
A Survey on Learning Approaches for Undirected Graphical Models.
Application to Scene Object Recognition.

Jose-Raul Ruiz-Sarmientoa,∗, Cipriano Galindoa, Javier Gonzalez-Jimeneza

aMachine Perception and Intelligent Robotics Group, System Engineering and Auto. Dept., University of Málaga, Campus de Teatinos, 29071, Málaga, Spain.

Abstract

Probabilistic Graphical Models (PGMs) in general, and Undirected Graphical Models (UGMs) in particular, become suitable frame-
works to capture and conveniently model the uncertainty inherent in a variety of problems. When applied to real world applications,
such as scene object recognition, they turn into a reliable and widespread resorted tool. The effectiveness of UGMs is tight to the
particularities of the problem to be solved and, especially, to the chosen learning strategy. This paper presents a review of practical,
widely resorted learning approaches for Conditional Random Fields (CRFs), the discriminate variant of UGMs, which is completed
with a thorough comparison and experimental analysis in the field of scene object recognition. The chosen application for UGMs
is of particular interest given its potential for enhancing the capabilities of cognitive agents. Two state-of-the-art datasets, NYUv2
and Cornell-RGBD, containing intensity and depth imagery from indoor scenes are used for training and testing CRFs. Results
regarding success rate, computational burden, and scalability are analyzed, including the benefits of using parallelization techniques
for gaining in efficiency.

Keywords: undirected graphical models, conditional random fields, parameters learning, training, scene object recognition

1. Introduction

Intelligent cognitive agents, e.g. mobile robots, aiming to
successfully operate in human environments require the ability
to understand what is going on in their surroundings. Scene ob-
ject recognition systems are cornerstone components for such
ability, providing the robot with high-level information that
can be used for tasks like scene understanding [1, 2] or se-
mantic mapping [3, 4]. The limited resources normally avail-
able in these agents force recognition systems to perform effi-
ciently, while also dealing with the uncertainty latent in both,
the robots’ sensory system and their models of the working en-
vironment.

Probabilistic Graphical Models (PGMs) [5] in general,
and Undirected Graphical Models (UGMs) in particular, also
known as Markov Random Fields (MRFs) [6], offer suitable
frameworks to tackle such uncertainty, incorporating contex-
tual relations among the scene objects. Briefly, they rely on a
graph representation to model the perceived objects as random
variables in the form of nodes, and the relations among them as
edges (see Fig. 1). Over this graph model, object recognition
can be efficiently conducted by means of probabilistic infer-
ence queries. Previous to such inference, a learning phase must
be completed in order to tune the model numerical parameters,
also called weights, for the application at hand.

Typically, the learning phase in MRFs is targeted at maximiz-
ing the expected likelihood of the model with respect to a set of

∗Corresponding author
Email addresses: jotaraul@uma.es (Jose-Raul Ruiz-Sarmiento),

cipriano@ctima.uma.es (Cipriano Galindo), javiergonzalez@uma.es
(Javier Gonzalez-Jimenez)

Objective

function

Scene graph

representation

Training

data

Captured

scene

Optimization

UGM structure

building

Probabilistic

inference

Trained UGM

parameters

Le
ar
n
in
g
p
h
as
e

Recongnized

scene objectsW
o
rk
in
g
p
h
as
e

Figure 1: Learning and working phases involving Undirected Graphical Mod-
els for scene object recognition. Boxes are processes, while ovals represent
consumed/produced data. This work focuses on the selection of different ob-
jective functions and optimization techniques for scene object recognition using
training data from the NYUv2 and Cornell-RGBD datasets.

training data. However, computing this likelihood requires ex-
act inference, which is in general a NP-hard problem [5, 7].
Two major approaches stand out to overcome this concern: (i)
the definition of alternative, tractable objective functions, or (ii)
the estimation of the likelihood by approximate inference al-
gorithms [8, 9, 10]. The performance of methods from both
options highly differs depending on the domain of the problem
at hand, i.e. the nature and internal structure of the data to work
with. Therefore, for a given application, a thorough study is
needed in order to obtain a successful model.

Preprint submitted to International Journal of Approximate Reasoning February 8, 2017

Draft version. To appear in the International Journal of Approximate Reasoning.

In this work we present a review of the most resorted learning
approaches and empirically analyze their performance in the
scope of the scene object recognition. The aim of this study
is to serve as a guide to quickly set-up a working-system as
successful as possible for such problem. Concretely, we focus
on the analysis of the following objective functions for tuning
the parameters of Conditional Random Fields (CRFs) [11, 12],
the discriminative variant of MRFs:

• The pseudo-likelihood function [13], as an alternative to
the expected likelihood, and

• The most popular approximate inference algorithms for
estimating the likelihood, including Marginal queries
(Sum-product Loopy Belief Propagation [14]) and Max-
imum a Posteriori (MAP) queries (Iterated Conditional
Modes [13], Graph-cuts [15], Max-product Loopy Belief
Propagation [16]).

To complete the learning phase, an optimization process is
needed to estimate the model parameters. Again, there is not an
ultimate method, given that their performance depends on the
chosen objective function to optimize and the problem domain,
so two alternatives successfully applied in the related litera-
ture are explored in this work: the Stochastic Gradient Descent
(SGD) [17] method, and the quasi-Newton Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [18] one.

In order to test the trained CRFs, thorough evaluations
are carried out using the Undirected Probabilistic Graphical
Models in C++ library (UPGMpp) [19] and two widely-used
datasets in robotics: NYUv2 (New York University Depth
Dataset version 2) [20] and Cornell-RGBD (Cornell University
RGB-D Dataset) [21]. Both datasets contain labeled intensity
and depth imagery from indoor scenes, albeit they show dis-
tinctive characteristics whose influence in the learning phase is
studied: while NYUv2 comprises a high number of labeled im-
ages (we have used 208 from home environments) that capture
the objects and relations from portions of scenes (see Fig. 2-
middle), Cornell-RGBD provides a lower number of scenes (28
from homes) but fully covering the inspected place (see Fig. 2-
left), which results in a considerably larger number of perceived
objects and relations.

The presented study focuses on two facets of the learning
methods: the recognition performance of the trained CRFs,
and the required computational time. To measure the CRFs
performance we have executed different MAP inference meth-
ods over the learned models, and compared their recogni-
tion results with the ground-truth information provided by the
datasets. The combination of Marginal inference and SGD for
learning yielded the best recognition results, achieving a suc-
cess of ∼ 80% and ∼ 67% in NYUv2 and Cornell-RGBD
respectively. The computational time needed by each learn-
ing method to converge is also analyzed, studying the advan-
tage of parallelization techniques. Results of the achieved
speed-up are shown employing the Open Multi-Processing API
(OpenMP) [22]. Finally, the scalability of the learning methods
according to different factors is also studied.

2. Related work

In the last decade, the utilization of Probabilistic Graphical
Models (PGMs) [5] for tackling the scene object recognition
problem has become increasingly popular. This is, to a great
extent, due to their suitability to efficiently model this type of
problems, while facing uncertain sensory data and contextual
relations [23, 24, 25]. PGMs are divided into directed and undi-
rected models, being the latter more natural for modeling some
problems such as image analysis and spatial statistics1 [5, 26].
As a result, numerous works have come out to explore different
learning and inference methods for such models. In this section
we first briefly review the most commonly used learning ap-
proaches (Sec. 2.1) and discuss some relevant works addressing
scene object recognition through Unditected Graphical Models
(UGMs) (Sec. 2.2), next we show examples of datasets and soft-
ware tools in the field (Sec. 2.3), and finally comment previous
studies on the applicability of UGMs to different problem do-
mains (Sec. 2.4).

2.1. Learning apporaches for UGMs
In order to learn an UGM, it is typically needed an objective

function containing the model parameters, and an optimization
method to estimate such parameters. Regarding the objective
function, and given the intractability of the expected likelihood
one, there are two commonly adopted solutions: to estimate
the likelihood function by approximate inference algorithms,
or the utilization of alternative objective functions. Exact in-
ference approaches like forward-backward and Viterbi algo-
rithms [27], required for the computation of the expected likeli-
hood, can be only applied to simple UGM structures like chains
or trees. This is not the usual case when dealing with real-
world scenarios, hence the utilization of approximate inference
methods. There are two major queries to be solved by these
methods, namely Marginal and Maximum a Posteriori (MAP)
queries. Some inference techniques have variants for answer-
ing both of them, like sampling-based Markov Chain Monte
Carlo (MCMC) [28] approaches (e.g. Gibbs sampling [29]), or
variational methods like Mean Field [30] or Loopy Belief Prop-
agation [14, 16]. Among the methods for answering MAP
queries, we can find local search algorithms like Iterated Condi-
tional Modes (ICM) [13], Graph-cuts based ones [15], or tech-
niques from linear programming [30]. Additionally, in cases
where the training data is partially observed, the Expectation-
Maximization (EM) algorithm [31] provides the basis for the
approximation of the likelihood function, although in this work
we will focus on datasets containing fully observed data.

Concerning the alternative objective functions, perhaps the
most resorted one in the literature is the pseudo-likelihood [13]
due to its known virtues [32, 33, 34], although other alternatives
exist. An example of this is the Piecewise likelihood [35, 36],
which learns each element in the UGM graph separately, but

1Nevertheless, Directed Graphical Models (e.g. Bayesian Networks) can be
converted into undirected ones maintaining the same independence assump-
tions if a chordal graph representation can be built [5]. In that cases, the learn-
ing approaches reviewed here are also applicable.

2

Draft version. To appear in the International Journal of Approximate Reasoning.

that is not consistent for all models, that is, its performance
largely depends on the graph. Another example are Score
Matching [37] and Ratio Matching [38], which although con-
sistent, may lack the desired convexity property in optimization
problems.

Once the objective function is defined, the most popular op-
timization techniques for optimizing its parameters are those
working with its gradient, like the Stochastic Gradient Descent
(SGD) [17] method, or the quasi-Newton Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [18] one. There
are alternative techniques that do not work directly on the
gradient, like those based on Generalized Iterative Scaling
(GIS) [39] or Improved Iterative Scaling (IIS) [40], which have
a long tradition in statistics, or those relying on Voted Percep-
tron [41]. However, these techniques have been outperformed
by gradient-based approaches [42, 43].

Given the large number of possible combinations of objec-
tive functions and optimization methods, in this work we have
selected those extensively used and providing better results in
the literature, aiming to reduce this number while keeping un-
der the spotlight the more relevant learning strategies.

