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Abstract

This paper presents the Robot-at-Home dataset (Robot@Home), a collection of raw and processed sensory data
from domestic settings aimed at serving as a benchmark for semantic mapping algorithms through the cate-
gorization of objects and/or rooms. The dataset contains 87,000+ time-stamped observations gathered by a
mobile robot endowed with a rig of 4 RGB-D cameras and a 2D laser scanner. Raw observations have been
processed to produce different outcomes also distributed with the dataset, including 3D reconstructions and
2D geometric maps of the inspected rooms, both annotated with the ground truth categories of the surveyed
rooms and objects. The proposed dataset is particularly suited as a testbed for object and/or room cate-
gorization systems, but it can be also exploited for a variety of tasks, including robot localization, 3D map
building, SLAM, and object segmentation. Robot@Home is publicly available for the research community at
http://mapir.isa.uma.es/work/robot-at-home-dataset.

keywords: Semantic mapping, object categorization/recognition, room categorization/recognition, contextual in-
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1 INTRODUCTION

The extraction and representation of semantic knowl-
edge of the world is a crucial step toward achieving in-
telligent robots (Pronobis et al. 2010). Semantic maps
enrich traditional metric and topological maps with
high-level information, which enables the robot to pro-
cess commands like “go to the bedroom and stop the
alarm” (Galindo & Saffiotti 2013). In this way, the
robot has to create and manage its own internal repre-
sentation of the world incorporating the needed seman-
tic knowledge, e.g. this room is a bedroom and contains
an alarm clock placed on a night table. Two major prob-
lems arise in the extraction of this information: object
categorization, i.e. to label parts of the robot sensory
data as belonging to a certain object class (bed, night
table, alarm clock, etc.), and room categorization, i.e. to
classify areas of the environment as rooms of a certain
type (kitchen, bedroom, living room, etc.).

In order to cope with this categorization problem1, a
large number of sample data are needed to test, validate
and compare different solutions. Considering this, the

research community has released a number of public
repositories on the internet, e.g. PASCAL (Evering-
ham et al. 2010), NYUv2 (Silberman et al. 2012), Ima-
geNet (Russakovsky et al. 2014), or SUN3D (Xiao et al.
2013). However, these datasets exhibit shortcomings
when used by cutting-edge categorization techniques
leveraging contextual information (Anand et al. 2013,
Ruiz-Sarmiento et al. 2015b). Synthetic data could
be used instead under specific circumstances (Ruiz-
Sarmiento et al. 2015a), albeit real sensory datasets are
preferred in most cases.

In this work we present the Robot-at-Home dataset
(Robot@Home), a compilation of raw and processed
data gathered by a mobile robot in different domes-
tic settings. This dataset is unique in three aspects:
the sensory system employed for its gathering, the di-
versity and amount of provided data, and the availabil-
ity of dense ground truth information. Data collection
followed a place-centric perspective (Xiao et al. 2013),
and comprises 87,000+ timestamped observations as se-
quences of RGB-D images and 2D laser scans taken in
5 apartments. These raw data fully cover the common
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challenges to be faced by a robotic categorization sys-
tem, like changing lighting conditions, occlusions, view-
point variations, or cluttered room layouts. On the
other hand, the processed data include:

• Per-pixel labeling (ground truth information) of ev-
ery RGB-D observation, along with the category of
the room containing them.

• 3D reconstructions in the form of colored point
maps and 2D geometric maps of the inspected
rooms.

• Per-point object labeling of the 3D reconstructed
rooms along with their room category.

• Topology of each apartment, stating the connectiv-
ity of the rooms within them.

During the data collection, a total of 36 rooms were
completely inspected, so the dataset is rich in con-
textual information of objects and rooms. This is a
valuable feature, missing in most of the state-of-the-
art datasets, which can be exploited by, for instance,
semantic mapping systems that leverage relationships
like pillows are usually on beds or ovens are not in
bathrooms. Robot@Home is publicly available and is
accompanied with the software application employed
for its processing, named the Object Labeling Toolkit
(OLT) (Ruiz-Sarmiento et al. 2015c).

