense labeling
of the objects appearing in each RGB-D observation within a dataset sequence, aim-
ing to drastically reduce the user participation in the process. It has been designed
to be flexible: it handles datasets containing an arbitrary number of sensors provid-
ing RGB-D and (optionally) 2D scans information, and its components can be used
independently according to the user needs, or even occasionally expanded with the
integration of additional algorithms providing the same functionality.

Figure E.2 shows an overview of the software components within the toolkit and
their interrelations. In a nutshell, the labeling process of RGB-D data within a certain
dataset sequence starts with a pre-processing step, which sets the extrinsic and in-
trinsic parameters of the sensors employed during its gathering (Sec. 3.1). Then, the
sensor poses in a global frame from where each RGB-D observation was taken are
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Figure E.2: Components diagram showing their collaboration within the OLT Toolkit. Gray
boxes represent components provided by the toolbox, the green box is a component supplied
by the MRPT library, and yellow boxes stand for persistent data. The reader is referred to the
online version of this work for references to colors.

computed through the alignment of their depth information (Sec. 3.3). This compo-
nent can optionally employ a geometric map built upon 2D laser observations from
the same dataset sequence (Sec. 3.2). This permits the component to perform a rough
robot localization within the explored area, hence giving a useful initial guess for
such RGB-D sensor poses’ computation. The resultant information is used to three-
dimensionally reconstruct the scene, and the goodness of such a reconstruction can be
visually inspected (Sec. 3.4). The reconstructed scene is then manually labeled by an
human operator (Sec. 3.5), i.e. the objects appearing in the scene are annotated with
their belonging classes, e.g. floor, table, book, etc. Finally, those annotated labels are
propagated to subsequent RGB-D observations (both intensity and depth images) of
the dataset making use of the computed sensor poses (Sec. 3.6). This labeling process
can be repeated for an arbitrary number of RGB-D sequences within a given dataset.
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It is worth to mention that each toolkit component resorts to a configuration file to
easily fit their behavior to the requirements of a given dataset.

The toolkit components are built upon two widely used libraries: the Mobile Robot
Programming Toolkit (MRPT [10]), and the Point Cloud Library (PCL [11]). We re-
sort to MRPT to manage datasets into the Rawlog common robotics dataset format,
which are capable of handling any variety of robotic sensor with precise timestamp-
ing1. This library also provides efficient visualization tools and implementations of
point cloud registration algorithms. On the other hand, we rely on PCL to incorporate
point cloud smoothing and registering techniques.

3.1 Dataset pre-processing

The first toolkit component sets the extrinsic and intrinsic parameters of the sensors
used to gather the dataset sequence being processed. The extrinsic parameters refer
to the position of the sensors with respect to the robot centroid, and can be retrieved
in different ways [23, 24]. The intrinsic parameters describe geometric and distortion
properties of the sensors. RGB-D devices show a different set of intrinsic parameters
for their intensity and depth cameras, including: focal length, principal point coor-
dinates, and radial and tangential distortions. Also needed are extrinsic parameters
to relate the position of both cameras. The intrinsic parameters largely differ among
RGB-D devices, so it is recommended to calibrate them through algorithms like [25].
Those extrinsic and intrinsic parameters can be conveniently introduced into a con-
figuration file, and this component will set them throughout all the contained obser-
vations within the dataset sequence.

This pre-processing step permits the user to effortlessly change the sensor(s) cali-
bration parameters within arbitrarily large dataset sequences, enabling in this way the
comparison of the results yielded by the following toolkit components when employ-
ing different calibration techniques/parameters.

3.2 2D map building

The utilization of this component is optional, but it has shown to improve the results
obtained during the computation of the RGB-D sensor poses (Sec. 3.3). To employ it,
the dataset sequence must provide 2D laser observations from, at least, one laser range
scanner. These observations are then processed by an ICP-based (Iterative Closest
Point) technique [26] within the icp-slam MRPT application in order to generate a
geometric map. Figure E.3 shows an example of a map from a bedroom built in our
experiments.

1There exist a number of tools to convert datasets captured by other popular middlewares to rawlogs,
e.g. ROS (http://wiki.ros.org/mrpt_rawlog).
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Figure E.3: In blue, geometric map of a bedroom built employing the 2D laser scans within
a sequence. In red, example of 2D laser scan aligned within the geometric map. Black circles
represent the robot localizations at the time instants when the 2D laser scans where gathered,
and green ones the computed poses of the RGB-D sensor. The dataset sequence started at the
room’s door.

3.3 Observation poses

This component aims to find the sensor poses from where each RGB-D observation
was taken within a 6D global frame (3D position: x,y, and z, plus three attitude angles:
yaw, pitch, and roll). This sensors’ localization can be performed following any of
these two approaches:

i) For each RGB-D observation oi gathered by a sensor d, it is carried out an
alignment process with the observation oi−1 previously taken by the same de-
vice. For that, it is employed a registration algorithm that exploits their depth
information in the form of point clouds. This registration yields the rigid trans-
formation Toi,oi−1 between the two sensor poses, from which we can compute
the sensor location where the observation oi was taken:

Soi = Toi,oi−1 ⊕Ld (E.1)

where Ld stands for the pose of the sensor d on the robot frame (i.e. its extrinsic
parameters). The first observation o1 from such a sensor is considered to be
taken with the robot in its initial position, i.e. at the origin of the global frame.

ii) The second approach employs the 2D geometric map from the previous com-
ponent and the 2D laser observations to localize the robot within the global
frame by means of ICP. Then, the sensor poses for each RGB-D observation oi
are computed through the interpolation of those robot localizations employing
their timestamps:
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Figure E.4: Left, point clouds representing a bed-set and a pair of shoes reconstructed employ-
ing the sensor poses yielded by the robot localization. Right, the same objects reconstructed
with the sensor poses refined with GICP.

Roi = R1⊕ ((R2	R1) · telapsed) (E.2)
Soi = Roi ⊕Ld (E.3)

where R1 and R2 are the robot locations with timestamps just before (t−1) and
after (t + 1) the oi one (t), and telapsed = (t − (t − 1))/((t + 1)− (t − 1)) is a
scalar value. In this case, the global coordinate frame is specified by the ge-
ometric map. Optionally, these locations can be refined through the approach
described in i) in a post-processing step (see Fig. E.4). Fig. E.3 shows an ex-
ample of robot locations and RGB-D sensor poses from a bedroom sequence.

The toolkit user can choose between two different point clouds registration algo-
rithms: the ICP-3D method within the MRPT library, and the implementation of the
Generalized-ICP algorithm [27] from PCL. In addition to the sensor localization and
point clouds registration algorithms to be used, a number of options can be selected
from the component’s configuration file:

• Point clouds smoothing. Depth observations from a RGB-D device are prone
to provide noisy measurements over surfaces, effect that notoriously increases
with distance. This option permits to apply a smoothing method to such depth
information before operating with them. Concretely, we rely on the implemen-
tation of the Fast Bilateral Filter algorithm [28] within PCL.
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• Memory utilization. This option enables an incremental registration through
the use of a memory of observations, i.e. when a RGB-D observation taken
at time t from a certain sensor is being registered, all the previous registered
observations from all RGB-D sensors are considered. This increases the quality
of the alignment results at the expense of a higher computational/time cost.

• Key poses. When enabled, only observations taken from considerably different
robot poses are processed. This is useful in cases where the robot speed during
the dataset gathering was too slow, so quite similar observations are collected.
In the current implementation two poses are considered different according
to two user defined parameters: minimum euclidean distance, and minimum
rotation angle difference. This option relies on the robot locations yielded by
the second localization approach.

The output of this component is a dataset sequence with the poses of the RGB-D
observations set according to the their yielded localization into the global frame.

3.4 Sequential visualization

The goal of the sequential visualization component is twofold: first, it permits the user
to visually inspect the results of the RGB-D sensor poses localization, and second, it
creates a 3D reconstruction of the scene. Concretely, the colored point clouds from
the RGB-D observations are projected from its local sensor frame to the global one.
For that, given an observation oi and its sensor pose Soi , each point Pj in its point
cloud is projected as follows:

Pj,G = Soi ⊕Pj,L (E.4)

being Pj,L the point 3D coordinates in the sensor local frame. Once the point clouds
have been projected, they are sequentially prompted to the user employing visualiza-
tion tools from MRPT, which in turn resorts to octrees and OpenGL. The user can
opt for a step by step visualization that adds a new registered point cloud when any
key is pushed, if s/he needs to inspect the scene reconstruction in detail. Once the re-
construction has been shown, it is created a scene file containing the resultant colored
point cloud map of the whole scene (see first column in Fig. E.6).

3.5 Label reconstructed scene

The labeling of the reconstructed scene is performed by manually fitting boxes to the
objects appearing in it. We have chosen boxes as the geometric primitives given their
easy operation and intuitive fit to objects showing different shapes. Thus, for each
object to be labeled in the scene, the user creates and edits a box Bi by setting its
position, scale and rotation so the object is fully contained in it. When such an editing
is completed, each box can be annotated with its ground truth class, e.g. table, chair,
wall, book, etc, conforming a box-label pair (Bi, labeli). It is also possible to label
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Figure E.5: Example of the four box visualization modes during the labeling of the recon-
structed scene.

the scene for instance object recognition purposes, i.e. algorithms trying to recognize
particular instances of objects instead of their general category, by adding an iden-
tifier to these annotations, e.g. book_1 or bed_red. Complex objects can be labeled
employing multiple boxes. The box editing operations, as well as the functionality
described below, can be conveniently performed by means of keyboard shortcuts.

In order to facilitate the labeling process, the user has available a number of op-
tions: check at any moment a list of the already inserted boxes, add an arbitrary num-
ber of boxes, and edit/remove an existing box. Additionally, there are four different
box visualization modes: wireframe, solid, solid with borders, and transparent solid
with borders, which have resulted extremely useful during our tests to visually check
the inner points for each box (see Fig. E.5). When the labeling is finished, the work
done can be saved to a scene file containing the initial reconstructed scene and the set
B = ((B0, label0), ...,(BN , labelN)) of inserted boxes along with their labels, being N
the number of objects appearing in the scene (see second column in Fig. E.6).