2.2. UGMs for scene object recognition
First works in this regard captured the scene through RGB

imagery. For instance, the work by Quattoni et al. [44] pro-
posed a Conditional Random Field (CRF) for the recognition
of parts of objects, performing both learning and inference
through Belief Propagation. Xiang et al. [45] also considered a
CRF trained by an ad-hoc procedure to solve a set of indepen-
dent quadratic programming problems, and resorted to the ICM
option for inference. Joint object recognition and scene catego-
rization is explored by Murphy et al. [46] utilizing a CRF with
parameters learned through a quasi-Newton method. Depth in-
formation coming from stereo has been also studied, like in the
work presented by Floros and Leibe [47] that proposes a CRF
ensuring the consistency among the scene object categories, and
exploits the Graph-cuts technique to perform inference.

Since the arrival of Kinect-like devices, several works have
come to spotlight performing a richer modeling of the scene
through RGB-D imagery, being CRFs the most chosen option.
Some examples are the works by Wolf et al. [48], where both
inference and training processes of the proposed CRF are based
on the Mean Field approximation, and the one by Husain et
al. [49], where a CRF is built upon a point cloud representation
of the scene and trained using LBP.

The model in Ruiz-Sarmiento et al. [50, 51] is learned by
optimizing the pseudo-likelihood function, and applied to rec-
ognize objects through an ICM inference process. The same
authors extended the CRF to also consider contextual relations
between objects and rooms in [52]. Pseudo-likelihood and ICM
are also resorted by Xiong et al. [53] to classify planar patches
into coarse categories. Markov Random Fields (MRFs) have
been also explored with this aim, like in Anand et al. [21],
where a model isomorphic to a MRF is built from the seg-
mented regions of a point cloud and training is tackled by
a Graph-cuts based procedure, as in the case of Xiaofeng et
al. [54].

2.3. RGB-D datasets and software applications

The irruption of proposals exploiting RGB-D information
has been accompanied with public datasets that offer common
benchmarking resources for comparing these works. Among
them we can find Berkely-3D [55], Cornell-RGBD [56],
NYUv1 [57], NYUv2 [20], TUW [58], SUN3D [59], or
ViDRILO [60]. Specially, we highlight Cornell-RGBD, which
is employed in several works aforementioned [21, 61, 49],
and NYUv2 used in [48, 50, 51, 52]. The interest on this
kind of data also favored the emergence of software to handle
them, like SmartAnnotator [62] or the Object Labeling Toolkit
(OLT) [63]. It is also worth to mention the effort done in the
development of software libraries implementing efficient ver-
sions of UGM related algorithms, as in the case of the UGM
Matlab toolbox [64], CRFsuite [65], or the Undirected Proba-
bilistic Graphical Models in C++ library (UPGMpp) [19].

2.4. Analysis of learning approaches

We can find in the literature studies of the suitability of dif-
ferent UGM training approaches when applied to certain prob-
lems. For example, Kumar et al. [8] conducted an experimen-
tal comparison of several learning and inference algorithms in
the context of image denoising applications on 2D image lat-
tices. Korč and Förstner [9] analyzed the performance of CRFs
trained with the pseudo-likelihood objective function to face
the same problem, and compared it with a penalized variant
of such objective function and the methods explored in [8]. In
the work presented by Parise and Welling [10], a number of
algorithms were tested over binary valued pairwise MRF mod-
els, namely pseudo-likelihood, Contrastive Divergence, Loopy
Belief Propagation and Pseudo-moment Matching. Finley and
Joachims [66] used six multi-label datasets from different do-
mains, like outdoor natural scenes or text recognition, to an-
alyze methods for training fully connected MRFs: Greedy
Search, Loopy Belief Propagation, Linear-programming Re-
laxation, and Graph-cuts. These studies do not establish an
always-winning learning strategy, since each problem domain
has its own peculiarities favoring the performance of different
approaches. Thus, a study of the suitability of different learn-
ing methods dealing with the scene object recognition problem
comes up profitable for refining the UGMs performance. To
the best of our knowledge, this study is currently missing in the
literature.

This paper covers this gap by conducting an empirical anal-
ysis of the most popular training strategies when applied to
the scene object recognition problem. Two families of objec-
tive functions are explored: pseudo-likelihood, and approxi-
mate inference algorithms2, including Marginal and Maximum
a Posteriori methods: sum-product and max-product Loopy Be-
lief Propagation, Iterated Conditional Modes, and Graph-cuts.
Two approaches for the optimization of such objectives are also
considered: Stochastic Gradient Descent, and Limited-memory

2For the sake of simplicity, we will refer to the strategies that estimate the
expected likelihood by means of approximate inference methods just as approx-
imate inference approaches.

3

Draft version. To appear in the International Journal of Approximate Reasoning.

ψy2
(y2,x2, θ)

ψy5y7
(y5,y7,x5,x7, θ)

napkins

nTable

table

picture

curtain

printer

bin

chair

chair

floor
x1

x1

x2 x3
x4

x5

x6

x9
x8

x7

x10
x11

x12

y1

y7

y6

y2y4

y12

y3

y8

y5

y11

x11

x12

x5

x2

x6

x4

x7

x3

x9 x8

laptopy9

Figure 2: Left, excerpt of a home scene from the Cornell-RGBD dataset. Middle, Scene from the NYUv2 dataset with segmented patches. Right, Conditional
Random Field (CRF) graph built according to the patches in the NYUv2 scene (the node and relations of the wall, x10, have been omitted for clarity). The
orange area illustrates the scope of a pairwise factor, while the blue one stands for the scope of an unary factor. Black boxes represent the expected results from a
probabilistic inference process over such CRF.

Broyden-Fletcher-Goldfarb-Shanno. As a testbed for the con-
ducted analysis we have employed the indoor home scenes from
the NYUv2 and Cornell-RGBD, which exhibit particular fea-
tures worth to explore.

3. Conditional Random Field Models for Scene Object
Recognition

Conditional Random Fields (CRFs), first proposed by Laf-
ferty et al. [11], are discriminative models that work with the
conditional probability distribution p(y|x), in other words, they
model the probability of a set of random variables y conditioned
on a number of input observations x. In the scope of the scene
object recognition problem, the input data x = [x1, ..., xn] are
the set of n object observations, while the random variables
y = [y1, ..., yn] take values from a set of possible categories of
that objects, denoted as L (e.g. table, vase, picture, etc.). CRFs
are defined by a graph G = (V,E), with a set of nodesV repre-
senting the random variables in y, and a number of undirected
edges E ⊆ V × V linking nodes that are related in some way.
For example, in the addressed problem two nodes are connected
if their associated objects in the scene are closer than a certain
distance threshold (see the graph representation in Fig. 2-right).
This means that, for a certain object, only the nearby objects
in the scene have a direct influence on its recognition. Accord-
ing to the Hammersley-Clifford theorem [67], the probability
p(y|x) can be factorized over the graph G as a product of fac-
tors ψ(·):

p(y|x; θ) =
1

Z(x, θ)

∏
c∈C

ψc(yc, xc, θ) (1)

where C is the set of maximal cliques3 of the graph G, and Z(·)
is the also called partition function, which plays a normalization
role so

∑
ξ(y) p(y|x; θ) = 1, being ξ(y) a possible assignation to

the variables in y. The vector θ stands for the model parameters

3A maximal clique is a fully-connected subgraph that can not be enlarged
by including an adjacent node.

(or weights) to be tuned during the learning phase. Factors can
be considered as functions encoding a piece of p(y|x) over a
part of the graph. Typically two kind of factors are considered:
unary factors ψi(yi, xi, θ), which refer to nodes and talk about
the probability of a random variable yi belonging to a category
in L, and pairwise factors ψi j(yi, y j, xi, x j, θ) that are associated
with edges and state the compatibility of two random variables
(yi, y j) being tied to a certain pair of categories. This election of
factors entails the utilization of cliques with at most two nodes
(see orange and blue portions in Fig. 2-right). Given that these
factors must be always positive, the expression in Eq.1 can be
equivalently expressed employing log-linear models and expo-
nential families as [30]:

p(y|x; θ) =
1

Z(x, θ)

∏
c∈C

exp(〈φ(xc, yc), θ〉) (2)

being 〈·, ·〉 the inner product, and φ(xc, yc) the sufficient statis-
tics of the factor over the clique c. These sufficient statistics
comprise the salient features of the data, and are specific to each
problem domain. In our case, examples of features characteriz-
ing nodes in V are the height of the object, orientation, color,
etc., while features about the relations in E are difference in
height, difference of orientation, etc.

For a better understanding of the next section, it is worth
to introduce the more compact, canonical form of Eq.2 [68],
which is obtained by grouping together all the sufficient statis-
tics into a single vector φ(y, x):

p(y|x; θ) = exp
(
〈φ(x, y), θ〉 − Zl(x, θ)

)
(3)

where Zl(·) is the log-partition function, i.e:

Zl(x, θ) = ln
∑
ξ(y)

exp(〈φ(x, y), θ〉) (4)

4. Learning the model

The most common approach to tackle the learning phase of
a CRF consists of finding the vector of parameters θ that max-
imizes the likelihood in Eq.2, also known as Maximum Likeli-

4

Draft version. To appear in the International Journal of Approximate Reasoning.

hood Estimation (MLE), with respect to a certain i.i.d. training
datasetD = [d1, . . . dm]. That is:

max
θ
Lp(θ : D) = max

θ

m∏
i=1

p(yi | xi; θ)

= max
θ

exp
(m∑

i=1

[〈φ(xi, yi), θ〉) − Zl(xi; θ)]
)
(5)

Each training sample di = (xi, yi) corresponds to a scene with
a number of observed objects (xi) and ground truth information
about their categories (yi).

In order to reduce the undesirable effects of over-fitting, a
prior distribution p(θ) can be defined over the model parame-
ters. The most commonly used is a Gaussian prior with zero-
mean and the same variance for all the parameters, that is
P(θi | σ

2) = (1/
√

2πσ) exp(−θ2
i /2σ

2), so the objective function
to deal with, expressed for computational convenience as the
negative log-likelihood, turns to be4:

NLLp(θ : D) =
‖ θ ‖22
2σ2 −

m∑
i=1

(
〈φ(xi, yi), θ〉 − Zl(xi; θ)

)
(6)

Notice that maximizing Lp(θ : D) (once the prior p(θ) have
been introduced) is equivalent to minimizingNLLp(θ : D). In
the former case, the objective function is ensured to be con-
cave, while in the latter one it is convex [69]. The integration
of priors of this nature is also called L2-regularization, since
the penalization imposed to the model parameters is measured
in the Euclidean or L2-norm. Intuitively, this regularization pe-
nalizes parameters taking large values, dealing thus with the
over-fitting problem.