The sensory system comprises a rig of 4 RGB-D cam-
eras and a radial laser scanner (see Fig. 1). The rig
covers ∼180◦ horizontally and ∼58◦ vertically, which
permits the user to simulate the performance of sen-
sors with different field of views, a valuable feature
during the design of a robotic sensing system (de la
Puente et al. 2014). Sensors have been intrinsically
and extrinsically calibrated with state-of-the-art al-
gorithms (Fernandez-Moral et al. 2014, Gómez-Ojeda
et al. 2015, Teichman et al. 2013). It is worth men-
tioning that a number of distinctive patterns and ob-
jects have been strategically added to the apartments
for possible exploitation of the dataset in robotic com-
petitions, like those in RoboCup@Home (Almeida et al.
2016) or RobotVision (Martinez-Gomez et al. 2014),
where robots need to detect predefined patterns in the
environment to accomplish certain challenging missions:
to explore specific areas, to efficiently find a particu-
lar object, etc. In summary, this dataset contributes
a repository suitable for a variety of robotic tasks like
object/room categorization or recognition2, object seg-
mentation, 2D/3D map building, and robot localization
among others.

Figure 1: Robotic platform employed to collect the
dataset along with details of the sensors mounted on
it.

Next section contrasts Robot@Home with other
datasets also applicable to the categorization problem.
Section 3 presents the robotic platform used and the
methodology followed for gathering the raw data, while
section 4 describes the dataset content and some use
cases. Finally, section 5 summarizes the paper.

2 Related Datasets

Mobile robots have traditionally resorted to intensity
images to categorize objects and/or rooms, which mo-
tivated the collection of datasets providing this kind of
information (Everingham et al. 2010, Russell et al. 2008,
Russakovsky et al. 2014). Nowadays, the tendency is for
the datasets to also include depth information (Janoch
et al. 2011, Anand et al. 2013, Lai et al. 2011), given the
proved benefits of exploiting morphological and spatial
information in assisting categorization methods (Ruiz-
Sarmiento et al. 2014). These datasets can be roughly
classified as: object-centric, view-centric, and place-
centric.

Object-centric datasets, like ACCV (Hinterstoisser
et al. 2013), RGBD Dataset (Lai et al. 2011, 2014), KIT
object models (Kasper et al. 2012), or BigBIRD (Singh
et al. 2014), provide RGB-D observations in which a
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Table 1: Summary of related datasets (CR: Collected by a robot, DT: Dataset type, EOC: Enables object context
exploitation, ERC: Enables room categorization).

Dataset CR DT EOC ERC #obs / size

ACCV Hinterstoisser et al. (2013) object-centric 18,000 / 3.6GB
Berkeley-3D Janoch et al. (2011) view-centric X(local) X(limited) 849 / 0.8GB
UMA-Offices Ruiz-Sarmiento et al. (2015a) view-centric X(local) X(limited) 25 / 0.01GB
BigBIRD Singh et al. (2014) object-centric 150,000 / 2,625GB
Cornell-RGBD Anand et al. (2013) X view-centric X(local) X(limited) 207 / 0.1GB
KIT object models Kasper et al. (2012) object-centric 163,188 / –
Multi-sensor 3D Object Dat. Garcia-Garcia et al. (2016) object-centric 1,792 / 0.84GB
NYUv1 Silberman & Fergus (2011) view-centric X(local) X(limited) 51,000 / 90GB
NYUv2 Silberman et al. (2012) view-centric X(local) X(limited) 408,000 / 428GB
RGBD Dataset Lai et al. (2011) object-centric – / 84GB
RGBD Dataset 2 Lai et al. (2014) view-centric 11,427 / 5.5GB
TUW Aldoma et al. (2014) X view-centric X(local) X(limited) 124 / 0.43GB
SUN3D Xiao et al. (2013) place-centric X X – / –
UBC VRS Meger & Little (2012) X view-centric X(local) 1,082 / –

Robot@Home X place-centric X X 87,891 / 9.6GB

unique object spans over each image. The exploitation
of these images for categorization exhibits some draw-
backs: (i) they are not representative of the typical im-
ages gathered by a robot at a real environment, (ii) they
prevent the utilization of valuable contextual informa-
tion of objects, and (iii) they are not suitable for the
room categorization problem.