3.6 Labels propagation

The last component in the toolkit is in charge of propagating the labels into the recon-
structed scene to each RGB-D observation within the dataset sequence. For that, given
an observation oi, for each point Pj in its point cloud representation it is checked in
which boxes B0, ...,BN the point lies inside. It is recalled that the point cloud of both
the observation and the labeled scene are in the same coordinate frame thanks to
the previous sensor pose localizations, so no additional transformations are needed.
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Figure E.6: First column, reconstructed scenes from the sequences within the dataset. Sec-
ond column, labeled reconstructed scenes. Third-fifth columns, examples of individual point
clouds from RGB-D observations labeled by the propagation of the annotations within the
reconstructed scenes.

Then, if a certain point Pj lies inside a box Bk, for what we employ ray casting with
the boxes’ boundaries, it is annotated with the box associated label (labelk). Since
the correspondence between such a point and the (x,y) coordinates of its associated
pixel into the intensity and depth images from oi are known, such images are also
annotated. Thus, they are labeled at once the point cloud, the intensity image, and the
depth image. The repetition of this process for each RGB-D observation within the
dataset sequence completes the labeling pipeline.

4 Toolkit usage

This section aims to illustrate the usability of OLT, showing its virtues for an effort-
less labeling of RGB-D sequences. For that we have collected a home environment
dataset employing a Giraff commercial robot [29] enhanced with an RGB-D device
(Asus XTion Pro Live [30]), and a 2D laser scanner (Hokuyo model URG-04LX-
UG01 [31]). The robot was teleoperated in two different sessions, fully inspecting a
kitchen in the first session, and a bedroom in the second one. Each session produced
a sequence of observations compound of data from the two added sensors, summing
up a total of 77 RGB-D observations and 142 laser scans.

According to the functionality provided by the toolkit, the dataset sequences were
preprocessed to set the sensors’ calibration parameters (recall Sec. 3.1), and the 2D
laser scans were used to build a geometric map for both, the kitchen and the bed-
room (see Sec. 3.2). These maps were used to localize within them the sensor poses
from where the RGB-D observations were taken. As it was explained in Sec. 3.3,
those geometric maps are not an indispensable requirement for such a localization,
but they have shown to provide useful cues for improving the registration of RGB-D



E12 PAPER E. OBJECT LABELING TOLKIT

observations. Once localized, the RGB-D observations are registered, forming a 3D
reconstruction of both scenes as it is shown in the first column of Fig. E.6 (recall
Sec. 3.4). These reconstructions are then manually labeled by a human operator that
disposes of an intuitive list of options to fit boxes to the scene objects, and annotates
them with their respective belonging classes. Notice that this is the unique point in
the toolkit where human intervention is needed. They were labeled in total 59 ob-
jects, belonging to 39 different classes. The second column in Fig. E.6 shows both
labeled scenes. Finally, the annotated information is automatically propagated to all
the RGB-D observations within the kitchen and bedroom sequences, resulting in an
efficient labeling of their intensity and depth images2. Fig. E.6 shows a number of
labeled point clouds.

Regarding the time spent in labeling, the human operator needed 2 hours to an-
notate both the kitchen and the bedroom scenes, spending on average 2 minutes per
object. To compare this with the labeling of all the RGB-D observations individu-
ally, we followed the typical intensity image labeling approach and annotated 5 non-
consecutive observations from each sequence, extrapolating the results to the whole
dataset. This yields a total of ∼3 hours needed for the labeling of the kitchen se-
quence, and ∼7 hours for the bedroom, which clearly illustrates the benefits of the
toolkit utilization. When following such a typical approach we found problems to ac-
curately label the objects’ boundaries, and with objects partially occluded and with
an unclear belonging class, drawbacks that are mitigated with the utilization of the
proposed toolkit.

It is worth to mention an advantage of the utilization of a geometric map to lo-
calize sensor poses when sequences to be labeled are gathered from the same places
captured at different times. In this case, the labeling performed for a sequence can be
loaded into the reconstructed scene of other sequence, so only the boxes associated
to moved/appearing/disappearing objects have to be modified/added, resulting in an
additional time saving.

5 Conclusion and future work

In this work we have presented the Object Labeling Toolkit (OLT), a publicly avail-
able software solution for the management of arbitrary large robotic datasets (http:
//mapir.isa.uma.es/work/object-labeling-toolkit). The major goal of
OLT is to provide the robotic community with a tool to efficiently label objects ap-
pearing in a sequence of RGB-D observations. It has been also presented the flexible,
highly customizable software components aiming to fit the needs of particular robotic
datasets. The toolkit can handle different platform setups, i.e. datasets gathered by an
arbitrary number of RGB-D sensors, and even can profit from 2D laser scanners,
devices that are usually present in a mobile robot. We have illustrated how OLT is

2Recall that each point in the point cloud is associated with a pixel from the depth image, and given
that this image and the intensity one are registered, the labeling of both images from the point cloud is
straightforward.

http://mapir.isa.uma.es/work/object-labeling-toolkit
http://mapir.isa.uma.es/work/object-labeling-toolkit


applied to the labeling of a home environment dataset, and show that it considerably
decreases the time needed by an human to complete such a task.

The toolkit is in constant development with the inclusion of new features and
functionalities. For example, we are studying the incorporation of algorithms for a
globally consistent alignment of the RGB-D observations used to reconstruct a scene.
We also plan to integrate, in addition to boxes, different geometric primitives to be
used during the labeling of the reconstructed scenes, e.g. spheres. OLT welcomes any
contribution from the robotics community.
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Semantic maps augment metric-topological maps with meta-information, i.e. se-
mantic knowledge aimed at the planning and execution of high-level robotic
tasks. Semantic knowledge typically encodes human-like concepts, like types
of objects and rooms, which are connected to sensory data when symbolic repre-
sentations of percepts from the robot workspace are grounded to those concepts.
This symbol grounding is usually carried out by algorithms that individually cat-
egorize each symbol and provide a crispy outcome – a symbol is either a member
of a category or not. Such approach is valid for a variety of tasks, but it fails at: (i)
dealing with the uncertainty inherent to the grounding process, and (ii) jointly ex-
ploiting the contextual relations among concepts (e.g. microwaves are usually in
kitchens). This work provides a solution for probabilistic symbol grounding that
overcomes these limitations. Concretely, we rely on Conditional Random Fields
(CRFs) to model and exploit contextual relations, and to provide measurements
about the uncertainty coming from the possible groundings in the form of beliefs
(e.g. an object can be categorized (grounded) as a microwave or as a nightstand
with beliefs 0.6 and 0.4, respectively). Our solution is integrated into a novel se-
mantic map representation called Multiversal Semantic Map (MvSmap), which
keeps the different groundings, or universes, as instances of ontologies annotated
with the obtained beliefs for their posterior exploitation. The suitability of our
proposal has been proven with the Robot@Home dataset, a repository that con-
tains challenging multi-modal sensory information gathered by a mobile robot in
home environments.

Keywords: mobile robots, symbol grounding, semantic maps, conditional random
fields, ontologies, probabilistic inference

1 Introduction

A mobile robot intended to operate within human environments needs to create and
maintain an internal representation of its workspace, commonly referred to as a map.
Robotic systems rely on different types of maps depending on their goals. For exam-
ple, metric maps are purely geometric representations that permit robot self-localization
with respect to a given reference frame [1, 2]. Topological maps consider a graph
structure to model areas of the environment and their connectivity, hence straightfor-
wardly supporting navigational planning tasks [3, 4]. In its turn, Hybrid maps come
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up from the combination of the previous ones by maintaining local metric informa-
tion and a graph structure to perform basic but core robotic skills as localization and
global navigation [5, 6]. A pivotal requirement for the successful building of these
types of maps is to deal with uncertainty coming, among other sources, from errors in
the robot perception (limited field of view and range of sensors, noisy measurements,
etc.), and inaccurate models and algorithms. This issue is addressed in state-of-the-art
approaches through probabilistic techniques [7].

Despite the possibilities of these representations, planning and executing high-
level robotic tasks within human-like environments demand more sophisticated maps
to enable robots, for example, to deal with user commands like “hey robot! I am leav-
ing, take care of the oven while I am out, please” or ‘Guide the customer through the
aisle with garden stuff and show him the watering cans”. Humans share a common-
sense knowledge about concepts like oven, or garden stuff, which must be transferred
to robots in order to successfully face those tasks. Semantic maps emerged to cope
with this need, providing the robot with the capability to understand, not only the
spatial aspects of human environments, but also the meaning of their elements (ob-
jects, rooms, etc.) and how humans interact with them (e.g. functionalities, events,
or relations). This feature is distinctive and traversal to semantic maps, being the
key difference with respect to maps that simply augment metric/topological models
with labels to state the category of recognized objects or rooms [8, 9, 10, 11, 12].
Contrary, semantic maps handle meta-information that models the properties and re-
lations of relevant concepts therein the domain at hand, codified into a Knowledge
Base (KB), stating that, for example, microwaves are box-shaped objects usually
found in kitchens and useful for heating food. Building and maintaining semantic
maps involve the symbol grounding problem [13, 14, 15], i.e. linking portions of the
sensory data gathered by the robot (percepts), represented by symbols, to concepts in
the KB by means of some categorization and tracking method.

Semantic maps generally support the execution of reasoning engines, provid-
ing the robot with inference capabilities for efficient navigation, object search [16],
human-robot interaction [17] or pro-activeness [18] among others. Typically, such
engines are based on logical reasoners that work with crispy1 information (e.g. a per-
cept is identified as a microwave or not). The information encoded in the KB, along
with that inferred by logical reasoners, is then available for a task planning algorithm
dealing with this type of knowledge and orchestrating the aforementioned tasks [19].
Although crispy knowledge-based semantic maps can be suitable in some setups, es-
pecially in small and controlled scenarios [20], they are also affected by uncertainty
coming from both, the robot perception, and the inaccurate modeling of the elements
within the robot workspace. Moreover, these systems usually reckon on off-the-shelf
categorization methods to individually ground percepts to particular concepts, which
disregard the contextual relations between the workspace elements: a rich source of

1For the purpose of this work, the term crispy takes the same meaning as in classical logic: it refers to
information or processes dealing with facts that either are true or not.
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information intrinsic to human-made environments (for example that nigh-stands are
usually in bedrooms and close to beds).