The gradient of function Eq.6 with respect to the model pa-
rameters θ is normally needed in the optimization process, and
is computed as:

∂

∂θ
NLLp(θ : D) =

θ

σ2 −

m∑
i=1

(
φ(xi, yi)−Ep(y|xi;θ)[φ(xi, y)]

)
(7)

where the expectation Ep(y|xi;θ)[φ(xi, y)] stands for the partial
derivative of the log-partition function, which is retrieved by:

Ep(y|x;θ)[φ(x, y)] =
∑
ξ(y)

p(y | x; θ)φ(x, y) (8)

In this way, the gradient of a certain parameter θi corresponds
to the difference between the empirical expectation of its asso-
ciated sufficient statistics and its expectation according to the
distribution p(y | x; θ), resulting in zero when they are the same.

Taking a closer look at Eq.6 and Eq.7 we can realize that
they require the computation of the partition function Zl(·),
which in practice turns this optimization into a NP-hard, un-
feasible problem. Two major approaches arise in the litera-
ture to face this issue [10]: resort to alternative, more tractable

4Note that the constant ln(1/
√

2πσ) has been omitted in the equation since
it has no effect on the optimization.

objective functions, or to estimate the likelihood by approxi-
mate inference algorithms. Next, we briefly describe the ap-
proaches analyzed in our study: an alternative function, the
pseudo-likelihood (Sec. 4.1), and two types of inference algo-
rithms, namely Marginal inference (Sec. 4.2.1) and Maximum a
Posteriori (MAP) inference (Sec. 4.2.2). The considered meth-
ods to optimize shuch objective functions conclude the section
(Sec. 4.3).

4.1. Alternative objective functions: Pseudo-likelihood

The utilization of the pseudo-likelihood (PL) function, first
proposed by Besag [13], was one of the earliest methods to
tackle the complexity of the learning phase. It requires the com-
putation of the likelihood of each individual random variable
in y conditioned on a full observation of the rest of variables.
Mathematically:

p(yi | yNG(yi), x; θ) =
ψi(yi, xi, θ)
ZPL(x, θ)

∏
y j∈NG(yi)

ψi j(yi, y j, xi, x j, θ) (9)

being NG(yi) the neighbor of the node i in the graph G, and the
PL partition function:

ZPL(x, θ) =
∑
ξ(yi)

ψi(yi, xi, θ)
∏

y j∈NG(yi)

ψi j(yi, y j, xi, x j, θ) (10)

Thereby, ZPL(·) becomes a local partition function, given that
it sums over all the possible categories for the node i, unlike the
original Z(·) that considers all the possible categories for all the
nodes. Replacing the original conditional probability in Eq.5 by
the one in Eq.9 results in the alternative optimization problem:

max
θ
LPL(θ : D) = max

θ

m∏
i=1

∏
j∈Vi

p(yi
j | yNG(yi

j)
, xi; θ) (11)

An interesting feature of the PL function is that it tends to
the likelihood function when the number of training samples m
goes to infinity [32]. However, if a limited number of samples
is considered, both objective functions might differ and their
optimization provide divergent results.

In order to optimize Eq.11, it is more convenient to employ
its negative log-likelihood form, along with its gradient with
respect to θ expressed by:

∂

∂θ
NLLPL(θ : D) =

θ

σ2 −

m∑
i=1

∑
j∈Vi

(
φ(xi

j, y
i
j) − Ep(yi

j |yNG (yi
j),x

i
j;θ)

[φ(xi
j, y

i
j)]

)
(12)

where the expectation in the second term can be computed as:

Ep(yi |yNG (yi) xi;θ)[φ(xi, yi)]
]

=
∑
ξ(yi)

p(yi | yNG(yi
j)
, xi, θ)φ(xi, yi) (13)

5

Draft version. To appear in the International Journal of Approximate Reasoning.

It has been observed that the optimization of the pseudo-
likelihood objective tends to give more importance to the pa-
rameters associated with the pairwise relations, causing the
learned model to be a poor solution [12, 70]. This effect can be
partially mitigated by the introduction of a regularization factor,
as pointed out in the conducted analyses (see Sec. 5).

4.2. Approximate inference

An alternative approach is to replace the exact solutions of
the probability queries demanded by the negative log-likelihood
calculation (recall Eq.6 and Eq.7) by the outcome of an approx-
imate inference method. In this work we consider two different
types of approximations: those provided by Marginal inference
methods, and the ones by MAP inference algorithms.

4.2.1. Marginal inference
Given a conditional probability distribution p(y | x; θ),

Marginal inference methods provide an approximation to the
log-partition function Zl, which is required in Eq.6, and to the
marginal probabilities of its random variables in y to be plugged
in Eq.7. The success of this learning approach depends largely
on the ability of the chosen Marginal inference algorithm to
converge to a valid solution.

Loopy Belief Propagation (sum-product). The sum-product
version of LBP [71] is a widely-used algorithm to answer this
type of probability queries. Briefly, it is based on the exchange
of statistical information among the nodes in the graph accord-
ing to their relations. For example, the message from node yi

to node y j, denoted as mi j(y j), indicates the beliefs of node yi

about the belonging category of node y j. It is computed by:

mt
i j = ψi j(yi, y j, xi, x j, θ) ψi(yi, xi, θ)

∏
yk∈NG(yi)\y j

mki(yi) (14)

where NG(yi) \ y j is the set of neighbors of yi in the graph G
less y j, and t is an iteration counter. The LBP algorithm keeps
sending messages until the graph is calibrated, i.e. the messages
of two consecutive iterations are the same. Once calibrated, the
belief of each node is computed as:

b(yi) = α ψi(yi, xi, θ)
∏

y j∈NG(yi)

m ji (15)

α being a normalization component so the beliefs for node yi

sum to 1. These beliefs correspond to the marginal probabilities
of the node yi, and are employed in Eq.7 during the learning
phase. Finally, the log-partition function Zl, needed in Eq.6, is
approximated by the Bethe Free energy [72] as follows:

Zl(x, θ) =

(∑
yi∈V

〈b(yi), ln b(yi)〉 −
∑

(yi ,y j)∈E

〈b(yi, y j), ln b(yi, y j)〉
)
−

(∑
yi∈V

〈b(yi), ln(φ(yi, xi) θi)〉 −
∑

(yi ,y j)∈E

〈b(yi, y j), ln(φ(yi, y j, xi, x j) θi j)〉
)
(16)

where ln(·) is the natural logarithm of each element in the vec-
tor, and b(yi, y j) the belief of the edge linking both nodes.

An important caveat of this algorithm is that it could not con-
verge, or does it to an approximate answer, which can produce
inaccurate and oscillating gradient estimations. This instability
causes final results to depend on the point at which the algo-
rithm stops, hence compromising the convergence of the overall
process. This is specially relevant in line-search methods (see
Sec. 4.3.2) where the evaluations of the gradients at different
points in the search can be inconsistent [5].

4.2.2. Maximum a Posteriori inference
The goal of a MAP query is to find the most probable assign-

ment ŷ to the variables in y, that is:

ŷ = arg max
y

p(y | x; θ) (17)

Notice that the computation of the partition function Z(·) is
needed but, since given a certain CRF graph its value remains
constant, this expression can be simplified by:

ŷ = arg max
y

∏
c∈C

exp(〈φ(xc, yc), θ〉) (18)

Nevertheless, this task is still intractable because it needs to
check every possible assignment to the variables in y. To tackle
this problem we have resorted to three widely-used, approx-
imate MAP inference methods, namely Iterative Conditional
Modes, Graph-cuts, and the max-product version of LBP.

Once the MAP approximation is estimated by one of these
methods, it can be used in Eq.7 during the learning phase. On
the other hand, the log-partition function in Eq.6 is approxi-
mated by the unnormalized log-likelihood of the MAP assign-
ment, ZMAP

l = 〈φ(x, ξMAP(y)), θ〉. This approach is often called
Viterbi training [5]. As, in general, the computation of a MAP
assignment requires less computational effort than other prob-
ability queries, this practice is very appealing for a variety of
real problems.

A known effect of this approach is that it produces discon-
tinuities in the gradient estimation. A MAP assignment to a
random variable yi can be viewed as giving a probability of 1
to its most probable belonging category, so the remaining cat-
egories take a null probability. Thus, according to Eq.7, only
the gradients related to such winning category will be updated.
This fact will be studied in the evaluation section.

Iterated Conditional Modes. ICM [13] tackles the inference
problem by maximizing local conditional probabilities instead
of the full p(y | x; θ), in a similar fashion to pseudo-likelihood.
For that, it initializes the assignments to the variables in y to
some initial object categories, typically those maximizing the
unary factors, and iterates over such nodes (according to a
scheduled order) changing the state of the variables to these,
maximizing the local conditional probability:

ŷi = arg max
yi

p(yi | yNG(yi), x; θ) (19)

6

Draft version. To appear in the International Journal of Approximate Reasoning.

The algorithm execution ends when convergence is accom-
plished, which occurs when an iteration over all the nodes is
completed without changing the state of any variable, or when a
predefined maximum number of iterations is reached. In prac-
tice only a few iterations are needed to converge to the MAP
estimation.

Graph-Cuts (α-expansions). Techniques based on Graph-
cuts [73], like α-expansions, reduce the MAP inference task to
instances of the minimum cut problem. The outcome of these
min-cuts are used to expand each of the object categories α in
L, i.e. to change the category assigned to a random variable
from ᾱ ∈ L−α to α, until no expansion exists that increases
the expected likelihood.