On the other hand, view-centric datasets as Berkeley-
3D (Janoch et al. 2011), Cornell-RGBD (Anand et al.
2013), UMA-Offices (Ruiz-Sarmiento et al. 2015a),
NYU (Silberman & Fergus 2011, Silberman et al. 2012),
TUW (Aldoma et al. 2014), or UBC VRS (Meger &
Little 2012), consist of isolated RGB-D images, or a
sequence of them, which cover a partial view of the
working environment. This information permits the
exploitation of contextual relations but only from a lo-
cal, reduced perspective, since information of the entire
scene is not collected. Therefore, their use for the cat-
egorization problem is still limited.

Finally, place-centric datasets like SUN3D (Xiao
et al. 2013) provide comprehensive information from
the inspected room, or even the entire work environ-
ment, typically through the registration of RGB-D im-
ages. This type of dataset provides the best option to
take advantage of both depth and contextual informa-
tion in the categorization problem, albeit, unfortunately
its number is quite limited. A dataset worth mention-
ing at this point is ViDRILO (Martinez-Gomez et al.
2015), which comprises 5 sequences of RGB-D observa-
tions of two office buildings collected by a robot combin-
ing object and environment-centric perspectives. This
dataset annotates each observation with its room type
and the objects found within it, although this labeling

is not per-pixel and the number of object categories is
reduced. Tab. 1 shows a summary of datasets applica-
ble to the categorization problem and their character-
istics, including the novel, place-centric Robot@Home
dataset.

3 Data Collection

3.1 Robotic platform

The Robot@Home dataset has been collected using the
commercial robot Giraff (Giraff Technologies AB 2015),
which consists of a motorized wheeled platform endowed
with a videoconferencing set. The robot is controlled
by a low-cost onboard computer running Windows 7,
with a CPU Intelr CoreTM2 T7200 at 2Ghz., 1GB. of
RAM and a 160 GB. hard disk. This platform has been
enhanced with the following sensors:

• Four Asus XTion Pro Live RGB-D cameras (ASUS
2015) with a 58◦x45◦ field of view (FOV). These de-
vices can provide synchronized intensity and depth
images at VGA (640x480) or QVGA (320x240) res-
olutions.

• A Hokuyo laser scanner model URG-04LX-
UG01 (Hokuyo Automatic Co. 2015), a device that
surveys 2D planes with a FOV of 240◦ and 0.352◦

of angular resolution.

The four RGB-D devices have been mounted verti-
cally on an octagonal rig, which sets a radial configura-
tion of camera’s optical axes, with an angular difference
of 45◦ (see Fig. 1). The rig is placed in the front part
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Figure 2: RGB and depth images from the 4 RGB-D devices mounted on the robot in two locations: a kitchen
and a bedroom.

of the robot, at a height of ∼0.92m.3, and the devices
are connected to the onboard computer using a PCIe
card with 4 USB 2.0 ports. Notice that the rig could
hold up to 8 RGB-D cameras, but we considered that
the utilization of 4 slots was enough for the purposes
of this dataset. This setup yields two important advan-
tages: first, there is no overlap among the FOV of the
four units, avoiding in this way possible sensor inter-
ferences, and second, the combination of the output of
the devices produces RGB-D observations with ∼180◦

of horizontal FOV (see Fig. 2).
Concerning the 2D laser scanner, it is mounted at the

front part of the robot base (see Fig. 1), at a height of
∼0.31m. In this position the sensor cannot perceive any
part of the robot while it surveys a plane horizontal to
the floor at its maximum FOV.

3.2 Sensors calibration

In order to provide accurate information within the
Robot@Home dataset, the sensors mounted on the
robot must be calibrated both intrinsically and ex-
trinsically. The locations of the devices mounted on
the robot, i.e. their extrinsic parameters w.r.t. the
robot frame4, have been computed in a three-steps pro-
cess. First, the RGB-D devices were calibrated between
them following the technique in Fernandez-Moral et al.
(2014). Then, the relative pose between the RGB-D
devices and the laser scanner is obtained by the proce-
dure presented in Gómez-Ojeda et al. (2015). Finally,
the position of the RGB-D rig in the robot frame is com-
puted by minimizing the error of fitting planes to the
walls and the floor of a room using RANSAC (Fischler

& Bolles 1981) while the robot is turning on the spot,
and imposing vertical and horizontal conditions respec-
tively. At this point every sensor is accurately related
to the robot frame.