In this work we propose a solution for addressing the symbol grounding prob-
lem from a probabilistic stance, which permits both exploiting contextual relations
and modeling the aforementioned uncertainties. For that we employ a Conditional
Random Field (CRF), a particular type of Probabilistic Graphical Model [21], to rep-
resent the symbols of percepts gathered from the workspace as nodes in a graph,
and their geometric relations as edges. This representation allows us to jointly model
the symbol grounding problem, hence exploiting the relations among the elements in
the environment. CRFs support the execution of probabilistic inference techniques,
which provide the beliefs about the grounding of those elements to different concepts
(e.g. an object can be a bowl or a cereal box with beliefs 0.8 and 0.2 respectively).
In other words, the uncertainty coming both from the robot perception, and from the
own symbol grounding process, is propagated to the grounding results in the form of
beliefs.

The utilization of CRFs also leads to a number of valuable advantages:

• Fast inference: probabilistic reasoning algorithms, resorting to approximate
techniques, exhibit an efficient execution that permits the retrieval of inference
results in a short time [22, 23].

• Multi-modal information: CRFs easily integrate percepts coming from different
types of sensors, e.g. RGB-D images and 2D laser scans, related to the same
elements in the workspace [21].

• Spatio-temporal coherence: they can be dynamically modified to mirror new
information gathered by the robot, also considering previously included per-
cepts. This is done in combination with an anchoring process [14].

• Life-long learning: CRFs can be re-trained in order to take into account new
concepts not considered during the initial training, but that could appear in the
current robot workspace [24].

In order to accommodate the probabilistic outcome of the proposed grounding
process, a novel semantic map representation, called Multiversal Semantic Map
(MvSmap), is presented. This map extends the previous work by Galindo et al. [25],
and considers the different combinations of possible groundings, or universes, as in-
stances of ontologies [26] with belief annotations on their grounded concepts and re-
lations. According to these beliefs, it is also encoded the probability of each ontology
instance being the right one. Thus, MvSmaps can be exploited by logical reasoners
performing over such ontologies, as well as by probabilistic reasoners working with
the CRF representation. This ability to manage different semantic interpretations of
the robot workspace, which can be leveraged by probabilistic conditional planners
(e.g. those in [27] or [28]), is crucial for a coherent robot operation.

To study the suitability of our approach, we have conducted an experimental eval-
uation focusing on the construction of MvSmaps from facilities in the novel
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Robot@Home dataset [29]. This repository consists of 81 sequences containing
87,000+ timestamped observations (RGB-D images and 2D laser scans), collected by
a mobile robot in different ready to move apartments. Such dataset permits us to in-
tensively analyze the semantic map building process, demonstrating the claimed rep-
resentation virtues. As an advance on this study, a success of ∼ 81.5% and ∼ 91.5%
is achieved while grounding percepts to object and room concepts, respectively.

The next section puts our work in the context of the related literature. Section 3
introduces the proposed Multiversal Semantic Map, while Section 4 describes the
processes involved in the building of the map for a given environment, including
the probabilistic symbol grounding. The suitability of our approach is demonstrated
in Section 5, and Section 6 discuses some of its potential applications. Finally, Sec-
tion 7 concludes the paper.

2 Related work

This section reviews the most relevant related works addressing the symbol grounding
problem (Section 2.1), aiming to put into context our probabilistic solution, as well as
the most popular approaches for semantic mapping that can be found in the literature
(Section 2.2).

2.1 Symbol grounding

As commented before, the symbol grounding problem consists of linking symbols
that are meaningless by themselves to concepts in a Knowledge Base (KB), hence
retrieving a notion of their meanings and functionalities in a given domain [13]. In the
semantic mapping problem, symbols are typically abstract representations of percepts
from the robot workspace, namely objects and rooms [15, 30]. Therefore, a common
approach to ground those symbols is their processing by means of categorization
systems, whose outcomes are used to link them to concepts in the KB. The remaining
of this section provides a brief overview of categorization approaches for both objects
and rooms, and concludes with our proposal for a probabilistic grounding.

In its beginnings, the vast literature around object categorization focused on the
classification of isolated objects employing their geometric/appearance features. A
popular example of this is the work by Viola and Jones [31], where an integral image
representation is used to encode the appearance of a certain object category, and is
exploited by a cascade classifier over a sliding window to detect occurrences of such
object type in intensity images. A limiting drawback of this categorization method
is the lack of an uncertainty measurement about its outcome. Another well known
approach, which is able to provide such uncertainty, is the utilization of image de-
scriptors like Scale-Invariant Feature Transform (SIFT) [32] or Speeded-Up Robust
Features (SURF) [33] to capture the appearance of objects, and its posterior exploita-
tion by classifiers like Supported Vector Machines (SVMs) [34] or Bag-of-Words
based ones [35, 36]. The work by Zhang et al. [37] provides a comprehensive review
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of methods following this approach. It is also considerable the number of works tack-
ling the room categorization problem through the exploitation of their geometry or
appearance, like the one by Mozos et al. [38] which employs range data to classify
spaces according to a set of geometric features. Also popular are works resorting to
global descriptors of intensity images, like the gist of the scene proposed by Oliva
and Torralba [39], those resorting to local descriptors like the aforementioned SIFT
and SURF [40, 41], or the works combining both types of cues, global and local,
pursuing a more robust performance [42, 43]. Despite the acceptable success of these
traditional approaches, they can produce ambiguous results when dealing with ob-
jects/rooms showing similar features to two or more categories [44]. For example,
these methods could have difficulties to categorize a white, box-shaped object as a
microwave or a nightstand.

For that reason, modern categorization systems also integrate contextual informa-
tion of objects/rooms, which has proven to be a rich source of information for the
disambiguation of uncertain results [45, 46, 47]. Following the previous example, if
the object is located in a bedroom and close to a bed, this information can be used to
determine that it will likely be a nightstand. Probabilistic Graphical Models (PGMs)
in general, and Undirected Graphical Models (UGMs) in particular, have became
popular frameworks to model such relations and exploit them in combination with
probabilistic inference methods [21]. Contextual relations can be of different nature,
and can involve objects and/or rooms.

On the one hand, objects are not placed randomly, but following configurations
that make sense from a human point of view, e.g. faucets are on sinks, mouses can
be found close to keyboards, and cushions are often placed on couches or chairs.
These object–object relations have been exploited, for example, by Anand et al. [48],
which reckon on a model isomorphic to a Markov Random Field (MRF) to leverage
them in home and office environments, or by Valentin et al. [49], which employ a
Conditional Random Field (CRF), the discriminant variant of MRFs, to classify the
faces of mesh-based representations of scenes compounded of objects according to
their relations. Other examples of works also resorting to CRFs are the one by Xiong
and Huver [50], which employs them to categorize the main components of facilities:
clutters, walls, floors and ceilings, and those by Ruiz-Sarmiento et al. [22, 51, 52],
where CRFs and ontologies [26] work together for achieving a more efficient and
coherent object categorization.

On the other hand, object–room relations also supposes a useful source of infor-
mation: objects are located in rooms according to their functionality, so the presence
of an object of a certain type is a hint for the categorization of the room and, like-
wise, the category of a room is a good indicator of the object categories that can
be found therein. Thus, recent works have explored the joint categorization of ob-
jects and rooms leveraging both, object–object and object–room contextual relations.
CRFs have proven to be a suitable choice for modelling this holistic approach, as
it has been shown in the works by Rogers and Christensen [53], Lin et al. [54], or
Ruiz-Sarmiento et al. [55].
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In this work we propose the utilization of a CRF to jointly categorize the percepts
of objects and rooms gathered during the robot exploration of an environment, as
well as its integration into a symbol grounding system. This CRF is exploited by a
probabilistic inference method, namely Loopy Belief Propagation (LBP) [56, 57], in
order to provide uncertainty measurements in the form of beliefs about the grounding
of the symbols of these percepts to categories. Such categories correspond to con-
cepts codified within an ontology, stating the typical properties of objects and rooms,
and giving a semantic meaning to those symbols. Additionally, to make the symbols
and their groundings consistent over time, we rely on an anchoring process [14]. To
accommodate the outcome of this probabilistic symbol grounding, a novel semantic
map representation is proposed.

2.2 Semantic maps

In the last decade, a number of works have appeared in the literature contributing
different semantic map representations. One of the earliest works in this regard is the
one by Galindo et al. [25], where a multi-hierarchical representation models, on the
one hand, the concepts of the domain of discourse through an ontology, and on the
other hand, the elements from the current workspace in the form of a spatial hierarchy
that ranges from sensory data to abstract symbols. NeoClassic is the chosen system
for knowledge representation and reasoning through Description Logics (DL), while
the employed categorization system is limited to the classification of simple shape
primitives, like boxes or cylinders, as furniture, e.g. a red box represents a couch.
The potential of this representation was further explored in posterior works, e.g. for
improving the capabilities and efficiency of task planners [19], or for the autonomous
generation of robot goals [18]. A similar approach is proposed in Zender et al. [20],
where the multi-hierarchical representation is replaced by a single hierarchy rang-
ing from sensor-based maps to a conceptual abstraction, which is encoded in a Web
Ontology Language (OWL)–DL ontology defining an office domain. To categorize
objects, they rely on a SIFT-based approach, while rooms are grounded according
to the objects detected therein. In Nüchter and Hertzberg [58] a constraint network
implemented in Prolog is used to both codify the properties and relations among
the different planar surfaces in a building (wall, floor, ceiling, and door) and clas-
sify them, while two different approaches are considered for object categorization: a
SVM-based classifier relying on contour-based features, and a Viola and Jones cas-
cade of classifiers reckoning on range and reflectance data.

