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Abstract

Semantic maps augment metric-topological maps with meta-information, i.e. semantic knowledge aimed at the planning and
execution of high-level robotic tasks. Semantic knowledge typically encodes human-like concepts, like types of objects and rooms,
which are connected to sensory data when symbolic representations of percepts from the robot workspace are grounded to those
concepts. This symbol grounding is usually carried out by algorithms that individually categorize each symbol and provide a crispy
outcome – a symbol is either a member of a category or not. Such approach is valid for a variety of tasks, but it fails at: (i)
dealing with the uncertainty inherent to the grounding process, and (ii) jointly exploiting the contextual relations among concepts
(e.g. microwaves are usually in kitchens). This work provides a solution for probabilistic symbol grounding that overcomes these
limitations. Concretely, we rely on Conditional Random Fields (CRFs) to model and exploit contextual relations, and to provide
measurements about the uncertainty coming from the possible groundings in the form of beliefs (e.g. an object can be categorized
(grounded) as a microwave or as a nightstand with beliefs 0.6 and 0.4, respectively). Our solution is integrated into a novel semantic
map representation called Multiversal Semantic Map (MvSmap ), which keeps the different groundings, or universes, as instances
of ontologies annotated with the obtained beliefs for their posterior exploitation. The suitability of our proposal has been proven
with the Robot@Home dataset, a repository that contains challenging multi-modal sensory information gathered by a mobile robot
in home environments.
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1. Introduction1

A mobile robot intended to operate within human environ-2

ments needs to create and maintain an internal representation3

of its workspace, commonly referred to as a map. Robotic sys-4

tems rely on different types of maps depending on their goals.5

For example, metric maps are purely geometric representations6

that permit robot self-localization with respect to a given refer-7

ence frame [1, 2]. Topological maps consider a graph structure8

to model areas of the environment and their connectivity, hence9

straightforwardly supporting navigational planning tasks [3, 4].10

In its turn, Hybrid maps come up from the combination of the11

previous ones by maintaining local metric information and a12

graph structure to perform basic but core robotic skills as lo-13

calization and global navigation [5, 6]. A pivotal requirement14

for the successful building of these types of maps is to deal15

with uncertainty coming, among other sources, from errors in16

the robot perception (limited field of view and range of sen-17

sors, noisy measurements, etc.), and inaccurate models and al-18

gorithms. This issue is addressed in state-of-the-art approaches19

through probabilistic techniques [7].20

Despite the possibilities of these representations, planning21

and executing high-level robotic tasks within human-like en-22

vironments demand more sophisticated maps to enable robots,23
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for example, to deal with user commands like “hey robot! I am 24

leaving, take care of the oven while I am out, please” or ‘Guide 25

the customer through the aisle with garden stuff and show him 26

the watering cans”. Humans share a common-sense knowl- 27

edge about concepts like oven, or garden stuff, which must be 28

transferred to robots in order to successfully face those tasks. 29

Semantic maps emerged to cope with this need, providing the 30

robot with the capability to understand, not only the spatial as- 31

pects of human environments, but also the meaning of their ele- 32

ments (objects, rooms, etc.) and how humans interact with them 33

(e.g. functionalities, events, or relations). This feature is distinc- 34

tive and traversal to semantic maps, being the key difference 35

with respect to maps that simply augment metric/topological 36

models with labels to state the category of recognized objects 37

or rooms [8, 9, 10, 11, 12]. Contrary, semantic maps handle 38

meta-information that models the properties and relations of 39

relevant concepts therein the domain at hand, codified into a 40

Knowledge Base (KB), stating that, for example, microwaves 41

are box-shaped objects usually found in kitchens and useful for 42

heating food. Building and maintaining semantic maps involve 43

the symbol grounding problem [13, 14, 15], i.e. linking portions 44

of the sensory data gathered by the robot (percepts), represented 45

by symbols, to concepts in the KB by means of some catego- 46

rization and tracking method. 47

Semantic maps generally support the execution of reason- 48

ing engines, providing the robot with inference capabilities for 49

efficient navigation, object search [16], human-robot interac- 50
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tion [17] or pro-activeness [18] among others. Typically, such51