Being Vα the set of nodes assigned to the object
category α, and Vᾱ the nodes assigned to other cate-
gories, graph cuts are computed in each iteration of the
α-expansions algorithm to retrieve the minimum cut of
the graph Gc = (Vc,Ec), where Vc = {Vᾱ, s, t}, and
Ec = {ei j | (yi , α) ∩ (y j , α)} ∪ {esk, ekt,∀k ∈ Vᾱ}. Note that
for this computation two extra nodes are added to Vc, which
are usually called source (s) and sink (t). Regarding Ec, it is
compounded by the edges in G among the nodes that have not
been assigned to the category α, and the edges connecting each
of these nodes with both the source and the sink. After com-
puting the minimum cut, the nodes still connected to the source
produce an α-expansion to category α, while those linked with
the sink keep their initial categories. This process is repeated
until convergence is achieved, that is, no α-expansion can be
done that increases the value of the expected likelihood, or un-
til a limit number of iterations is reached. However, as in the
case of ICM, this algorithm usually converges in a few itera-
tions, and most of the expansions are performed in the early
steps.

Loopy Belief Propagation (max-product). The LBP algorithm
previously introduced can be also applied to MAP inference re-
sorting to its max-product variant [16]. Concretely, it performs
a max-product rather than sum-product message passing:

mt
i j = max

yi
ψ(yi, y j, xi, x j)ψ(yi, xi)

∏
yk∈NG(yi)\y j

mki(yi) (20)

The belief b(yi) of each individual variable yi is computed
employing the same equation as in the sum-product case (recall
Eq.15). Once retrieved, the MAP assignment to yi takes the
value of the category with the highest belief.

4.3. Optimization of the objective function
So far we have described the objective functions considered

in this work to estimate the model parameters θ. In this section
we complete the learning phase (recall Fig. 1) with the discus-
sion of some of the most used optimization methods to perform
such estimation. We start by describing the Stochastic Gradi-
ent Descent algorithm in Sec. 4.3.1, along with some variants
that work fairly well in practice. Sec. 4.3.2 outlines other pop-
ular optimizer for training CRFs, Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS).

Algorithm 1 Stochastic Gradient Descent

1: procedure SGD(
θ1, . Initial assignment to the parameters in θ
tmax, . Maximum number of iterations
δ) . Convergence threshold

2: t ← 1
3: repeat
4: DS ← subset(D) . Get a subset fromD
5: gt+1 ← 0
6: for each di ∈ DS do
7: gt+1 ← gt+1 + ∂

∂θtNLLp(θt : di)

8: θt+1 ← θt − ηgt+1 . Update parameters
9: t ← t + 1

10: until (δ > ‖ θt − θt−1 ‖) or (t > tMAX)
11: return (θt)

4.3.1. Stochastic Gradient Descent

SGD is a stochastic approximation of the traditional descent
gradient optimization algorithm [17]. The pseudo-code for this
method is depicted in Alg. 1. Briefly, it starts with an initial
assignment to the model parameters. Then, a subset of samples
DS from the training dataset D = [d1, . . . dm] is selected, and
the parameters are updated according to a learning rate η, also
called step size, and the gradients of the negative log-likelihood
of these samples. The subtraction in line 8 of Alg. 1 indicates
that we are moving in the opposite direction of the gradient,
i.e. trying to reach a minimum. Typically, this process is re-
peated until the difference between the parameters of two con-
secutive iterations is lower than a given threshold, or a maxi-
mum number of iterations tmax is reached. This way to check
convergence (line 10) is very sensitive to oscillating gradient
computations, breaking the algorithm execution without reach-
ing a valid model. A solution for this is to compare the param-
eters at iteration t with those computed at n iterations before t,
this is δ > ‖ θt − θt−n ‖.

The process of selecting the subsetDS ⊆ D (line 4) controls
the randomness of the algorithm. In fact, if DS = D, we are
in the case of the standard gradient descent method. On the
contrary, if | DS | = 1, the algorithm is said to perform in a
fully online fashion, updating the parameters based on individ-
ual data samples. The arbitrary cardinality of the subset DS ,
and the various criteria that can be used to choose its elements,
leads to a large number of different algorithm variants.

In its turn, the learning rate η has a crucial effect on the op-
timization performance. If η is too large, updates of the param-
eters θ could be abrupt, resulting in non-convergence. Other-
wise, if η is small, the convergence will be probably achieved,
but the algorithm will perform slowly requiring a higher num-
ber of iterations. Therefore, a reasonable trade-off between
computational time and convergence is to utilize large values
of η when the algorithm starts, and progressively decrease the
value as long as the iterations go on. More efficient variants of
this algorithm, some of them commented below, propose differ-
ent schedules to dynamically fit this learning rate.

7

Draft version. To appear in the International Journal of Approximate Reasoning.

Algorithm 2 Broyden-Fletcher-Goldfarb-Shanno

1: procedure BFGS(
θ1, . Initial assignment to the parameters in θ
tmax, . Maximum number of iterations
δ, . Convergence threshold
H−1

0) . Initial value of the inverse Hessian
2: t ← 1
3: repeat
4: gt+1 ← ∂

∂θtNLLp(θt : D) . Search direction
5: dt(θt)← H−1

t gt+1

6: ηt ← arg minη≥0NLLp(θt − ηdt : D)
7: θt+1 ← θt − ηdt . Update parameters
8: st+1 ← θt+1 − θt . Store increments
9: zt+1 ← gt+1 − gt

10: H−1
t+1 ← BFGS HessianApprox(H−1

t , st+1, zt+1)
11: t ← t + 1
12: until (δ > ‖ θt − θt−1 ‖) or (t > tMAX)
13: return (θt)

Scheduled SGD. This is the simplest variant of SGD propos-
ing a dynamic value for the learning rate η [74]. It is built on
the idea of decreasing η according to the current algorithm iter-
ation. This can be done in different ways, being the rule adopted
in this work:

ηt ← η
(
1 − ln

[
(e − 1)

t
tmax + 1

])
(21)

where tmax stands for the maximum number of iterations.

Momentum SGD. The momentum variant [75] aims to accel-
erate the gradient descent by trying to move in the direction of
previous parameter updates, avoiding in this way possible gra-
dient oscillations. This results in an two-steps update:

∆θt+1 ← ηg(θt) + α∆θt

θt+1 ← θt − ∆θt+1 (22)

where α ∈ [0, 1] is the momentum coefficient.

Stochastic Meta-Descent. The goal of the Stochastic Meta-
Descent (SMD) algorithm [76] is to accelerate the convergence
by using second-order information to adapt the learning rates.
These rates are retrieved by an update with meta-gain µ:

ηt+1 ← ηt max(
1
2
, 1 − µgt+1υt+1) (23)

being the auxiliary vector υ an indicator of the dependence of
the parameters on gain history, regulated as:

υt+1 ← λυt − ηt(gt + λHtυt) (24)

where λ is another scaling parameter, and the hessian Ht is
computed efficiently by forward-mode algorithmic differenti-
ation [77].

4.3.2. Limited-memory Broyden-Fletcher-Goldfarb-Shanno
Second-order methods can improve convergence, but

they require the computation of the Hessian matrix
H(θ) = ∂2

(∂θ)2NLLp(θt : D), which is often unfeasible. The
L-BFGS algorithm is a quasi-Newton method that constructs
a sequence of matrices that approximate the Hessian and its
inverse. The pseudo-code of the classical BFGS version [78] is
shown in Alg. 2. We can see how, conversely to the SGD, there
is no selection of a subset of D to compute the gradients. In
contrast, it works in a batch mode where all the training data
is employed in each iteration (line 4). Moreover, the search
direction is now set by the Hessian (line 5), while the learning
rate is dynamically retrieved by a line-search method (line
7) [79]. The approximation of the inverse of the Hessian is
performed in line 10, where the algorithm makes use of the past
approximations and the current increments of the parameters θ
and gradients y in the following way:

H−1
t+1 = (I − ρt zt stT)H−1

t (I − ρt st ztT) + ρt zt stT (25)

where ρt = (ztT st)−1. Notice that the inverse Hessian of the
past iteration, H−1

t , can be recursively computed, although, in
general, they are not stored in memory when a large number of
parameters are involved.

The L-BFGS variant additionally improves memory effi-
ciency and computational time by only taking into account in-
formation from the last m iterations, namely st, st−1, . . . st−m−1

and zt, zt−1, . . . zt−m−1. The interested reader can refer to the
work by Jorge Nocedal for further information [18].

5. Results

This section presents the findings of the conducted exper-
imental analysis of the previously described CRF learning
strategies applied to the scene object recognition problem. We
first describe in Sec. 5.1 the datasets that have served as a
testbed for this study, and then elucidate the different outcomes
of the analysis focusing on: recognition success (Sec. 5.2),
computational time (Sec. 5.3), and scalability (Sec. 5.4). No-
tice that there is a myriad of possible configurations of both
objective functions and optimization methods, so we have dis-
cussed here the ones showing a higher impact on the learning
phase performance.

5.1. Testbed
In this work we have resorted to two popular datasets provid-

ing RGB-D information: NYUv2 [20] and Cornell-RGBD [56].
The first one contains a total of 1,449 labeled pairs of both in-
tensity and depth images, and has been extensively used in the
literature (e.g. [48, 50, 51, 52]) due to its challenging, clut-
tered scenes from commercial and residential buildings. In ac-
cordance with the scope of this paper, we have employed 208
scenes captured from home facilities. A total of 24 object cate-
gories typically appearing in such environments have been con-
sidered, e.g: bottle, cabinet, counter, faucet, floor, mirror, sink,
toilet, towel, table, sofa, book, etc. It is worth to mention that
the provided images only capture a portion of the scene, so the

8

Draft version. To appear in the International Journal of Approximate Reasoning.

Table 1: Features characterizing the objects and contextual relations in NYUv2
and Cornell-RGBD. Values in parentheses give the number of features grouped
under the same feature’s name.

Object features
NYUv2 Cornell-RGBD

Orientation Orientation
Planarity Planarity
Linearity Linearity
Minimum height Scatter
Centroid height Centroid height
Volume Horizontal extent
Area of the biggest face Vertical extent
Hue variation HSV means (3)

HoG features (31)

Contextual relation features
NYUv2 Cornell-RGBD

Perpendicularity Perpendicularity (2)
Vertical distance Vertical distance
Volume ratio Horizontal distance
On/under relation Coplanarity
Bias Closest distance

contained contextual relations are somehow limited. An evi-
dence of this is given by the total number of extracted relations,
1, 345, when compared with the number of objects, 1,295. This
is an average of 6.25 objects and 6.47 relations per scene. The
first column of Tab. 1 summarizes the features (sufficient statis-
tics) that characterize the objects and contextual relations in this
dataset.