Regarding the sensors’ internal parameters, for the
correction of the depth images from the RGB-D devices
we have resorted to the CLAMS framework (Teichman
et al. 2013), while for the RGB and the laser scanner
data we have relied on the factory values given their
good outcome.

3.3 Software for the collection of data

Data streams coming from the five devices, i.e. 4
RGB-D cameras and the laser scanner, must be con-
veniently managed and stored. For that, in this work
we have opted for the rawlog-grabber application from
the Mobile Robot Programming Toolkit project (J.L.
Blanco Claraco 2015), which provides mechanisms to
collect and save sensory data from different sources into
a file. In a nutshell, this software launches a dedicated
thread for each sensor that time-stamps and saves the
collected data to a compressed binary file in the Rawlog
common robotic dataset format5, which is automati-
cally translated to human-readable information (plain
text files and PNG images). Sensory observations have
been saved at a frequency ranging from 1.25Hz up to
10Hz for the 2D laser scanner, and from 1Hz up to
11Hz for each RGB-D camera. These values are lim-
ited by the computational performance of the onboard
computer, which have been compensated by reducing
the robot speed (maximum of 0.1 m/s and 10 deg/s for
linear and angular speeds respectively), ensuring in this
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Figure 3: Left, example of 2D geometric map of the sarmis house, annotated with the type of the inspected
rooms (orange boxes). The black dots represent the path followed by the robot during the inspection of the
house, starting at the green triangle (livingroom) and ending up at the red one (corridor). Right, examples of
geometric maps of the remaining domestic settings. For a better understanding of the descriptions resorting to
color the reader is referred to the online version of this work.

way a good coverage of the inspected areas.

3.4 Collection methodology

The data provided by Robot@Home have been collected
within 5 dwelling apartments, named anto, alma, pare,
rx2, and sarmis. For illustrative purposes, Fig. 3 depicts
their geometric maps, showing the annotations for the
room categories in one of them. Raw data were collected
in different sessions, each one containing a number of se-
quences of RGB-D observations and laser scans. These
sequences were gathered by teleoperating the robot to
fully inspect each individual room. Fig. 3 shows an ex-
ample of the path followed by the robot while collecting
a sequence of the sarmis house.

A total of seven sessions were conducted, three in the
sarmis house and one in each of the remaining settings.
During the data collection, special attention was paid
to conveniently steer the robot in order to provide dif-
ferent viewpoints of the objects in the scene, so they
can appear partially or totally occluded. As an exam-
ple, the Fig. 4 shows a pencil case that is fully visible in
the first and third images, although showing a different
pose, while it is partially occluded in the second one,
and totally disappears in the fourth image.

Moreover, a number of particular characteristics have

been intentionally included in each scenario to provide
additional data for testing different object recognition
algorithms and techniques. Concretely,

• Inclusion of distinctive objects. A number of pat-
terns/objects have been placed at different rooms
within these houses, concretely: teddies in alma,
fruits in anto, numerical patterns in pare (see top
row of Fig. 5), and geometric patterns in rx2 (see
bottom row in Fig. 5).

• Varying lighting conditions. Each of the three ses-
sions in sarmis house was conducted at a different
time of the day, which means that the objects were
visualized under different lighting conditions.

• Varying sets of objects. In those three sessions, the
set of objects placed in each room from session to
session differs, with objects dis/appearing as well
as being moved (see Fig. 6).

4 Dataset description

4.1 Raw data

The Robot@Home dataset comprises ∼75 minutes of
recorded data from a total of 83 sequences collected in
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1 2 4 3 

Figure 4: Top row, different viewpoints from a sequence of cropped intensity images of the same set of objects,
and bottom, their associated depth images. Notice that throughout the sequence some objects are totally or
partially occluded by others. Numbers indicate the order of the viewpoint within the sequence.