These works set out a clear road for the utilization of ontologies to codify se-
mantic knowledge [59], which has been further explored in more recent research. An
example of this is the work by Tenorth et al. [60], which presents a system for the
acquisition, representation, and use of semantic maps called KnowRob-Map, where
Bayesian Logic Networks are used to predict the location of objects according to their
usual relations. The system is implemented in SWI-Prolog, and the robot’s knowledge
is represented in an OWL-DL ontology. In this case, the categorization algorithm clas-
sifies planar surfaces in kitchen environments as tables, cupboards, drawers, ovens
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Figure F.1: Example of Multiversal Semantic Map representing a simple domestic environ-
ment.

or dishwashers [11]. The same map type and categorization method is employed in
Pangercic et al. [61], where the authors focus on the codification of object features
and functionalities relevant to the robot operation in such environments. The paper
by Riazuelo et al. [62] describes the RoboEarth cloud semantic mapping which also
uses an ontology for codifying concepts and relations, and rely on a Simultaneous
Localization and Mapping (SLAM) algorithm for representing the scene geometry
and object locations. The categorization method resorts to SURF features (like in
Reinaldo et al.[63]), and performs by only considering the object types that are prob-
able to appear in a given scene (the room type is known beforehand). In Günther et
al. [64], the authors employ an OWL-DL ontology in combination with rules defined
in the Semantic Web Rule Language (SWRL) to categorize planar surfaces.

It has been also explored the utilization of humans for assisting during the seman-
tic map building process through a situated dialogue. Examples of works addressing
this are those by Bastianelli et al. [65], Gemignani et al. [66], or the aforementioned
one by Zender et al. [20]. The main motivation of these works is to avoid the utiliza-
tion of categorization algorithms, given the numerous challenges that they must face.
However, they themselves argue that the more critical improvement of their propos-
als would arise from a tighter interaction with cutting-edge categorization techniques.
The interested reader can refer to the survey by Kostavelis and Gasteratos [67] for an
additional, comprehensive review of semantic mapping approaches for robotic tasks.

The semantic mapping techniques discussed so far rely on crispy categorizations
of the perceived spatial elements, e.g. an object is either a cereal box or not, a room is a
kitchen or not, etc., which are typically exploited by (logical) reasoners and planners
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for performing a variety of robotic tasks. As commented before, these approaches:
(i) can lead to an incoherent robot operation due to ambiguous grounding results, and
(ii) exhibit limitations to fully exploit the contextual relations among spatial elements.
In this work we propose a solution for probabilistic symbol grounding to cope with
both, the uncertainty inherent to the grounding process, and the contextual relations
among spatial elements. Perhaps the closet work to ours is the one by Pronobis and
Jensfelt [16], which employs a Chain Graph (a graphical model mixing directed and
undirected relations) to model the grounding problem from a probabilistic stance,
but that fails at fully exploiting contextual relations. We also present a novel repre-
sentation called Multiversal Semantic Map (MvSmap), in order to accommodate and
further exploit the outcome of the probabilistic symbol grounding.

3 The Multiversal Semantic Map

The proposed Multiversal Semantic Map (MvSmap) (see Figure F.1) is inspired by the
popular, multi-hierarchical semantic map presented in Galindo et al. [25]. This map
considers two separated but tightly related hierarchical representations containing:
(i) the semantic, meta-information about the domain at hand, e.g. refrigerators keep
food cold and are usually found in kitchens, and (ii) the factual, spatial knowledge
acquired by the robot and its implemented algorithms from a certain workspace, e.g.
obj-1 is perceived and categorized as a refrigerator. These hierarchies are called
terminological box (T-Box) and spatial box (S-Box), respectively, names borrowed
from the common structure of hybrid knowledge representation systems [68].

MvSmaps enhance this representation by including uncertainty, in the form of be-
liefs, about the groundings (categorizations) of the spatial elements in the S-Box to
concepts in the T-Box. For example, a perceived object, represented by the symbol
obj-1, could be grounded by the robot as a microwave or a nightstand with be-
liefs 0.65 and 0.35, respectively, or it might think that a room (room-1) is a kitchen
or a bedroom with beliefs 0.34 and 0.67. Moreover, in this representation the rela-
tions among the spatial elements play a pivotal role, and they have also associated
compatibility values in the form of beliefs. To illustrate this, if obj-1 was found
in room-1, MvSmaps can state that the compatibility of obj-1 and room-1 being
grounded to microwave and kitchen respectively is 0.95, while to microwave and
bedroom is 0.05. These belief values are provided by the proposed probabilistic in-
ference process (see Section 4.4).

Furthermore, MvSmaps assign a probability value to each possible set of ground-
ings, creating a multiverse, i.e. a set of universes stating different explanations of
the robot environment. A universe codifies the joint probability of the observed spa-
tial elements being grounded to certain concepts, hence providing a global sense of
certainty about the robot’s understanding of the environment. Thus, following the
previous example, a universe can represent that obj-1 is a microwave and room-1

is a kitchen, while a parallel universe states that obj-1 is a nightstand and room-1

is a bedroom, both explanations annotated with different probabilities. Thereby, the
robot performance is not limited to the utilization of the most probable universe, like
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traditional semantic maps do, but it can also consider other possible explanations with
different semantic interpretations, resulting in a more coherent robot operation.

The next sections introduce the terminological box (Section 3.1), the spatial box
(Section 3.2), and the multiverse (Section 3.3) in more detail, as well as the formal
definition of MvSmaps (Section 3.4). In its turn, Section 4 describes how a MvSmap
for a given robot workspace is built from scratch.

3.1 Representing semantic knowledge: the T-Box

The terminological box, or T-Box, represents the semantic knowledge of the domain
where the robot is to operate, modeling relevant information about the type of ele-
ments that can be found there. Semantic knowledge has been traditionally codified
as a hierarchy of concepts (e.g. Microwave is-a Object or Kitchen is-a Room),
properties of that concepts (Microwave hasShape Box), and relations among them
(Microwave isIn Kitchen). This hierarchy is often called ontology [26], and its struc-
ture is a direct consequence of its codification as a taxonomy. The T-Box gives mean-
ing to the percepts in the S-Box through the grounding of their symbolic represen-
tations to particular concepts. For example, a segmented region of a RGB-D image,
symbolized by obj-1, can be grounded to an instance of the concept Microwave.

The process of obtaining and codifying semantic knowledge can be tackled in
different ways. For example, web mining knowledge acquisition systems can be used
as mechanisms to obtain information about the domain of discourse [69]. Available
common-sense Knowledge Bases, like ConceptNet [70] or Open Mind Indoor Com-
mon Sense [71], can be also analyzed to retrieve this information. Another valuable
option is the utilization of internet search engines, like Google’s image search [72],
or image repositories like Flickr [73], for extracting knowledge from user-uploaded
information. In this work we have codified the semantic knowledge through a hu-
man elicitation process, which supposes a truly and effortless encoding of a large
number of concepts and relations between them. In contrast to online search or web
mining-engine based methodologies, this source of semantic information (a person
or a group of people) is trustworthy, so there is less uncertainty about the validity
of the information being managed. Moreover, the time required by this approach is
usually tractable, as reported in [52], although it strongly depends on the complexity
of domain at hand. For highly complex domains the web mining approach – under
human supervision – could be explored.

The left part of the T-Box in Figure F.1 depicts an excerpt of the ontology used in
this work, defining rooms and objects usually found at homes. The top level sets the
root, abstract concept Thing, with two children grouping the two types of elements
that we will consider during the building of the map, namely Rooms and Objects.
Rooms can belong to different concepts like Kitchen, Bedroom, etc., while exam-
ples of types of objects are Microwave, Nightstand, etc. The right part of the T-Box
illustrates the simplified definitions of the concepts Bedroom and Microwave, codi-
fying some of their properties and relations with other concepts.
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3.2 Modeling space: the S-Box

The spatial box (S-Box) contains factual knowledge from the robot workspace, in-
cluding the morphology and topology of the space, geometric/appearance informa-
tion about the perceived spatial elements, symbols representing those elements, and
beliefs concerning their grounding to concepts in the T-Box. The S-Box also adopts a
hierarchical structure, ranging from sensory-like knowledge at the ground level to ab-
stract symbols at the top one (see S-Box in Figure F.1). This representation is the com-
mon choice in the robotics community when dealing with large environments [74].

At the bottom of this hierarchy is the spatial level, which builds and maintains a
metric map of the working space. MvSmaps do not restrict the employed metric map
to a given one, but any geometric representation can be used, e.g. point-based [75],
feature-based [76], or occupancy grid maps [1]. This map permits the robot to self-
localize in a global frame, and also to locate the perceived elements in its workspace.

The top level of the S-Box is the symbolic level, envisioned to maintain an abstract
representation of the perceived elements through symbols, including the robot itself
(e.g. obj-2, room-1, robot-1, etc.), which are modeled as nodes. Arcs between
nodes state different types of relations, as for example, objects connected by a relation
of proximity (see close relations in the symbolic level in Figure F.1), or an object and
a room liked by a relation of location (at relations). In this way, the symbolic level
constitutes a topological representation of the environment, which can be used for
global navigation and task planning purposes [77].

Finally, the intermediate level maintains the nexus between the S-Box and the
T-Box. This level stores the outcome of an anchoring process, which performs the
critical function of creating and maintaining the correspondence between percepts of
the environment and symbols that refer to the same physical elements [14, 78]. The
result is a set of the so-called anchors, which keep geometric/appearance information
about the percepts (location, features, relations, etc.) and establish links to their sym-
bolic representation. Additionally, in a MvSmap anchors are in charge of storing the
beliefs about the grounding of their respective symbols, as well as their compatibility
with respect to the grounding of related elements.

For illustrative purposes, the middle level in Figure F.1 exemplifies two anchors
storing information of a percept from a microwave (in orange) and from a kitchen (in
green). The coloured doted lines are pointers to their location in the metric map and
their associated symbols, while the black doted lines point at the percepts of these
elements from the environment. As an example, the outcome of a symbol grounding
process is shown (field Concept within the anchor), which gives a belief for obj-1
being grounded to Microwave and Nightstand of 0.65 and 0.35 respectively, while
those for room-1 are 0.33 for Kitchen and 0.67 for Bedroom. It is also shown the
beliefs, or compatibility, for the symbols obj-1 and room-1 (related through the
connection r1) being grounded to certain pairs of concepts, e.g. 0.95 for Microwave
and Kitchen, while 0.05 for Microwave and Bedroom.
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3.3 Multiple semantic interpretations: the Multiverse

MvSmaps define the possible sets of symbols’ groundings as universes. For exam-
ple, by considering only the elements represented by obj-1 and room-1 in Fig-
ure F.1, four universes are possible: U1:{(obj-1 is-a Nightstand), (room-1 is-a
Kitchen)}, U2:{(obj-1 is-a Microwave), (room-1 is-a Kitchen)}, U3:{(obj-1 is-a
Nightstand), (room-1 is-a Bedroom)}, and U4:{(obj-1 is-a Microwave), (room-1
is-a Bedroom)}. This multiverse considers the possible explanations to the elements
in the robot workspace. Additionally, MvSmaps annotate universes with their proba-
bility of being the plausible one, computed as the joint probability of grounding the
symbols to the different concepts, giving a measure of certainty abut the current un-
derstanding of the robot about its workspace. Thus, a universe can be understood as
an instance of the codified ontology with a set of grounded symbols and annotated
probabilities.