The Cornell-RGBD repository has 24 labeled office scenes
and 28 home labeled scenes built from the registration of RGB-
D images. As opposed to NYUv2, the provided data inspect a
larger portion of the scene, resulting in a richer set of available
contextual information. This feature has motivated its utiliza-
tion in a variety of works (e.g [21, 61, 49]). As before, we have
resorted to the home scenes, which sum up a total of 764 object
instances and 2,911 contextual relations among them, averaging
27.29 objects and 103.96 relations per scene. We have consid-
ered the same set of 17 object categories as used in the work
presenting this dataset [21]. The second column of Tab. 1 lists
the features employed in this case.

5.2. Scene object recognition results

The recognition performance of the trained CRFs has been
obtained through cross-validation [80]. For each CRF working
with the NYUv2 dataset, a five-fold cross-validation process
was carried out, that is, the 208 scenes were randomly shuffled
into 5 groups, 4 of them used for training and the remaining
one for testing. Testing is performed by executing the MAP in-
ference methods introduced in Sec. 4.2.2 (ICM, Graph-cuts and
LBP) over the trained CRFs. Finally, the recognition perfor-
mance is retrieved by averaging the results of 200 repetitions of
such process. In the case of the Cornell-RGBD dataset, given
the reduced number of scenes (28), we have resorted to a leave-

one-out cross-validation process, where a scene is randomly se-
lected for testing and the remaining 27 serve as training data.
This process is also repeated 200 times. We have resorted to
the implementations of the algorithms discussed in this work
within the Undirected Probabilistic Graphical Models library
(UPPGMpp) [19].

The recognition results are shown in Tab. 2, where the
columns index different learning strategies, i.e. combinations of
objective functions and optimization methods, while rows index
CRFs configurations. The first configuration consist of CRFs
only presenting nodes, and their performance set a baseline to
evaluate the success of more elaborated configurations.

Notice that the results of Marginal and MAP inference meth-
ods for learning employing L-BFGS are missing in this table.
This is because L-BFGS is usually unable to converge to a solu-
tion of these objective functions and, when it converges, the per-
formance is much lower than the reported by SGD. The reason
for this is the oscillating and discontinuous gradient estimations
computed by these methods, as it was commented in Sec. 4.2.1
and Sec. 4.2.2. The next sections discuss: i) how to normal-
ize the input features to increase the CRFs performance, ii) the
effect of L2-regularization, iii) an analysis of Marginal infer-
ence methods for training/testing, and finally iv) some general
remarks.

5.2.1. Feature engineering
It is well known that the selection of discriminant features to

describe the scene objects and their relationships is crucial for
learning successful models. However, despite a suitable choice
of features, if their values considerably vary in magnitude, the
performance of learning methods can be seriously hampered.
This can be understood recalling the role of features (sufficient
statistics) in Eq.7, and it is specially relevant when dealing with
CRFs with edges (contextual information). In fact, as shown in
the third configuration in Tab. 2, the exploitation of edge fea-
tures among objects does not necessarily lead to an increase in
the recognition performance. To face this, we have found ex-
tremely useful to normalize the feature values so most of them
lay on the interval [0 · · · 10]. For example, let’s suppose a vector
fx containing the height from the floor of all the objects within
the training data. To remove possible spurious from the equa-
tion, its 5th percentile (P5) and the 95th one (P95) are computed.
Thus, the normalized value of this feature for each object xi is
computed as:

f̄xi =
10(fxi − P5)

P95 − P5
(26)

The great benefits of this normalization can be checked in
the fourth configuration of Tab. 2, showing a sharp increment
in the performance for whatever combination of learning strate-
gies and inference methods. On the other hand, the second row
of this table reports the results employing only nodes and nor-
malization. Note that this increment is more pronounced when
employing the NYUv2 dataset, given that in the Cornell-RGBD
one several features were already normalized.

9

Draft version. To appear in the International Journal of Approximate Reasoning.

Table 2: Scene object recognition results of CRFs trained with different combinations of objective functions and optimization methods. Rows index different
configurations and inference algorithms, while columns index learning strategies. Bold numbers remark the most successful inference method for a given learning
strategy and configuration. N = nodes, E = edges, FN = feature normalization, R = L2-Regularization.

NYUv2 dataset Cornell RGBD dataset

L-BFGS SGD L-BFGS SGD

Inference method PL PL Marginal MAP PL PL Marginal MAP

N ICM, GC, LBP 65.47% 38.19% 37.98% 28.54% 52.36% 54.70% 55.44% 50.18%

N
+

FN ICM, GC, LBP 67.92% 66.58% 66.53% 53.44% 52.41% 53.05% 55.63% 50.97%

N
+

E

ICM 57.89% 22.54% 43.24% 51.99% 56.51% 45.55% 29.38% 11.58%
Graph cuts 35.72% 12.26% 39.93% 45.36% 48.70% 47.75% 29.38% 6.67%
LBP 40.30% 17.24% 51.05% 44.43% 41.17% 46.71% 29.38% 5.89%

N
+

E
+

FN ICM 69.11% 67.17% 73.42% 68.66% 56.14% 55.39% 58.33% 58.46%
Graph cuts 69.12% 68.52% 71.64% 67.24% 55.18% 55.43% 58.94% 56.83%
LBP 73.14% 75.53% 79.85% 74.43% 59.94% 59.88% 66.37% 60.92%

N
+

E
+

FN
+

R ICM 76.47% 72.5% 74.74% 73.13% 62.32% 61.76% 64.24% 62.95%
Graph cuts 75.66% 71.80% 73.23% 70.79% 60.93% 58.83% 65.05% 59.50%
LBP 78.80% 76.08% 79.69% 74.35% 65.02% 63.02% 67.27% 65.13%

σe
2

S
u
c
c
e
s
s

(%
)

0 0.02 0.04 0.06 0.08 0.1
52

54

56

58

60

62

64

66

ICM Graph cuts LBP

σe
2

S
u
c
c
e
s
s

(%
)

0 0.02 0.04 0.06 0.08 0.1
71

72

73

74

75

76

77

78

79

Effect of L2-Regularization

ICM Graph cuts LBP

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Number of cores

S
e
c
o
n

d
s

L-BFGS (Cornell-RGBD)

L-BFGS (NYUv2)

SGD (Cornell-RGBD)

SGD (NYUv2)

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Number of cores

S
e
c
o
n
d
s

L-BFGS (NYUv2)

L-BFGS (Cornell-RGBD)

SGD (NYUv2)

SGD (Cornell-RGBD)
S

u
c
c
e
s
s

(%
)

σe
2

S
u
c
c
e
s
s

(%
)

σe
2

0 0.02 0.04 0.06 0.08 0.1
71

72

73

74

75

76

77

78

79
Effect of L2-Regularization

ICM Graph cuts LBP

0 0.02 0.04 0.06 0.08 0.1
52

54

56

58

60

62

64

66

ICM Graph cuts LBP

Figure 3: Effect of L2-regularization on the performance of CRFs trained with
a pseudo-likelihood – L-BFGS strategy in NYUv2 (top) and Cornell-RGBD
(bottom) datasets. The standard deviation of parameters associated with node
features is fixed to 0.1.

5.2.2. The effect of regularization
As commented in Sec. 4, a way to avoid the over-fitting of

the CRF parameters is to use regularization. To illustrate its
effect on the recognition performance, we have trained a num-
ber of CRFs introducing a L2-regularization term (recall Eq.6),
whose outcomes are depicted in the last configuration of Tab. 2.
These results reveal that regularization and learning approaches
resorting to pseudo-likelihood are good partners, especially in
the case of L-BFGS optimization, where it boosts the perfor-
mance more than a 5% in both datasets. On the other hand, the
strategies based on Marginal/MAP inference and SGD also ben-
efit from regularization in the Cornell-RGBD dataset, while in
NYUv2 the impact is reduced. This indicates that CRFs work-
ing with Cornell-RGBD become more complex models than
those dealing with NYUv2, so it is more probable to over fit
their parameters. At this point it is also worth to recall one of
the core differences between NYUv2 and Cornell-RGBD: the
number of contextual relations among objects. In NYUv2 this
number is reduced in comparison with Cornell-RGBD, how-
ever, we can see how that information is enough to properly
exploit the objects’ context.

In order to provide these results, a study for each learn-
ing strategy was carried out to properly tune the standard de-
viation value in the regularization term. This analysis arose
that approaches employing pseudo-likelihood yield better re-
sults when two standard deviations are considered, one for
the parameters associated with node features (σ2

n), and other
one for those related to edge features (σ2

e), being σ2
n >> σ2

e .
This matches the behaviour described in Sec. 4.1: the pseudo-
likelihood optimization tends to give more importance to the
parameters associated with edge features, so it makes sense to
penalize more those parameters. For example, Fig. 3 illustrates
the performance reached by the three MAP inference methods

10

Draft version. To appear in the International Journal of Approximate Reasoning.

Table 3: Recognition results for CRFs (with edges and normalized features) trained with MAP inference plus SGD. Rows index the MAP inference methods used
during training, while columns index the testing methods. Bold numbers highlight the best results for each learning strategy.

NYUv2 dataset Cornell RGBD dataset

ICM Graph-cuts LBP ICM Graph-cuts LBP

ICM 73.35% 69.85% 74.45% 58.9% 49.99% 46.32%
Graph-cuts 70.80% 73.32% 55.31% 39.80% 53.25% 16.12%
LBP 68.66% 67.24% 74.43% 58.46% 56.83% 60.92%

over CRFs trained by a pseudo-likelihood – L-BGGS strategy,
being σ2

n = 0.1, and σ2
e ranging from 0.0025 up to 0.1. In both

datasets the best results come with σ2
e = 0.005.

Combinations resorting to Marginal or MAP inference get
better results when σ2

n and σ2
e are similar, so in these cases the

same σ can be used to regularize all the parameters. Concretely
the results reported in Tab. 2 were obtained with σ = 0.125 for
strategies with Marginal inference, and σ = 0.2 for those with
MAP inference.