Table 2: Number of sequences, rooms, and observations per house and time spent collecting them.
Sarmi-house

alma anto pare rx2 1st S. 2nd S. 3rd S. Dataset

# Sequences 6 10 11 5 17 17 15 81
# Rooms 10 18 20 8 25 25 23 129
# Observations 15,535 22,301 26,506 9,906 4,939 4,218 4,486 87,891
# Laser scans 3,100 4,407 5,291 2,016 1,311 1,146 1,224 18,310
# RGBD obs. 12,435 17,894 21,215 7,890 3,866 3,276 3,519 69,581

Time (min) 5.12 7.53 8.48 3.22 17.47 15.25 16.30 74.57

the aforementioned sessions. These raw data include:

• Laser scanner data : 2D observations from the
laser scanner (see first row in Fig. 8) captured in
the inspected rooms.

• RGB-D data : Observations from the four
RGB-D cameras, including intensity images, depth
images, and 3D point clouds (see second and third
row in Fig. 8).

• Topological information of the rooms connec-
tivity, stating the rooms that are reachable by the
robot from a certain location.

Table 2 shows a summary of the information gath-
ered from each apartment, including the number of se-
quences, rooms inspected, number of 2D laser scans and
RGB-D observations, as well as the time spent in their
collection.

The surveyed scenarios include a total of 36 rooms
(some of them visited several times), divided into 8 cat-
egories, that contain ∼1,900 object instances belonging
to 157 categories. An exhaustive list of the categories
of the objects and rooms appearing in the dataset can
be consulted at the dataset website.

4.2 Processed data

The raw data have been processed in order to enrich
the dataset with the following information:

• 2D geometric maps of each inspected
room/house, built by registering the observa-
tions from the laser scanner.

• 3D colored point maps, 3D reconstructions of
rooms based on the registration of the collected
RGB-D data.
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Figure 5: Top row, numerical patterns in pare house. Bottom row, geometric patterns in rx2 house.

1 2 43

1 2 3

Figure 6: Intensity images of a bedroom from the same
RGB-D sensor illustrating the change of lighting con-
ditions during the three conducted sessions at sarmis
house. The overlapped numbers represent the identifier
of the session. It can be also observed how the set of
visible objects differs from session to session.

• Labeled 3D point maps, including per-point ob-
ject and room labels (category and instance) within
the reconstructed rooms.

• Labeled RGB-D observations, including per-
pixel object labels (category and instance) within
each RGB-D observation, i.e., both intensity and
depth images, and per-point labels within their re-
spective point clouds.

Processed data have been produced employing two

software tools, namely the aforementioned Mobile
Robot Programming Toolkit (MRPT), and the Object
Labeling Toolkit (OLT) (Ruiz-Sarmiento et al. 2015c).
OLT comprises a set of public tools6 aimed to help in
the management and labeling of sequential RGB-D ob-
servations. Next sections describe with more detail the
applications and methodologies followed to process the
raw data.

4.2.1 2D geometric maps.

The ICP-slam application within MRPT has been used
to register sequences of laser scans for building 2D geo-
metric maps. Thereby, the Robot@Home dataset con-
tains a total of 41 geometric maps, one per inspected
room and a global map for each house (see Fig. 3 and
Fig. 8, fourth row). These maps are distributed along
with the logs produced during the SLAM process, which
include additional information like the estimated path
followed by the robot, snapshots of the scans’ registra-
tion over time, etc.

4.2.2 3D colored point maps.

We have used the Mapping tool from OLT in order
to produce aligned 3D representations of the recorded
RGB-D data. This software registers sequences of
RGB-D observations using the Generalized Iterative
Closest Point technique (GICP) (Segal et al. 2009).
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Figure 7: Snapshot of a kitchen from the alma house
during its labeling process through the Label scene OLT
component.

This ICP variant requires an initial pose estimation to
accurately align RGB-D observations, which in our case
is obtained using visual odometry (Jaimez & González-
Jiménez 2015). Some examples of the provided recon-
structions of rooms are shown in Fig. 8 (fifth row).