To highlight the importance of the multiverse, let’s us consider the simplified
scenario depicted in Figure F.1. Under the title Multiverse, the four possible universes
are displayed, with their probabilities annotated in brackets along with their names.
The coloured (green and orange) concepts in those universes state the symbols that
are grounded to them. We can see how the most plausible universe, i.e. , combination
of groundings, is Universe 3 (U3) (represented with a bold border), which sets obj-1
as a nightstand and room-1 as a bedroom. Suppose now that the robot is commanded
to store a pair of socks in the nightstand. If the robot relies only on the most probable
universe, we could end up with our socks heated in the microwave. However, if the
robot also considers other universes, it could be aware that Universe 2 (U2) is also a
highly probable one, considering it as a different interpretation of its knowledge. In
this case the robot should disambiguate both understandings of the workspace by, for
example, gathering additional information from the environment, or in collaboration
with humans.

It is worth mentioning that the information encoded in the Multiverse can be
exploited, for example, by probabilistic conditional planners (e.g. those in [27] or
[28]) for achieving a more coherent robot operation. Also, when a certain universe
reaches a high belief, it could be considered as the ground, categorical truth, hence
enabling the execution of logical inference engines like Pellet [79], FaCT++ [80], or
Racer [81].

3.4 Formal description of MvSmaps

Given the ingredients of MvSmaps provided in the previous sections, a Multiversal Se-
mantic Map can be formally defined by the quintuple M vS map= {R,A ,Y ,O,M },
where:

• R is the metric map of the environment, providing a global reference frame for
the observed spatial elements.

• A is a set of anchors internally representing such spatial elements, and linking
them with the set of symbols in Y .
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Figure F.2: UML activity diagram illustrating the pipeline for the building and maintaining of
a MvSmap according to the sensory information gathered during the robot exploration. Blue
rounded boxes are processes, while white shapes stand for consumed/generated data. The pro-
cesses or data related to the same component of the semantic map are grouped together.

1 200 400 600

Figure F.3: Example of the progressive building of an occupancy grid map from a home envi-
ronment. The 2D laser scans in red are the scans currently being aligned with the map, while
the red boxes represent the estimated robot location. White cells in the map stand for free space,
while black ones are occupied areas. Grey cells represent unknown space. Quantities in boxes
are the number of scans registered so far to build the corresponding map.

• Y is the set of symbols that represent the spatial elements as instances of con-
cepts from the ontology O .

• O is an ontology codifying the semantic knowledge of the domain at hand.

• M encodes the multiverse, containing the set of universes.

Notice that the traditional T-Box and S-Box are defined in a MvSmap by O and
{R,A ,Y } respectively. Since the robot is usually provided with the ontology O
beforehand, building a MvSmap consists of creating and maintaining the remaining
elements in the map definition, as described in the next section.
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4 Building the Map

This section describes the processes involved in the building of a MvSmap for a
given environment according to the sensory information gathered by a mobile robot
(see Figure F.2). In our discussion, we assume that the robot is equipped with a 2D
range laser scanner and a RGB-D camera, two sensors commonly found in robotic
platforms, although they could be replaced by any other sensory system able to sur-
vey the spatial elements in the environment.

In a nutshell, when a new 2D laser scan is available, it triggers the update of the
2D metric map R in the spatial level (see Section 4.1). In its turn, if a new RGB-D
observation is collected, it is processed in order to characterize the percepts of the
surveyed room and the objects therein, as well as their contextual relations (see Sec-
tion 4.2). The characterized percepts fed an anchoring process that compares them
with those from previously perceived elements, which are stored in the form of an-
chors in the anchoring level (see Section 4.3). When a percept is matched with a
previous one, its corresponding anchor is updated, otherwise a new anchor, including
a new symbol in the symbolic level, is created. Finally, the information encoded in the
anchoring level is used to build a Conditional Random Field, which is in charge of
grounding the symbols of the spatial elements to concepts in the T-Box, also provid-
ing a measure of the uncertainty concerning such groundings in the form of beliefs
(see Section 4.4). These beliefs are stored in the anchors, and are employed to update
the multiverse M . The next sections describe the core processes of this pipeline in
detail.

4.1 Building the underlying metric map

During the robot exploration, the collected 2D laser scans are used to build a metric
representation of the environment in the form of an occupancy grid map [1]. For that,
we rely on standard Simultaneous Localization and Mapping (SLAM) techniques to
jointly build the map and estimate the robot pose [82].

Thus, the building process is based on an Iterative Closet Point (ICP) algorithm [83],
which aligns each new scan to the current reference map. Once aligned, the scan mea-
surements are inserted into the map, hence building it incrementally. Given that the
robot is also localized in the map at any moment, the spatial information coming from
the sensors mounted on it (e.g. RGB-D cameras) can be also located. For that, those
sensors have to be extrinsically calibrated, that is, the sensors’ position in the robot
local frame must be known. Figure F.3 shows an example of the incremental building
of a metric map from an apartment in the Robot@Home dataset [29].

4.2 Characterizing percepts

Concurrently with the metric map building, when a RGB-D observation is collected it
is processed in order to characterize the percepts of the spatial elements therein. This
information is required by the posterior anchoring process, so it can decide which
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percepts correspond to elements previously observed and which ones are perceived
for the first time, being consequently incorporated to the semantic map.

Typically, a RGB-D observation contains a number of percepts corresponding
to objects, while the whole observation itself corresponds to the percept of a room
(see Figure F.6-left). On the one hand, objects’ percepts are characterized through
geometric (planarity, linearity, volume, etc.) and appearance features (e.g. hue, sat-
uration, and value means). On the other hand, room percepts are prone to not cover
the entire room, i.e. it is common to not survey the whole room with a single RGB-D
observation, so the extracted geometric and appearance features (footprint, volume,
hue, saturation and value histograms, etc.) are, in addition, averaged over time by
considering those from past room percepts. Moreover, the metric map hitherto built
for that room is also considered and characterized, since it supposes a rich source of
information for its posterior categorization [38]. The upper part of Table F.1 lists the
features used to describe those percepts.

In addition to objects and rooms, the contextual relations among them are also ex-
tracted and characterized. We have considered two types of relationships, one linking
objects that are placed closer than a certain distance (close), and another one relating
an object and its container room (at). The lower part of Table F.1 lists the features
employed to characterize such relations. It is worth mentioning the function of the
bias feature characterizing the object–room relations, which is a fixed value that per-
mits the CRF to automatically learn the likelihood of finding a certain object type into
a room of a certain category (see Section 4.4). The outcome of this characterization
process is known as the signature of the percept.

4.3 Modeling and keeping track spatial elements:
Anchoring

Once characterized, the percepts feed an anchoring process [14], which establishes
the correspondences between the symbols of the already perceived spatial elements
(e.g. obj-1 or room-1) and their percepts. For that, it creates and maintains internal
representations, called anchors, which include: the features of the spatial elements
and their relations, their geometric location2, their associated symbols, the beliefs
about the groundings of those symbols, and their compatibility with the groundings
of related elements. The content of an anchor was previously illustrated in the an-
choring level in Figure F.1. In its turn, the sub-components of the anchoring process
are depicted in Figure F.4.

Let Sin = {s1, . . . ,sn} be the set of characterized percepts surveyed in the last
RGB-D observation. Then, the signatures of these percepts are compared with those
of anchors already present in the semantic map, which produces two disjoint sets: the
set Supdate of percepts of spatial elements that have been previously observed in the
environment, and the set Snew of percepts of elements detected for the first time. We

2Notice that although the underlying metric map is 2D, the extrinsic calibration of sensors can be used
to locate an element in 6D (3D position and 3D orientation).
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Figure F.4: UML activity diagram showing the sub-processes (blue rounded boxes) and con-
sumed/produced data (white shapes) involved in the anchoring process.

t0

timeline

ti

Figure F.5: Example of the matching step within the anchoring process, showing two point
clouds gathered from a kitchen at different time instants. The green shapes contain percepts
that are matched as belonging to the same spatial element, while the percepts enclosed in the
blue and red ones have been correctly considered as corresponding to different elements due to
their different appearance (they contain a paper roll and a milk bottle respectively).

have considered a simple but effective matching algorithm that checks the location of
two percepts, the overlapping of their bounding boxes, and their appearance to decide
if they refer to the same physical element.

The two sets of percepts resulting from the matching step are processed differ-
ently: while the set Supdate triggers the update of their associated anchors, i.e. their
locations, features, and relations are revised according to the new available informa-
tion, the set Snew produces the creation of new anchors. As a consequence, the con-
tent of the symbolic level is also revised: the symbols representing updated anchors
are checked for possible changes in their relations, while new symbols are created
for the new anchors. As an example, Figure F.5 shows two point clouds representing
RGB-D images gathered from the same kitchen at different time instants. At time t0,
two new anchors are created for accommodating the information from the two per-
cepts (highlighted in green and blue). Then, at time t1, the signature of the percept
in green is matched with the one with the same color at t0, while the percept in red,
despite their similar location and size, is considered different from the one in blue



4. BUILDING THE MAP F17

Table F.1: Features used to characterize the percepts (objects and rooms) and contextual re-
lations among them (object-object and object-room). These features are grouped according to
their type, geometric or appearance, stating in parentheses the type of information from where
they come, RGB-D images or metric maps. Values in parentheses in the features’ names give
the number of features grouped under the same name (for example the centroid of an object
has x, y and z coordinates).