5.2.3. Marginal inference methods for learning
As introduced in Sec. 4.2.2, the core of learning approaches

resorting to MAP inference is the chosen method to perform
such probability query, being LBP the one employed to re-
port their results in Tab. 2. In the literature it is suggested that
the best performance of these approaches is achieved when the
same method used during training is also used for testing [5, 8].
We have conducted the analysis shown in Tab. 3 aiming to
check if this also holds in the scene object recognition problem.
The expected result is to find the most proficient CRF models
on the diagonals of such table, which is perfectly fulfilled in the
Cornell-RGBD case. Regarding the NYUv2 dataset, the com-
bination ICM-LBP slightly outperforms the ICM-ICM one by
∼ 1%, but since there are no discrepancies in the other combi-
nations, we can expect a reliable performance when resorting
to the same MAP inference algorithm for learning and testing.

5.2.4. General remarks
It is worth to mention the accomplishment of the LBP infer-

ence method for retrieving the object recognition results from
tuned CRFs. This is the winning option when the features are
normalized or regularization is performed (see Fig. 3 and the
fourth and fifth configurations in Tab. 2), showing in most cases
a considerable improvement with respect to ICM and Graph-
cuts. It is also noteworthy the results reported by the Marginal
inference – SGD combination, which is the winning strategy
in both datasets for the last two configurations. Moreover, ev-
ery learning strategy has at least one configuration where it is
unable to tune valid models, with the exception of the PL –
LBFG-S one, which is more robust in that sense.

The reader may have noticed that the recognition perfor-
mance of CRFs working with different datasets have not been
compared. This is because neither the same object cate-
gories nor objects/relations features are shared between the two
datasets, so a fair comparison in this regard is not possible.

Table 4: Average time spent by the winning learning strategies in Tab. 2 for
tuning the model parameters.

L-BFGS SGD

Dataset PL PL Marginal MAP

NYUv2 36.21s. 28.32s. 69.17s. 40.11s.
Cornell-RGBD 31.13s. 20.55s. 72.89s. 72.24s.

5.3. Computational time
Apart from the recognition success, another important fac-

tor to evaluate the suitability of a learning strategy is the re-
quired time to tune a model. This is especially relevant for
cognitive agents operating in human environments, like mobile
robots, where the learning phase could be performed several
times out of the laboratory. Such a re-learning is necessary,
for example, to include object categories not appearing in the
dataset, objects showing peculiar configurations, etc., that is,
situations that are detected during the agent operation in a par-
ticular workspace [81]. If the learning phase takes too long, the
agent can be operating with an obsolete representation of such
knowledge, so fast learning strategies are preferred.

Tab. 4 reports the computational time needed for the winning
learning strategies from Tab. 2. These figures were yielded by
a computer with an Intel Core i7-3820 at 3.60GHz. micropro-
cessor and a memory of 2x4GB. DDR3 at 1,600MHz. running
the optimized implementation of the algorithms within the UP-
GMpp library.

We can see how, in general, computational times are reduced,
being the fastest strategy pseudo-likelihood – SGD. This com-
bination spends on average 28.32s. to tune a CRF model with
the NYUv2 dataset, and 20.55s with the Cornell-RGBD one.
The Marginal inference – SGD combination, which achieved
the highest recognition success in both datasets, is in this case
the slowest one, taking 69.17s. and 72.89s. for NYUv2 and
Cornell-RGBD respectively. Despite these times are still short,
depending on the application it could be needed a trade-off be-
tween time and recognition success motivating the choice of a
faster strategy.

In the remaining of this section we: i) survey the applica-
tion of more sophisticated SGD algorithms to accelerate con-
vergence, ii) study how to speed-up even more the learning pro-
cess by means of parallelization techniques, and iii) discuss the
effect of the peculiarities of NYUv2 and Cornell-RGBD on the
learning computational time.

11

Draft version. To appear in the International Journal of Approximate Reasoning.

Table 5: Computational time required by different SGD variants to train a CRF model. It is also shown the speed-up achieved with respect to the standard SGD, and
the maximum value of the initial learning rate that tunes valid models.

NYUv2 Cornell-RGBD

Standard Schedule Momentum Meta-descent Standard Schedule Momentum Meta-descent

Computational time 69.17s. 48.32s. 55.25s. 43.50s. 72.89s. 60.08s. 65.63s. 52.89s.
Speed-up factor - x1.43 x1.25 x1.59 - x1.21 x1.11 x1.38

Initial learning rate (η) 10−5 30−5 10−5 50−5 10−5 30−5 20−5 75−5

σe
2

S
u
c
c
e
s
s

(%
)

0 0.02 0.04 0.06 0.08 0.1
52

54

56

58

60

62

64

66

ICM Graph cuts LBP

σe
2

S
u
c
c
e
s
s

(%
)

0 0.02 0.04 0.06 0.08 0.1
71

72

73

74

75

76

77

78

79

Effect of L2-Regularization

ICM Graph cuts LBP

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

Number of cores

S
e
c
o
n

d
s

L-BFGS (Cornell-RGBD)

L-BFGS (NYUv2)

SGD (Cornell-RGBD)

SGD (NYUv2)

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

Number of cores

S
e
c
o
n
d
s

L-BFGS (NYUv2)

L-BFGS (Cornell-RGBD)

SGD (NYUv2)

SGD (Cornell-RGBD)

Figure 4: Time spent by the standard and parallelized versions of two learning
combinations: pseudo-likelihood – L-BFGS, and Marginal – SGD.

5.3.1. SGD methods
As commented in Sec. 4.3.1, the standard SGD algorithm

employs a fixed learning rate η while optimizing the model
parameters, being η = 10−5 in the experiments reported so
far. More sophisticated SGD variants dynamically adjust such
learning rate in order to accelerate convergence, as in the case of
Schedule, Momentum and Meta-descent SGD. Tab. 5 compares
the training times reported by those methods. In both datasets
the algorithm reaching the highest speed-up is Meta-descent,
followed by Schedule, and Momentum in the last position but,
as expected, all of them improving the results reported by the
standard SGD algorithm. Tab. 5 also shows the maximum ini-
tial learning rate that makes SGD converge to valid CRF mod-
els. To complete the configuration of the studied methods, the
Momentum variant achieved the best results with the momen-
tum coefficient α = 0.4, and the Meta-descent one with the
meta-gain µ = 0.01 and scaling factor λ = 0.5.

5.3.2. Parallelization
In this section we explore the utilization of parallelization

techniques in order to reduce the learning computational time
required by L-BFGS and SGD based optimizations. Recalling
the SGD algorithm in Alg. 1, in lines 4-7, a subset of the train-
ing dataset is selected, and the gradients of the negative log like-
lihood of such subset are computed. The parallelized version
designed here divides that computation into threads, each one

executed in parallel in a different CPU-core. Until now, all the
conducted experiments resorted to a subset of size one, i.e. only
a (randomly selected) sample of the dataset is processed in each
iteration (lines 3-10). In this section we analyze the speed-up
achieved by choosing subsets of different sizes and dividing the
workload among the same number of cores. In its turn, the al-
gorithm of the BFGS optimization method depicted in Alg. 2
computes the gradients of the entire dataset in line 4. In this
case, the parallelized variant splits this computation into multi-
ple cores.

Fig. 4 shows the learning computational time required by
these parallelized versions for two learning strategies: pseudo-
likelihood – L-BFGS, and Marginal inference – SGD. Notice
that the reached speed-up is non-linear since the parallelized
parts of the algorithms do not cover their entire execution. De-
spite of this, they reach an acceleration factor of x3.53 and
x5.06 (using 8 cores) for the PL – L-BFGS and Marginal in-
ference – SGD combinations respectively.

5.3.3. Datasets’ peculiarities and computational time
As introduced in Sec. 5.1, each dataset contains a different

number of training samples, object categories, and features.
This causes, for example, that the number of parameters to be
learned differs: 3,072 parameters in the case of the NYUv2
dataset (192 associated with node features and 2,880 with edge
features), and 2,431 in the Cornell-RGBD one (697 associated
with node features and 1,734 with edge features). Interest-
ingly, these differences compensate each other, resulting in sim-
ilar training times whatever dataset is used. CRFs trained with
NYUv2 need on average more iterations to converge, since its
training samples contain less information than those in Cornell-
RGBD, but for the same reason the iterations are completed
faster.

5.4. Scalability

Fig. 5 depicts the results of the conducted study on scalabil-
ity, where we have focused on the two most proficient learning
strategies. Results concerning the scalability with respect to the
number of samples used during the CRFs learning are shown
in Fig. 5(a) and Fig. 5(b). Regarding the reported computa-
tional times, we can see how the PL – L-BFGS strategy scales
better (linearly in some cases) than the Marginal – SGD one,
specially when the number of samples increases considerably.
This is due to the fact that the operation of the latter strategy,

12

Draft version. To appear in the International Journal of Approximate Reasoning.

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Number of samples

Ti
m

e
(S

ec
on

ds
)

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

(%
)

Scalability w.r.t. the number of training samples (NYUv2)

Marginal − SGD (success)
PL − L−BFGS (success)

Marginal − SGD (time)
PL − L−BFGS (time)

(a)

6 9 12 15 18 21 24 27
0

10

20

30

40

50

60

70

80

90

100

Number of samples

Ti
m

e
(S

ec
on

ds
)

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

(%
)

Scalability w.r.t. the number of training samples (Cornell−RGBD)

Marginal − SGD (success)
PL − L−BFGS (success)

Marginal − SGD (time)
PL − L−BFGS (time)

(b)

4 8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

Number of categories

Ti
m

e
(S

ec
on

ds
)

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

(%
)

Scalability w.r.t. the number of categories (NYUv2)

Marginal − SGD (success)
PL − L−BFGS (success)
Marginal − SGD (time)
PL − L−BFGS (time)

(c)

7 9 11 13 15 17
0

10

20

30

40

50

60

70

80

90

100

Number of categories

Ti
m

e
(S

ec
on

ds
)

0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

(%
)

Scalability w.r.t. the number of categories (Cornell−RGBD)

Marginal − SGD (success)
PL − L−BFGS (success)

Marginal − SGD (time)
PL − L−BFGS (time)

(d)

Figure 5: Analysis of how the performance of the two winning strategies, pseudo-likelihood – L-BFGS, and Marginal – SGD, scales with respect to the utilization
of a different number of training samples, (a) and (b), as well as a different number of object categories, (c) and (d).

using only a training sample per learning iteration, requires pro-
gressively more time for the samples to agree on the model pa-
rameters when its number increases, while in the case of the PL
– L-BFGS one this is partially mitigated by its batch processing
(recall the algorithms in Alg. 1 and Alg. 2).