4.2.3 Labeled 3D point maps.

Each reconstructed room has been labeled with the La-
bel scene tool from OLT. This tool allows us to easily set
bounding boxes to the objects appearing in the point
cloud reconstruction, and include annotations with the
ground truth information about their category, e.g.
counter, book, couch, shelf, as well as an object id to
identify the particular instance, i.e. counter-1, book-3,
etc. Fig. 8 (sixth row) illustrates some examples of an-
notations, while Fig. 7 shows a snapshot of the labeling
process.

4.2.4 Labeled RGB-D observations.

Each RGB-D observation within the collected sequences
has been also labeled with the category/instance of their
contained objects through the Label rawlog application
within OLT. This tool is fed with both the recorded se-
quence and the labeled, reconstructed map (obtained as
described in the previous section) in order to automat-
ically propagate the ground truth information to the
RGB-D observations. The outcome of this process is
a per-pixel labeling of the intensity and depth images
within each observation, as well as a per-point labeling
of its point cloud data (please refer to Ruiz-Sarmiento
et al. (2015c) for further information). The last row
of Fig. 8 depicts depth images colored according to the
propagated ground truth labels.

4.3 Usage

All the raw and processed data within Robot@Home
have been conveniently structured into data types and
sessions at its site, so the interested user can download
chunks of information according to his/her needs (see
Fig. 9). The data are available in (human readable)
plain text files7 and PNG images. Some of their imme-
diate applications are listed below.

Semantic mapping. The Robot@Home dataset is
specially suited as a benchmark for algorithms aimed
at robotic semantic mapping through the categoriza-
tion of objects and/or rooms, given its collection by a
mobile robot and the inclusion of annotated 3D recon-
structions and sequences of RGB-D observations (Ruiz-
Sarmiento et al. 2016, Oliveira et al. 2015). It can be
also considered for testing recognition algorithms (Bo
et al. 2013), since the provided ground truth informa-
tion also includes the instance of the object/room to
which it belongs to, e.g. sofa 1, bottle 3, bathroom 1,
etc.

Robot@Home also enables the benchmarking of cat-
egorization systems relying on different kinds of infor-
mation, namely: i) exclusively using laser scans, RGB,
depth, or RGB-D observations, ii) employing a stream
of data from a sequence, iii) resorting to partial registra-
tions of such a sequence, or iv) exploiting the resultant
whole registered scene.

From a semantic point of view, the compiled data
are useful as input for modern categorization systems
leveraging contextual information within domestic set-
tings (Ruiz-Sarmiento et al. 2015a, Anand et al. 2013).
This enables, for example, the exploitation of typical
objects’ and rooms’ configurations like beds are in bed-
rooms, microwaves are not in bathrooms, or cushions
are on couches, in order to enhance the categorization
performance.

An additional feature worth mentioning is that
Robot@Home is ready to be used by the Benchmark
rawlog application from OLT. This software compares
two sequences of labeled RGB-D observations and com-
putes the similarity of their annotations. In other
words, it permits us to compare a sequence from
the dataset including ground truth annotations, with
the same sequence labeled by a categorization algo-
rithm, retrieving information about the performance
of such algorithm. Thereby, a common benchmarking
frame for the comparison of algorithms that exploit the
Robot@Home dataset can be easily set.

In order to standardize the dataset usage for catego-
rization/recognition purposes, we encourage the utiliza-
tion of a leave-one-out cross-validation procedure (Arlot
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Figure 8: Excerpts of the information provided by Robot@Home. From top to bottom, examples of 2D laser
scans from three different rooms, RGB and depth images gathered from them, their built 2D geometric maps and
3D reconstructions, the labels in such reconstructions as boxes where colors stand for different object categories
and, finally, the labeled depth information.

9



Draft version To appear in the International Journal of Robotics Research

& Celisse 2010), where the data from one apartment are
employed for testing and those from the remaining ones
for training. This process is repeated 5 times, changing
the testing home, and the individual results are finally
averaged.

Object/room segmentation. Segmentation or
clustering algorithms (Mura et al. 2014, Carreira &
Sminchisescu 2012) can be also benchmarked given the
per-pixel and per-point labeling of its reconstructed
rooms and RGB-D sequences, which sets the extension
and boundaries of the objects and rooms appearing in
the dataset.