Object Room
Geometric (RGB-D) Geometric (RGB-D)
Planarity Scatter (2)
Scatter Footprint (2)
Linearity Volume (2)
Min. height Appearance (RGB-D)
Max. height H, S, V, means (6)
Centroid (3) H,S,V, Stdv. (6)
Volume H, S, V, histograms (30)
Biggest area Geometric (Metric map)
Orientation Elongation
Appearance (RGB-D) Scatter
H, S, V, means (3) Area
H, S, V, Stdv. (3) Compactness
H, S, V, histograms (15) Linearity

Object-Object Object-Room
Geometric (RGB-D) Bias
Perpendicularity
Vertical distance
Volume ratio
Is on relation
Appearance (RGB-D)
H, S, V, mean diff.
H, S, V, Stdv. diff.

at t0 due to their appearance, and a new anchor is created. Notice that to complete
the aforementioned content of anchors the beliefs about the grounding of their sym-
bols, as well as the compatibility with the groundings of related elements, must be
computed. This is carried out by the probabilistic techniques in the next section.

Although the described anchoring process could appear similar to a tracking pro-
cedure, it is more sophisticated regarding the information that is stored/managed. For
example, in typical tracking problems, it is usually not needed to maintain a symbolic
representation of their tracks, nor to ground them to concepts within a knowledge
base. Further information in this regard can be found in the work by Coradeschi and
Saffiotti [14].
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4.4 Probabilistic symbol grounding

We holistically model the symbol grounding problem employing a Conditional Ran-
dom Field (CRF) (see Section 4.4), a probabilistic technique first proposed by Laf-
ferty et al.[84] that, in addition to exploiting the relations among objects and rooms,
also provides the beliefs about such groundings through a probabilistic inference pro-
cess (see Section 4.4). These belief values are the main ingredients for the generation
and update of the multiverse in the MvSmap (see Section 4.5).

CRFs to model the symbol grounding problem

The following definitions are required in order to set the problem from this proba-
bilistic stance:

• Let s = [s1, ..,sn] be a vector of n of spatial elements, stating the observed ob-
jects or rooms in the environment, which are characterized by means of the
features in their associated anchors.

• Define Lo = {lo1 , .., lok} as the set of the k considered object concepts (e.g. Bed,
Oven, Towel, etc.).

• Let Lr = {lr1 , .., lr j} be the set of the j considered room concepts (e.g. Kitchen,
Bedroom, Bathroom, etc.).

• Define y = [y1, ..,yn] to be a vector of discrete random variables assigning a
concept from Lo or Lr to the symbol associated with each element in s, depend-
ing on whether such symbol represents an object or a room.

Thereby, the grounding process is jointly modeled by a CRF through the def-
inition of the probability distribution P(y | s), which yields the probabilities of the
different assignments to the variables in y conditioned on the elements from s. Since
its exhaustive definition is unfeasible due to its high dimensionality, CRFs exploit the
concept of independence to break this distribution down into smaller pieces. Thus,
a CRF is represented as a graph G = (V ,E ), where the set of nodes V models the
random variables in y, and the set of undirected edges E ⊆ V ×V links contextually
related nodes. Notice that this graph can be built directly from the codified informa-
tion within the symbolic level. Thus, mimicking the representation in that level, the
same types of edges are considered in the CRF: proximity of two objects, and pres-
ence of an object into a room. Intuitively, this means that, for a certain object, only the
nearby objects in the environment and its container room have a direct influence on
its grounding, while the grounding of a room is affected by the objects therein. Fig-
ure F.6-right shows an example of a CRF graph built from the spatial elements in the
observation depicted in Figure F.6-left, also including elements that were perceived
in previous observations of the same room and were stored in the S-Box.

According to the Hammersley-Clifford theorem [85], the probability P(y | s) can
be factorized over the graph G as a product of factors ψ(·):
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Figure F.6: Left, RGB image from a RGB-D observation of a sequence where the robot is
exploring a bedroom. The objects’ percepts are enclosed in coloured shapes and represented
by s5-s12, while the whole image is considered the room percept and is represented by s1. Right,
CRF graph representing the spatial elements and relations in such image as random variables
and edges respectively (solid lines), as well as the elements and relations from previously
surveyed objects (doted lines, represented as s2− s4). The area highlighted in blue states the
scope of an unary factor, while the one in orange stands for the scope of a pairwise factor.

p(y|s;θ) =
1

Z(s,θ) ∏
c∈C

ψc(yc,sc,θ) (F.1)

where C is the set of maximal cliques3 of the graph G , and Z(·) is the also called par-
tition function, which plays a normalization role so ∑ξ (y) p(y|s;θ) = 1, being ξ (y)
a possible assignment to the variables in y. The vector θ stands for the model pa-
rameters (or weights) to be tuned during the training phase of the CRF. Factors can
be considered as functions encoding pieces of P(y | s) over parts of the graph. Typ-
ically, two kind of factors are considered: unary factors ψi(yi,si,θ), which refer to
nodes and talk about the probability of a random variable yi belonging to a category
in Lo or Lr, and pairwise factors ψi j(yi,y j,si,s j,θ) that are associated with edges and
state the compatibility of two random variables (yi,y j) being tied to a certain pair of
categories. As a consequence, the cliques used in this work have at most two nodes
(see Figure F.6-right). The expression in Eq.F.1 can be equivalently expressed for
convenience through log-linear models and exponential families as [86]:

p(y|s;θ) =
1

Z(s,θ) ∏
c∈C

exp(〈φ(sc,yc),θ〉) (F.2)

being 〈·, ·〉 the inner product, and φ(sc,yc) the sufficient statistics of the factor over
the clique c, which comprises the features extracted from the spatial elements (recall
Table F.1). Further information about this representation can be found in [55].

3A maximal clique is a fully-connected subgraph that can not be enlarged by including an adjacent
node.
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Training a CRF model for a given domain requires the finding of the parameters
in θ , in such a way that they maximize the likelihood in Eq.F.2 with respect to a
certain i.i.d. training dataset D = [d1, . . .dm], that is:

max
θ

Lp(θ : D) = max
θ

m

∏
i=1

p(yi | si;θ) (F.3)

where each training sample di = (yi,si) consists of a number of characterized spatial
elements (si) and the corresponding ground truth information about their categories
(yi). If no training dataset is available for the domain at hand, the codified ontology
can be used to generate synthetic samples for training, as we have shown in our previ-
ous work [51, 55]. The optimization in Eq.F.3 is also known as Maximum Likelihood
Estimation (MLE), and requires the computation of the partition function Z(·), which
in practice turns this process into a N P-hard, hence intractable problem. To face
this in the present work, the calculus of Z(·) is estimated by an approximate infer-
ence algorithm during the training process, concretely the sum-product version of
the Loopy Belief Propagation (LBP) method [56], which has shown to be a suitable
option aiming at categorizing objects [23].

Performing probabilistic inference

Once the CRF representation modeling a given environment is built, it can be ex-
ploited by probabilistic inference methods to perform different probability queries.
At this point, two types of queries are specially relevant: the Maximum a Posteriori
(MAP) query, and the Marginal query. The goal of the MAP query is to find the most
probable assignment ŷ to the variables in y, i.e. :

ŷ = argmax
y

p(y | s;θ) (F.4)

Once again, the computation of the partition function Z(·) is needed, but since
given a certain CRF graph its value remains constant, this expression can be simplified
by:

ŷ = argmax
y ∏

c∈C
exp(〈φ(sc,yc),θ〉) (F.5)

Nevertheless, this task checks every possible assignment to the variables in y, so
it is still unfeasible. An usual way to address this issue is the utilization of approxi-
mate methods, like the max-product version of LBP [87]. The alert reader may think
that, in the end, the MAP assignment provides crispy results. Although this is un-
doubtedly true, the computation of those results considers both the relations among
the spatial elements in the environment, and the belief about their belonging to dif-
ferent categories, so it is clearly differentiated from the crispy results given by an
off-the-shelf categorization method working on individual elements. The black boxes
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in Figure F.6-right show an example of the outcome of a MAP query over the defined
CRF graph.

In its turn, the Marginal query, which can be performed by the aforementioned
sum-product version of LBP, provides us the beliefs about the possible groundings.
In other words, this query yields the marginal probabilities for each symbol being
grounded to different concepts, as well as the compatibility of these groundings with
respect to the grounding of contextually related symbols. Therefore, it is also possible
to retrieve the probability of a certain assignment to the variables in y, which is of
interest for managing universes (see Section 4.5). Recall that, in a MvSmap, these
beliefs are stored in their corresponding anchors for their posterior exploitation during
the robot operation (see anchors in Figure F.1). Section 5 will show both MAP and
Marginal queries in action.

4.5 Managing the Multiverse

To conclude the building of the MvSmap, the outcome of the marginal query is ex-
ploited to generate and update the multiverse. The probability for each possible uni-
verse can be retrieved by means of Eq.F.1, replacing the factors ψ(·) by the provided
beliefs b(·), and the partition function Z(·) by its approximation ZLBP(·) computed by
the LBP algorithm, that is:

p(y|s;θ) =
1

ZLBP(s,θ)
∏
c∈C

bc(yc,sc) (F.6)

The exhaustive definition of such multiverse, that is, to compute and store the
probabilities and groundings in each possible universe, highly depends on the com-
plexity of the domain at hand. The reason for this is that the number of possible uni-
verses depends on both, the number of spatial elements, and the number of concepts
defined in the ontology. For example, let’s suppose a domain with 3 types of rooms
and 4 types of objects. During the robot exploration, 5 objects have been observed
within 2 rooms, so a total of 45× 32 = 9,216 possible interpretations, or universes,
exist. This is a large number for a small scenario, but it supposes a reduced size in
memory since each universe is defined by: (i) its probability, and (ii) its grounded
symbols. Concretely, in this case each universe can be codified through a float num-
ber for its probability (4 bytes) and 7 char numbers for the groundings (7 bytes in
total, supposing that each concept can be identified by a char number as well), so
the size of the multiverse is 11× 9,216 = 99kB. Notice that such a size grows ex-
ponentially with the number of spatial elements, so in crowded environments this
exhaustive definition is unpractical, or even unfeasible.