Studying the recognition success, both strategies clearly im-
prove with the progressive addition of new training samples.
In fact, the CRFs learned employing the maximum number of
available samples could still improve their performance with
extra data, specially in the case of the Cornell-RGBD dataset.
The Marginal – SGD strategy achieves a better recognition suc-
cess regardless of the number of training samples (which is
more noticeable in the NYUv2 case), hence raising the idea
that it requires less samples to reach the same performance as
the PL – L-BFGS one. Notice that, as mentioned in the pre-
vious section, using the same number of training samples, the
time needed for learning CRF models using the Cornell-RGBD
dataset is higher than for that resorting to the NYUv2 one. This
is due to the uneven complexity of their samples, for exam-
ple, 10 training samples from Cornell-RGB have on average the
same number of objects (273) as in ∼44 samples from NYUv2,

while the number of contextual relations (1040) is the same as
in ∼161 samples from that dataset.

Similar conclusions can be drawn from the scalability anal-
ysis with respect to the number of object categories, which re-
sults are shown in Fig. 5(c) and Fig. 5(d). Again, the com-
putational time needed by PL – L-BFGS grows slowly (also
sub-linearly in some cases) in comparison with the growth of
the Marginal – SGD option. In this case, the reason for the be-
haviour of the latter strategy is the increasing number of model
parameters, also increasing the required operations per iteration
(e.g. gradient updates), which has a lower impact in the L-BFGS
batch stance. Notice that the number of parameters does not in-
crease linearly with the number of categories, but it follows the
formula |θ| = | fn|×|L|+ | fe|×|L|

2, where the operator | · | is over-
loaded to denote the size of the vectors of parameters θ, node
features fn and edge features fe, as well as the cardinality of the
set of considered object categories L. Concerning the recogni-
tion performance, it slowly decreases for both strategies when
the number of object categories increases, which is the expected
result for object recognition systems jointly considering multi-
ple categories. This decrease is more pronounced in the case of

13

Draft version. To appear in the International Journal of Approximate Reasoning.

the Cornell-RGBD dataset, which could be due to the utiliza-
tion of less discriminative features or object categories whose
instances look similar.

6. Conclusions

In this paper we have reviewed the most popular learning
strategies for Conditional Random Fields (CRF) applied to
the robot scene object recognition problem, conducting an in-
deep experimental analysis of their performance. This particu-
lar Probabilistic Graphical Model permits us to conveniently
handle the uncertainty inherent to the robot sensory system
and its working space. The approaches surveyed in this pa-
per to face the unfeasible computation of the likelihood func-
tion are divided into two groups: the definition of alternative,
tractable functions (pseudo-likelihood (PL)), and the likelihood
estimation through approximate (Marginal and MAP) inference
methods. These objective functions have been optimized by
two widely-used algorithms, namely Stochastic Gradient De-
scent (SGD) and Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS). The state-of-the-art datasets NYUv2 and
Cornell-RGBD, both containing intensity and depth imagery
from indoor domestic scenes, have been utilized as testbeds.

Results regarding recognition success were performed
through cross-validation, that is, selecting a portion of those
datasets for training, and another one for testing. The test-
ing phase has been carried out by three probabilistic inference
methods: Iterated Conditional Modes (ICM), Graph-cuts, and
Loopy Belief Propagation (LBP). The reported analysis yields
numerous findings that are summarized here:

• Approximate inference methods for learning caused
L-BFGS to produce a poor model, or even to not converge,
due to their oscillating and discontinuous gradient estima-
tions.

• All the learning strategies largely benefited from the nor-
malization of the features’ values within a certain range
([0 · · · 10] in our experiments).

• CRF models learned from Cornell-RGBD data were more
prone to over-fit their parameters than those working with
NYUv2. This is due to the higher complexity of the scenes
from the Cornell-RGBD.

• When resorting to L2-regularization to avoid such over-
fitting, PL based strategies benefit from penalizing more
the parameters associated with contextual features than
those related to object features. This is due to the fact that
PL gives more importance to contextual relations.

• The Marginal inference – SGD strategy yielded the high-
est recognition performance in both datasets: 79.85% in
NYUv2 and 67.27% in Cornell-RGBD.

• The PL – L-BFGS strategy was the most robust, providing
acceptable results in all the CRF configurations studied.

• LBP was the winning method for testing, reaching the best
results when dealing with CRFs with edges and normal-
ized features.

Another important keypoint to determinate the suitability of
a learning strategy is the required computational time, which
is specially relevant when it must be performed by a cognitive
agent, e.g. a mobile robot. From our study we can extract that:

• In general, computational times are reduced, ranging from
the 24.43s. (on average) of the PL – SGD strategy, up to
the 71.03s. of the Marginal inference – SGD one.

• The Meta-descent variant of SGD largely accelerates the
learning phase, speeding it up a factor of ∼ 1.5 for the
Marginal inference – SGD combination.

• L-BFGS and SGD benefited from parallelization tech-
niques in OpenMP, achieving a speed-up factor of ∼ 3.5
for PL – L-BFGS, and ∼ 5 for Marginal inference - SGD.

Concerning the scalability of the studied strategies, it has
been analyzed how the utilization of different number of train-
ing samples and object categories affect their performance.
These experiments reported that the computational time re-
quired for learning scaled considerably better in both cases
when PL – L-BFGS was used, being its growth sub-linear in
some cases, while regarding recognition success, the Marginal
inference – SGD option achieved the best outcome.

In the future, we plan to parallelize the considered approx-
imate inference methods at a lower level, aiming to also take
advantage of GPU cores through, for example, CUDA, acceler-
ating even more the learning/testing phases.

Acknowledgements

This work is supported by the research projects
TEP2012-530] and DPI2014-55826-R, funded by the An-
dalusia Regional Government and the Spanish Government,
respectively, both financed by European Regional Develop-
ment’s funds (FEDER).

References

[1] S. Gupta, P. Arbeláez, R. Girshick, J. Malik, Indoor scene understanding
with rgb-d images: Bottom-up segmentation, object detection and seman-
tic segmentation, International Journal of Computer Vision 112 (2) (2014)
133–149.

[2] J. Yao, S. Fidler, R. Urtasun, Describing the scene as a whole: Joint ob-
ject detection, scene classification and semantic segmentation, in: Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
2012, pp. 702–709.

[3] A. Pronobis, P. Jensfelt, K. Sjöö, H. Zender, G.-J. M. Kruijff, O. M. Mo-
zos, W. Burgard, Semantic modelling of space, in: H. I. Christensen, G.-
J. M. Kruijff, J. L. Wyatt (Eds.), Cognitive Systems, Vol. 8 of Cognitive
Systems Monographs, Springer Berlin Heidelberg, 2010, pp. 165–221.

[4] I. Kostavelis, A. Gasteratos, Semantic mapping for mobile robotics tasks:
A survey, Robotics and Autonomous Systems 66 (2015) 86–103.

[5] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and
Techniques, MIT Press, 2009.

[6] R. Kindermann, J. L. Snell, et al., Markov random fields and their appli-
cations, Vol. 1, American Mathematical Society Providence, RI, 1980.

[7] B. M. Marlin, N. de Freitas, Asymptotic efficiency of deterministic es-
timators for discrete energy-based models: Ratio matching and pseudo-
likelihood, in: Uncertainty in Artificial Intelligence (UAI), AUAI Press,
2011, pp. 497–505.

14

Draft version. To appear in the International Journal of Approximate Reasoning.

[8] S. Kumar, J. August, M. Hebert, Exploiting inference for approximate
parameter learning in discriminative fields: An empirical study, in: Pro-
ceedings of the 5th International Conference on Energy Minimization
Methods in Computer Vision and Pattern Recognition, EMMCVPR’05,
Springer-Verlag, Berlin, Heidelberg, 2005, pp. 153–168.

[9] F. Korč, W. Förstner, Approximate parameter learning in conditional
random fields: An empirical investigation, in: Proceedings of the 30th
DAGM Symposium on Pattern Recognition, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 11–20.

[10] W. M. Parise, S., Learning in markov random fields: An empirical study,
in: Proceedings of the Joint Statistical Meeting, JSM2005, 2005.

[11] J. D. Lafferty, A. McCallum, F. C. N. Pereira, Conditional random fields:
Probabilistic models for segmenting and labeling sequence data, in: Pro-
ceedings of the Eighteenth International Conference on Machine Learn-
ing, ICML ’01, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001, pp. 282–289.

[12] S. Kumar, M. Hebert, Discriminative random fields, Int. J. Comput. Vi-
sion 68 (2) (2006) 179–201.

[13] J. Besag, On the statistical analysis of dirty pictures, Journal of the Royal
Statistical Society. Series B (Methodological) 48 (3) (1986) 259–302.

[14] J. S. Yedidia, W. T. Freeman, Y. Weiss, Generalized Belief Propagation,
in: Advances Neural Information Processing Systems, Vol. 13, 2001, pp.
689–695.

[15] Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization
via graph cuts, Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 23 (11) (2001) 1222–1239.

[16] Y. Weiss, W. T. Freeman, On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs, IEEE Trans. Inf.
Theor. 47 (2) (2006) 736–744.

[17] Y. Nesterov, Introductory lectures on convex optimization : a basic
course, Applied optimization, Springer US.

[18] J. Nocedal, Updating quasi-newton matrices with limited storage, in:
Mathematics of Computation, Vol. 35, 1980, pp. 2376–2383.

[19] J. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, UPGMpp: a Soft-
ware Library for Contextual Object Recognition, in: 3rd. Workshop on
Recognition and Action for Scene Understanding, 2015.

[20] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor Segmentation and
Support Inference from RGBD Images, in: Proc. of the 12th European
Conference on Computer Vision (ECCV 2012), 2012, pp. 746–760.

[21] A. Anand, H. S. Koppula, T. Joachims, A. Saxena, Contextually guided
semantic labeling and search for three-dimensional point clouds, In the
International Journal of Robotics Research 32 (1) (2013) 19–34.

[22] OpenMP Architecture Review Board: OpenMP API Specification for Par-
allel Programming, http://openmp.org/wp/, [Online; accessed 14-
April-2016].

[23] C. Galleguillos, S. Belongie, Context based object categorization: A crit-
ical survey, Computer Vision and Image Understanding 114 (6) (2010)
712–722. doi:10.1016/j.cviu.2010.02.004.

[24] A. Oliva, A. Torralba, The role of context in object recognition, Trends in
Cognitive Sciences 11 (12) (2007) 520–527.