Simulation of virtual sensors. The coverage pro-
vided by the rig of RGB-D sensors, i.e., ∼180◦ hori-
zontally and ∼58◦ vertically, enables the simulation of
virtual sensors with different field of views. This is a
valuable feature in the design phase of a robotic sens-
ing system (de la Puente et al. 2014), since it permits
the dataset user to test different sensing configurations
in order to find the most convenient one for his/her
purposes.

Data compression/transmission. Many robotic
platforms have limited resources, which are typically
shared among a number of software processes. In these
cases efficient compression/transmission algorithms for
dense sensory information are a plus (Kammerl et al.
2012, Mekuria & Cesar 2016), for which the amount
of data provided within Robot@Home can be a useful
testbed for checking their performance.

Other. Finally, the provided data can be also ex-
ploited for addressing typical robotic problems like 3D
map building, localization (Castellanos & Tardos 2012)
or SLAM (Cadena et al. 2016), since the robot’s poses
can be accurately estimated from the sequence of 2D
scans.

5 Summary

In this work we have presented the Robot@Home
dataset, a collection of data gathered by a mo-
bile robot in domestic settings, publicly avail-
able at http://mapir.isa.uma.es/work/robot-at-home-

dataset, which main purpose is to serve as a testbed
for semantic mapping algorithms through the catego-
rization of objects and/or rooms . Such a robot has
been endowed with a rig of 4 RGB-D devices and a
2D laser scanner, which have been extrinsically and
intrinsically calibrated employing state-of-the-art algo-
rithms. Robot@Home comprises i) sequences of RGB-D
observations and 2D laser scans from five home environ-

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

Raw data (plain text , png images)

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

maps maps + logs

Reconstructed scenes (plain text)

All

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

Robot@Home dataset

Laser scanner data (plain text)

RGB-D cameras data (plain text , png images)

Labeled RGB-D sequences (plain text, png images)

Labeled reconstructed scenes (plain text)

2D geometric maps (plain text)

Topological information (plain text)

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

alma-s1 anto-s1 pare-s1 … sarmis-s3 All

Figure 9: Tree structure of the data provided in the
dataset webpage. Notice that the different types of data
are available to the user both, split in sessions, or all
together. The topology of the houses and the 2D geo-
metric maps have particular, more convenient download
options.

ments, ii) topological information about the connectiv-
ity of the rooms in those homes, iii) 2D geometric maps
of the inspected rooms/homes, and iv) 3D reconstruc-
tions. Ground truth information about the categories
of the observed objects and rooms is available in the
form of v) annotated bounding boxes over the recon-
structed rooms, and vi) labeled sequences of RGB-D
observations.

The surveyed scenarios include characteristics that
turn the dataset into a sandbox to test robotic cat-
egorization systems dealing with issues like changing
lighting conditions, cluttered room layouts, occlusions,
or changing viewpoints. Additionally, a number of dis-
tinctive patterns and objects have been intentionally
placed in these scenarios to enable their exploitation in
robotic competitions. Although Robot@Home is spe-
cially suited as a benchmark tool for object and/or room
categorization systems taking advantage of contextual
relations among objects and rooms, its possible usages
are diverse, e.g. object/room instance recognition, ob-
ject segmentation, data compression/transmission, etc.
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Notes
1For short, we use the term categorization to refer to the cat-

egorization of objects and rooms.
2Categorization methods yield information about the category

of an object or room, e.g. table or bedroom, while the outcome of
recognition methods refers to a particular instance, e.g. table 1
or bedroom john.

3The Giraff robotic platform was used in previous works
like Jaimez et al. (2015), Melendez-Fernandez et al. (2016), Kise-
lev et al. (2015), and from such experiences we concluded that a
height 0.92 is optimal for being able to see at a convenient dis-
tance both, the objects on surfaces like tables or counters, and
the objects on the floor.

4In this work we have considered the origin of the robot frame
as the center of the robot base.

5http://www.mrpt.org/Rawlog Format.
6http://mapir.isa.uma.es/work/object-labeling-toolkit
7Each plain text file contains a header explaining its content.
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