In those situations, the exhaustive definition can be replaced by the generation of
the more relevant universes for a given task and environment. Thus, for example, the
MAP grounding yielded by a MAP query permits the definition of the most proba-
ble universe. Recall that the probability of this or other universes of interest can be
retrieved by inserting their respective groundings and stored beliefs in Eq.F.6. Other
probable universes can be straightforwardly identified by considering the ambiguous
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groundings. For example, if an object is grounded to concepts with the following be-
liefs {Bowl 0.5, Milk-bottle 0.45, Microwave 0.05}, and the MAP query
grounds it to Bowl, it makes sense to also keep the universe where the object is
grounded to Milk-bottle, and vice versa. As commented before, the set of rele-
vant universes is task and domain dependant so, if needed, they should be defined
strategies for their generation in order to keep the problem tractable.

To tackle this issue we propose a simple but practical strategy based on the utiliza-
tion of a threshold, or ambiguity factor, that determines when a grounding result is
ambiguous. For that, if the ratio between the belief about a symbol being grounded to
a certain concept (bi) and the highest belief for that symbol (bh) is over this threshold
(α), then these two possible groundings are considered ambiguous. Mathematically:

ambiguous(bi,bh) =

{
1 (true) if bi/bh > α

0 (false) otherwise
(F.7)

Therefore, if a pair of grounding values are ambiguous according to this strategy,
their associated universes are considered relevant, being consequently stored in the
multiverse. Continuing with the previous example, the ratio between the beliefs for
Milk-bottle and Bowl is 0.45/0.5 = 0.9, while between Microwave and Bowl is
0.05/0.5 = 0.1. Thus, with a value for α higher than 0.1 and lower than 0.9, this
strategy would consider the first pair of groundings as ambiguous, but not the second
one. The efficacy of this strategy for keeping the number of universes low, without
disregarding relevant ones, is shown in Section 5.3.

5 Experimental Evaluation

To evaluate the suitability of both, the proposed probabilistic symbol grounding as
well as the novel semantic map, we have carried out a number of experiments us-
ing the challenging Robot@Home [29] dataset, which is briefly described in Sec-
tion 5.1. More precisely, to test the symbol grounding capabilities of our approach
(see Section 5.2), it has been analyzed its performance both (i) when grounding ob-
ject and rooms symbols in isolation, i.e. using the traditional categorization approach
that works with the individual features of each spacial element (see Section 5.2), and
(ii) when also considering the contextual relations among elements (see Section 5.2).
To conclude this evaluation, we also describe some sample mapping scenarios in Sec-
tion 5.3, aiming to illustrate the benefits of the proposed MvSmap.

5.1 Testbed

The Robot@Home dataset provides 83 sequences containing 87,000+ observations,
divided into RGB-D images and 2D laser scans, which survey rooms of 8 different
types summing up∼1,900 object instances. From this repository we have extracted 47
sequences captured in the most common room types in home environments, namely:
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RGB-D rig

2D laser scanner

Figure F.7: Robotic platform used to collect the Robot@Home dataset.

bathrooms, bedrooms, corridors, kitchens, living-rooms and master-rooms. These se-
quences contain ∼1,000 instances of objects that belong to one of the 30 object types
considered in this work, e.g. bottle, cabinet, sink, toilet, book, bed, pillow, cushion,
microwave, bowl. etc.

The observations within the sequences come from a rig of 4 RGB-D cameras and
a 2D laser scanner mounted on a mobile robot (see Figure F.7). However, to match
this sensory configuration with one more common in robotic platforms, we have only
considered information from the 2D laser scanner and the RGB-D camera looking
ahead.

5.2 Probabilistic symbol grounding evaluation

In this section we discuss the outcome of a number of experiments that evaluate dif-
ferent configurations for the probabilistic symbol grounding process. To obtain the
performance measurements (micro/macro precision/recall, see App. A), a MvSmap
has been built for each sequence, and MAP queries are executed over the resultant
CRFs (recall Section 4.4). Concretely, a leave-one-out cross-validation technique is
followed, where a sequence is selected for testing and the remaining ones for train-
ing. This process is repeated 47 times, changing the sequence used for testing, and
the final performance is obtained averaging the results yielded by those repetitions.
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a) b) c)

Figure F.8: Confusion matrices relating the ground truth information about rooms (rows) with
the concept to which they are grounded (columns). a) Confusion matrix for a CRF only employ-
ing nodes, b) including object-room relations, and c) considering all the contextual relations.

Individual grounding of object and room symbols

The aim of this section is to evaluate the performance of our proposal without ex-
ploring contextual relations, i.e. only considering the geometric/appearance features
characterizing the symbols. This individual grounding is the traditional approach in
semantic mapping, and permits us to set a baseline for measuring the real enhance-
ment of the joint grounding in the next section. Thereby, only the nodes in the CRFs
have been considered, characterized by the object and room features in Table F.1.

The first three columns in Table F.2 report the results for grounding object and
room symbols according to the described configuration. For objects, we can see
how the used geometric features are more discriminative than the appearance ones,
but their complementary nature makes that the CRFs resorting to their combination
achieves the highest results (73.64%). The same happens when grounding rooms,
where the winning option, reaching a performance of 57.45%, combines geometric
and appearance features from the RGB-D observations, as well as geometric features
from the part of the metric map corresponding to the room.

To complete this baseline, they have been also evaluated some of the most popu-
lar classifiers also resorting to individual object/room features. In order to make this
comparison as fair as possible the same features employed for the CRFs have been
used, as well as the same leave-one-out cross-validation approach. Concretely, we
have resorted to the implementation in the scikit-learn library [88] of the fol-
lowing widely-used methods4: Supported Vector Machines, Naive Bayes, Decision
Trees, Random Forests, and Nearest Neighbors. The yielded results are reported in
the last five columns of Table F.2, where it is shown how the CRF achieve a simi-
lar or even higher success than those classifiers. In fact, the more serious competitor
is the one based on Random Forests, which achieves a ∼ 1% higher success when
categorizing objects, but a ∼ 5% lower one when dealing with rooms.

4Further information about these classifiers can be found in the library webpage: http://scikit-learn.org/
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Table F.3: Performance for grounding symbols of CRFs exploiting contextual information.
Rows index the type of contextual relations modeled by the CRFs. App. A describes the used
metrics.

Objects Macro p./r. Micro p. Micro r.

Object-Object 78.70% 65.58% 53.34%
Object-Room 78.69% 59.38% 53.09%
Object-Object + Object-Room 81.58% 70.71% 60.94%

Rooms Macro p./r. Micro p. Micro r.

Object-Room 80.85% 65.08% 61.33%
Object-Object + Object-Room 91.49% 85.25 % 84.98%

Table F.4: Example of the outcome of a grounding process where the contextual relations
modeled in a CRF help to disambiguate wrong individual groundings. The first column states
the symbols’ names, the second one their ground truth category, while the third and fourth
columns report the two categories that received the highest beliefs (in parentheses) after a
Marginal inference query. The MAP assignment is highlighted in bold.

Symbol Ground truth Beliefs

obj-3 Microwave Microwave (0.38) Nightstand (0.29)
obj-5 Counter Table (0.39) Counter (0.30)
obj-9 Counter Counter (0.26) Table (0.12)
room-1 Kitchen Bedroom (0.49) Kitchen (0.22)

Joint object-room symbol grounding

This section explores how the progressive inclusion of different types of contextual
relations to the CRFs affects the performance of the grounding method. Table F.3
gives the figures obtained from this analysis. Taking a closer look at it, we can see how
the inclusion of contextual relations among objects increases the success of ground-
ing them by ∼ 5%. By only considering relations among objects and rooms, the per-
formance of grounding objects is increased almost the same percentage, while the
success of rooms considerably grows from 57.45% up to 80.91%. Finally, with the
inclusion of all the contextual relations, the reached grounding success is of 81.58%
and 91.49% for objects and rooms respectively. Comparing these numbers with the
baseline performance obtained in the previous section also employing CRFs, they
achieve a notorious increment in the performance of ∼ 8% for objects and ∼ 34%
for rooms. This approach also clearly outperforms the success reported by the other
methods in Table F.2.
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Table F.5: Example of grounding results yielded by the proposed method for the symbols
within a simple kitchen scenario. The first and the second columns give the symbols’ names
and their ground truth respectively, while the remaining columns report the five categories
with the highest beliefs (in parentheses) as yielded by a Marginal inference query. The MAP
assignment is highlighted in bold.

Symbol Ground truth Beliefs

obj-1 Microwave Nightstand (0.46) Microwave (0.42) Wall (0.06)
obj-2 Counter Counter (0.70) Bed (0.24) Floor (0.04)
obj-3 Wall Wall (0.99) Counter (0.1) Nightstand (0.0)
obj-4 Wall Wall (0.99) Bed (0.01) Microwave (0.0)
obj-5 Floor Floor (0.99) Bed (0.01) Wall (0.0)
room-1 Kitchen Bedroom (0.51) Kitchen (0.22) Bathroom (0.19)

Symbol Ground truth Beliefs

obj-1 Microwave Bed (0.04) Counter (0.04) Floor(0.1)
obj-2 Counter Wall (0.01) Nightstand (0.01) Microwave (0.0)
obj-3 Wall Floor (0.0) Microwave (0.0) Bed (0.0)
obj-4 Wall Nightstand (0.0) Floor (0.0) Counter (0.0)
obj-5 Floor Counter (0.0) Nightstand (0.0) Microwave (0.0)
room-1 Kitchen Living-room (0.06) Master-roomr (0.01) Corridor (0.01)

Figure F.8 depicts the confusion matrices obtained while grounding room symbols
for each of the aforementioned configurations. In these matrices, the rows index the
room ground truth, while the columns index the grounded concept. We can notice
how the performance reported in these matrices improves progressively (the values
in their diagonals grow) with the inclusion of contextual relations.

To further illustrate the benefits of the conducted joint symbol grounding, Ta-
ble F.4 shows the results of the grounding of a number of symbols from a kitchen
sequence. The third and fourth columns of this table report the concepts with the
two highest beliefs for each symbol, retrieved by a Marginal inference query over the
CRF built from such sequence. A traditional grounding approach would only consider
the concepts in the third row, while our holistic stance is able to provide the results
highlighted in bold (through a MAP query), which match the symbols’ ground truth.