[25] S. Divvala, D. Hoiem, J. Hays, A. Efros, M. Hebert, An empirical study of
context in object detection, in: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, 2009, pp. 1271–1278.

[26] K. P. Murphy, Machine learning : a probabilistic perspective, Adaptive
computation and machine learning series, MIT Press, Cambridge (Mass.),
2012.

[27] L. R. Rabiner, Readings in speech recognition, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1990, Ch. A Tutorial on Hidden
Markov Models and Selected Applications in Speech Recognition, pp.
267–296.

[28] C. P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer Texts
in Statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[29] S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images, IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-6 (6) (1984) 721–741.

[30] M. J. Wainwright, M. I. Jordan, Graphical models, exponential families,
and variational inference, Found. Trends Mach. Learn. 1 (1-2) (2008) 1–
305.

[31] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from in-
complete data via the em algorithm, JOURNAL OF THE ROYAL STA-
TISTICAL SOCIETY, SERIES B 39 (1) (1977) 1–38.

[32] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo
Methods: A Mathematical Introduction, 1st Edition, Springer Publishing
Company, Incorporated, 1995.

[33] P. Liang, M. I. Jordan, An asymptotic analysis of generative, discrimina-
tive, and pseudolikelihood estimators, in: Proceedings of the 25th Inter-
national Conference on Machine Learning, ICML ’08, ACM, New York,
NY, USA, 2008, pp. 584–591.

[34] J. K. Bradley, Learning large-scale conditional random fields, in: Disser-
tations, Paper 221, 2013.

[35] C. A. Sutton, A. Mccallum, Piecewise Training for Undirected Models,
in: Proceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence (UAI-05), 2005, pp. 568–575.

[36] C. Sutton, A. McCallum, Piecewise pseudolikelihood for efficient training
of conditional random fields, in: Proceedings of the 24th international
conference on Machine learning, ACM, 2007, pp. 863–870.

[37] A. Hyvärinen, Estimation of non-normalized statistical models by score
matching, The Journal of Machine Learning Research 6 (2005) 695–709.

[38] A. Hyvärinen, Some extensions of score matching, Journal Computa-
tional Statistics and Data Analysis 51 (5) (2007) 2499–2512.

[39] J. N. Darroch, D. Ratcliff, Generalized iterative scaling for log-linear
models, Ann. Math. Statist. 43 (5) (1972) 1470–1480.

[40] S. D. Pietra, V. D. Pietra, J. Lafferty, Inducing features of random fields,
IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (4)
(1997) 380–393.

[41] M. Collins, Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms, in: Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Pro-
cessing - Volume 10, EMNLP ’02, Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2002, pp. 1–8.

[42] R. Malouf, A comparison of algorithms for maximum entropy parameter
estimation, in: Proceedings of the 6th Conference on Natural Language
Learning - Volume 20, COLING-02, Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2002, pp. 1–7.

[43] F. Sha, F. Pereira, Shallow parsing with conditional random fields, in:
Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technol-
ogy - Volume 1, NAACL ’03, Association for Computational Linguistics,
Stroudsburg, PA, USA, 2003, pp. 134–141.

[44] A. Quattoni, M. Collins, T. Darrell, Conditional random fields for ob-
ject recognition, in: Advances in Neural Information Processing Systems,
MIT Press, 2004, pp. 1097–1104.

[45] Y. Xiang, X. Zhou, Z. Liu, T.-S. Chua, C.-W. Ngo, Semantic context
modeling with maximal margin conditional random fields for automatic
image annotation, in: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, 2010, pp. 3368–3375.

[46] K. P. Murphy, A. Torralba, W. T. Freeman, Using the forest to see
the trees: A graphical model relating features, objects, and scenes, in:
S. Thrun, L. K. Saul, B. Schölkopf (Eds.), Advances in Neural Informa-
tion Processing Systems 16, MIT Press, 2004, pp. 1499–1506.

[47] G. Floros, B. Leibe, Joint 2d-3d temporally consistent semantic segmen-
tation of street scenes, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2012), 2012, pp. 2823–2830.

[48] D. Wolf, J. Prankl, M. Vincze, Fast semantic segmentation of 3d point
clouds using a dense crf with learned parameters, in: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 2015.

[49] F. Husain, L. Dellen, C. Torras, Recognizing point clouds using condi-
tional random fields, in: Pattern Recognition (ICPR), 2014 22nd Interna-
tional Conference on, 2014, pp. 4257–4262.

[50] J. R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Scene object
recognition for mobile robots through semantic knowledge and prob-
abilistic graphical models, Expert Systems with Applications 42 (22)
(2015) 8805–8816.

[51] J. R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Exploiting se-
mantic knowledge for robot object recognition, Knowledge-Based Sys-
tems 86 (2015) 131–142.

[52] J. R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Joint categoriza-
tion of objects and rooms for mobile robots, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015.

[53] X. Xiong, D. Huber, Using context to create semantic 3d models of indoor
environments, in: In Proceedings of the British Machine Vision Confer-

15

Draft version. To appear in the International Journal of Approximate Reasoning.

ence (BMVC 2010), 2010, pp. 45.1–11.
[54] X. Ren, L. Bo, D. Fox, Rgb-(d) scene labeling: Features and algo-

rithms, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2012), 2012, pp. 2759–2766.

[55] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, T. Dar-
rell, A category-level 3-d object dataset: Putting the kinect to work, in:
1st Workshop on Consumer Depth Cameras for Computer Vision (ICCV
workshop), 2011.

[56] A. Anand, H. S. Koppula, T. Joachims, A. Saxena, Contextually guided
semantic labeling and search for three-dimensional point clouds, In The
International Journal of Robotics Research 32 (1) (2013) 19–34.

[57] N. Silberman, R. Fergus, Indoor scene segmentation using a structured
light sensor, in: Proceedings of the International Conf. on Computer Vi-
sion - Workshop on 3D Representation and Recognition, 2011.

[58] A. Aldoma, T. Faulhammer, M. Vincze, Automation of “ground truth”
annotation for multi-view rgb-d object instance recognition datasets, in:
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on, 2014, pp. 5016–5023.

[59] J. Xiao, A. Owens, A. Torralba, Sun3d: A database of big spaces recon-
structed using sfm and object labels, in: Computer Vision (ICCV), 2013
IEEE International Conference on, 2013, pp. 1625–1632.

[60] J. Martinez-Gomez, M. Cazorla, I. Garcia-Varea, V. Morell, Vidrilo:
The visual and depth robot indoor localization with objects information
dataset, International Journal of Robotics Research.

[61] O. Kahler, I. Reid, Efficient 3d scene labeling using fields of trees, in:
IEEE International Conference on Computer Vision (ICCV 2013), 2013,
pp. 3064–3071.

[62] Y.-S. Wong, H.-K. Chu, N. J. Mitra, Smartannotator an interactive tool for
annotating indoor rgbd images, Computer Graphics Forum 34 (2) (2015)
447–457.

[63] J. R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, OLT: A Toolkit
for Object Labeling Applied to Robotic RGB-D Datasets, in: European
Conference on Mobile Robots, 2015.

[64] M. Schmidt, UGM: Matlab Code for Undirected Graphical Mod-
els, http://www.cs.ubc.ca/ schmidtm/Software/UGM.html,
[Online; accessed 10-May-2016] (2015).

[65] N. Okazaki, Crfsuite: a fast implementation of conditional random fields
(crfs), http://www.chokkan.org/software/crfsuite/, [Online; accessed 28-
April-2015].

[66] T. Finley, T. Joachims, Training structural svms when exact inference is
intractable, in: Proceedings of the 25th International Conference on Ma-
chine Learning, ICML ’08, ACM, New York, NY, USA, 2008, pp. 304–
311.

[67] J. Hammersley, P. Clifford, Markov fields on finite graphs and lattices,
unpublished manuscript (1971).

[68] J. Jancsary, Approximate discriminative training of graphical models,
Ph.D. thesis, Institute of Telecommunications, Vienna University of Tech-
nology (2012).

[69] O. Barndorff-Nielsen, Information and exponential families in statistical
theory, Wiley Series in Probability and Mathematical Statistics, John Wi-
ley & Sons, Ltd., 1978.

[70] A. Blake, C. Rother, M. Brown, P. Perez, P. Torr, Interactive image seg-
mentation using an adaptive gmmrf model, in: Computer Vision - ECCV
2004: 8th European Conference on Computer Vision, Prague, Czech Re-
public, May 11-14, 2004. Proceedings, Part I, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 428–441.

[71] K. P. Murphy, Y. Weiss, M. I. Jordan, Loopy belief propagation for ap-
proximate inference: An empirical study, in: Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, UAI’99, 1999, pp.
467–475.

[72] Y. Weiss, Comparing the mean field method and belief propagation for ap-
proximate inference in mrfs, Advanced Mean Field MethodsTheory and
Practice.

[73] B. P. D.M. Greig, A. Seheult, Exact maximum a posteriori estimation for
binary images, Journal of the Royal Statistical Society. Series B (Method-
ological) 51 (1989) 271–279.

[74] C. Darken, J. Moody, Fast adaptive k-means clustering: some empirical
results, in: Neural Networks, 1990., 1990 IJCNN International Joint Con-
ference on, 1990, pp. 233–238 vol.2.

[75] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initial-
ization and momentum in deep learning, in: Proceedings of the 30th in-

ternational conference on machine learning (ICML-13), 1990, pp. 1139–
1147.

[76] N. N. Schraudolph, Fast curvature matrix-vector products for second-
order gradient descent, Neural Computation 14 (2002) 2002.

[77] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, K. P. Murphy,
Accelerated training of conditional random fields with stochastic gradient
methods, in: In International Conference on Machine Learning, 2006, pp.
969–976.

[78] C. G. Broyden, The convergence of a class of double-rank minimization
algorithms, Journal of the Institute of Mathematics and Its Applications
1 (6) (1970) 76–90.

[79] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd Edition, Springer
series in operations research and financial engineering, Springer, New
York, 2006.

[80] S. Arlot, A. Celisse, A survey of cross-validation procedures for model
selection, Statistics Surveys 4 (2010) 40–79.

[81] J. R. Ruiz-Sarmiento, C. Galindo, J. González-Jiménez, Probability and
common-sense: Tandem towards robust robotic object recognition in am-
bient assisted living, Submitted.

16

Draft version. To appear in the International Journal of Approximate Reasoning.