5.3 Sample mapping scenarios

In this section we exemplify the building of MvSmaps for two scenarios exhibiting
different complexity. We start by describing a simple scenario where the possible ob-
ject categories are: floor, wall, counter, bed, nightstand, and microwave. The possible
room categories are the same as in the previous section. This is an extension in a
real setting of the toy example described in Section 3. The chosen sequence of ob-
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servations from Robot@Home corresponds to a kitchen containing 5 objects of these
categories: a counter, a microwave, two walls and the floor. Thus, the MvSmap built
for that scenario consist of (recall Section 3.4):

• An occupancy grid map of the explored room.

• 6 anchors representing the spatial elements (5 objects and a room).

• 6 symbols in the symbolic level.

• An ontology of the home domain.

• 65× 61 = 46,656 possible universes, which supposes a multiverse size of ∼
456kB.

Table F.5 shows the grounding results yielded by the execution of MAP and
Marginal queries over the CRF representation of such map. We can see how the MAP
assignment fails at grounding the symbols obj-1 and room-1, but the right ground-
ings of such symbols also receive a high belief value. As a consequence of this, their
respective universes could also exhibit high probabilities, hence the importance of
their consideration. Notice that the size of the multiverse could be further reduced
by applying the previously proposed strategy. For example, considering an ambiguity
factor of α = 0.2, the number of possible universes is 12, being the size (in memory)
of the multiverse of only 132 bytes.

We also describe a more complex scenario considering the room and object cate-
gories introduced in Section 5.1. In this case, we discuss the progressive building of
the MvSmap at 4 different time instants during the robot exploration of a bedroom.
Figure F.9 depicts the evolution of the groundings of the spatial elements perceived by
the robot during such exploration, where the big and small coloured boxes represent
the groundings with the two highest beliefs. In this case, the groundings provided by
MAP queries match with those showing the highest beliefs.

We can see how until the time instant t1 the robot surveyed 8 objects, being so
confident about the category of 5 of them. This supposes a total of 9 anchors and 9
symbolic representations (8 objects plus a room). The most ambiguous result is for an
object placed on the bed, which is in fact a towel. This ambiguity is due to the features
exhibited by the object, its position, and its unusual location in a bedroom. In its turn,
the belief about the room being grounded to the Bedroom concept is high, 0.76, as a
result of the surveyed spatial elements and their relations. Until time t2 the room is
further explored, appearing three new objects: a chair, a table and a wall, hence adding
3 new anchors and their respective symbols to the MvSmap. The surveyed table is the
only one showing an ambiguous grounding because of its features and few contextual
relations. However, in the observations gathered until the time instant t3, two new
objects are perceived on top of the table, a book and a bottle, increasing the belief
value about its grounding to the Table concept. With these new objects and relations
the uncertainty about the category of the room also decreases. Finally, considering all
the information gathered until the time instant t4, where a pillow has been observed
on top of the bed, the belief about the room category increases up to 0.99. Notice how
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Figure F.9: Grounding results and their belief values for the symbols of spatial elements per-
ceived during the robot exploration of a bedroom. The registered point clouds in each image
are shown for illustrative purposes.

the detection of such pillow also decreases the uncertainty about the grounding of the
bed. The modus operandi of traditional semantic maps is to consider the towel on the
bed as a book, which can lead to, for example, the failure of a robot ordered to bring
all the towels in the house to the bathroom. This can be tackled through the utilization
of MvSmaps and the clarification of uncertain groundings.

Thereby, the MvSmap built in this scenario is compounded of 15 anchors (14
objects plus a room), 15 symbols at the symbolic level, and a total of 3014× 61 '
2.8× 1021 universes. This supposes a multiverse with an intractable size, however,
applying the previous strategy where only uncertain results generate new universes,
the size of the multiverse is considerably reduced to 40 universes and 760 bytes.
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6 Potential Applications of Multiversal

Semantic Maps

The main purpose of the proposed MvSmap is to provide a mobile robot with a proba-
bilistic, rich representation of its environment, empowering the efficient and coherent
execution of high-level tasks. For that, the MvSmap accommodates the uncertainty
about the grounded concepts as universes, which can be seen as different interpreta-
tions of the workspace. Notice that MvSmaps can be exploited for traditional semantic
map applications (e.g. task planning, planning with incomplete information, naviga-
tion, human-robot interaction, localization, etc.) by considering only a universe, albeit
its potential to measure the (un)certainty of the robot’s understanding can be exploited
for an intelligent, more efficient robotic operation.

A clear example of this can be envisioned while planning an object search task.
Let’s suppose an scenario where the robot is commanded to bring the slippers to the
user. If the slippers have not been detected before, the robot could infer (according to
its semantic knowledge) that their most probable location is a bedroom. Fortunately,
a room, corresponding to the farthest one from the robot location, has been already
grounded as being a bedroom with a belief of 0.42, and 0.41 of being a kitchen.
Another room, close to the robot location, has been grounded to the Kitchen concept
with a belief of 0.47, and to the Bedroom one with 0.45. The utilization of only the
most probable universe would lead to the exploration of the farthest room, with a
42% of being the correct place, while the consideration of both interpretations would
produce the more logical plan of taking a look at the closer one first. Moreover, the
Conditional Random Field employed in this work is able to provide a more fine-
grained and coherent prediction than just employing semantic knowledge: it permits
to hypothesize about the exact location of an object or a room, and to retrieve the
likelihood of such location through an inference method [48, 16]. By repeating this
process in different locations, the robot can operate according to a list of possible
object locations ordered by their likelihood.

Another typical application of semantic maps resorting to logical reasoning en-
gines is the classification of rooms according to the objects therein [25]. For example,
if an object is grounded as a refrigerator, and kitchens are defined in the Knowledge
Base as rooms containing a refrigerator, a logical reasoner can infer that the room is a
kitchen. Again, this reasoning relying on crispy information can provoke undesirable
results if the symbol grounding process fails at categorizing the object, which can be
avoided employing MvSmaps.

Galindo and Saffiotti [18], envisages an application of semantic maps where they
encode information about how things should be, also called norms, allowing the robot
to infer deviations from these norms and act accordingly. The typical norm example
is that "towels must be in bathrooms", so if a towel is detected, for example, on the
floor of the living room, a plan is generated to bring it to the bathroom. This approach
works with crispy information, e.g. an object is a towel or not. Instead, the consider-
ation of a MvSmap would permit the robot to behave more coherently, for example
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gathering additional information if the belief of an object symbol being grounded
to Towel is 0.55 while to Carpet is 0.45. In this example, a crispy approach could
end up with a carpet in our bathroom, or a towel in our living room. The scenarios
illustrated in this section compound a – non exhaustive – set of applications where
MvSmaps clearly enhance the performance of traditional semantic maps.

7 Conclusions and Future Work

In this work we have presented a solution for tackling the symbol grounding problem
in semantic maps from a probabilistic stance, which has been integrated into a novel
environment representation coined Multiversal Semantic Map (MvSmap). Our ap-
proach employs Conditional Random Fields (CRFs) for performing symbol ground-
ing, which permits the exploitation of contextual relations among object and room
symbols, also dealing with the uncertainty inherent to the grounding process. The
uncertainties concerning the grounded symbols, yielded by probabilistic inference
methods over those CRFs, allow the robot to consider diverse interpretations of the
spatial elements in the workspace. These interpretations are called universes, which
are encoded as instances of the codified ontology with symbols grounded to differ-
ent concepts, and annotated with their probability of being the right one. Thereby,
the proposed MvSmap represents the robot environment through a hierarchy of spa-
tial elements, as well as a hierarchy of concepts, in the form of an ontology, which
is instantiated according to the considered universes. This paper also describes the
processes involved in the building of MvSmaps for a given workspace. We have also
proposed an strategy for tackling the exponential growing of the multiverse size in
complex environments, and analyzed some of the applications where MvSmaps can
be used to enhance the performance of traditional semantic maps.

The suitability of the proposed probabilistic symbol grounding has been assessed
with the challenging Robot@Home dataset. The reported success without considering
contextual relations were of∼ 73.5% and∼ 57.5% while grounding object and room
symbols respectively, while including them these figures increased up to∼ 81.5% and
91.5%. It has been also shown the building of MvSmaps according to the information
gathered by a mobile robot in two scenarios with different complexity.

Typically, the semantic knowledge encoded in a semantic map is considered as
written in stone, i.e. it is defined at the laboratory and does not change during the
robot operation. We are studying how to modify this knowledge according to the pe-
culiarities of a given domain, also in combination with a CRF [24]. We think that this
line of research is interesting since it would permit the robot, for example, to con-
sider new object or room types not previously introduced, or to modify the properties
and relations of those already defined. Additionally, we plan to progressively exploit
the presented MvSmaps for the applications analyzed in this paper and/or other of
interest.
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Appendix A: Performance metrics

The precision metric for a given type of object/room li reports the percentage of ele-
ments recognized as belonging to li that really belong to that type. Let recognized(li)
be the set of objects/rooms recognized as belonging to the type li, gt(li) the set of
elements of that type in the ground-truth, and | · | the cardinality of a set, then the
precision of the classifier for the type li is defined as:

precision(li) =
|recognized(li)

⋂
gt(li)|

|recognized(li)|
(8)

In its turn, the recall for a class li expresses the percentage of the spatial elements
that belonging to li in the ground-truth are recognized as members of that type:

recall(li) =
|recognized(li)

⋂
gt(li)|

|gt(li)|
. (9)

Precision and recall are metrics associated to a single type. To report more gen-
eral results, we are interested in the performance of the proposed methods for all the
considered types. This can be measured by adding the so-called macro/micro con-
cepts. Macro precision/recall represents the average value of the precision/recall for
a number of types, defined in the following way:

macro_precision =
∑i∈L precision(li)

|L|
(10)

macro_recall =
∑i∈L recall(li)

|L|
(11)

being L the set of considered objects/rooms. Finally, micro precision/recall represents
the percentage of elements in the dataset that are correctly recognized with indepen-
dence of their belonging type, that is:

micro_precision(li) =
∑i∈L |recognized(li)

⋂
gt(li)|

∑i∈L |recognized(li)|
(12)

micro_recall(li) =
∑i∈L |recognized(li)

⋂
gt(li)|

∑i∈L |gt(li)|
(13)

Since we assume that the spatial elements belong to a unique class, then ∑i∈L |gt(li)|=
∑i∈L |recognized(li)|, and consequently the computation of both micro precision/recall
metrics gives the same value.
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