engines are based on logical reasoners that work with crispy1
52

information (e.g. a percept is identified as a microwave or not).53

The information encoded in the KB, along with that inferred54

by logical reasoners, is then available for a task planning algo-55

rithm dealing with this type of knowledge and orchestrating the56

aforementioned tasks [19]. Although crispy knowledge-based57

semantic maps can be suitable in some setups, especially in58

small and controlled scenarios [20], they are also affected by59

uncertainty coming from both, the robot perception, and the in-60

accurate modeling of the elements within the robot workspace.61

Moreover, these systems usually reckon on off-the-shelf cate-62

gorization methods to individually ground percepts to particu-63

lar concepts, which disregard the contextual relations between64

the workspace elements: a rich source of information intrinsic65

to human-made environments (for example that nigh-stands are66

usually in bedrooms and close to beds).67

In this work we propose a solution for addressing the symbol68

grounding problem from a probabilistic stance, which permits69

both exploiting contextual relations and modeling the afore-70

mentioned uncertainties. For that we employ a Conditional71

Random Field (CRF), a particular type of Probabilistic Graph-72

ical Model [21], to represent the symbols of percepts gathered73

from the workspace as nodes in a graph, and their geometric re-74

lations as edges. This representation allows us to jointly model75

the symbol grounding problem, hence exploiting the relations76

among the elements in the environment. CRFs support the exe-77

cution of probabilistic inference techniques, which provide the78

beliefs about the grounding of those elements to different con-79

cepts (e.g. an object can be a bowl or a cereal box with beliefs80

0.8 and 0.2 respectively). In other words, the uncertainty com-81

ing both from the robot perception, and from the own symbol82

grounding process, is propagated to the grounding results in the83

form of beliefs.84

The utilization of CRFs also leads to a number of valuable85

advantages:86

• Fast inference: probabilistic reasoning algorithms, resort-87

ing to approximate techniques, exhibit an efficient execu-88

tion that permits the retrieval of inference results in a short89

time [22, 23].90

• Multi-modal information: CRFs easily integrate percepts91

coming from different types of sensors, e.g. RGB-D im-92

ages and 2D laser scans, related to the same elements in93

the workspace [21].94

• Spatio-temporal coherence: they can be dynamically mod-95

ified to mirror new information gathered by the robot, also96

considering previously included percepts. This is done in97

combination with an anchoring process [14].98

• Life-long learning: CRFs can be re-trained in order to99

take into account new concepts not considered during the100

initial training, but that could appear in the current robot101

workspace [24].102

1For the purpose of this work, the term crispy takes the same meaning as
in classical logic: it refers to information or processes dealing with facts that
either are true or not.

In order to accommodate the probabilistic outcome of the 103

proposed grounding process, a novel semantic map represen- 104

tation, called Multiversal Semantic Map (MvSmap ), is pre- 105

sented. This map extends the previous work by Galindo et 106

al. [25], and considers the different combinations of possible 107

groundings, or universes, as instances of ontologies [26] with 108

belief annotations on their grounded concepts and relations. 109

According to these beliefs, it is also encoded the probability of 110

each ontology instance being the right one. Thus, MvSmaps 111

can be exploited by logical reasoners performing over such on- 112

tologies, as well as by probabilistic reasoners working with the 113

CRF representation. This ability to manage different semantic 114

interpretations of the robot workspace, which can be leveraged 115

by probabilistic conditional planners (e.g. those in [27] or [28]), 116

is crucial for a coherent robot operation. 117

To study the suitability of our approach, we have con- 118

ducted an experimental evaluation focusing on the construc- 119

tion of MvSmaps from facilities in the novel Robot@Home 120

dataset [29]. This repository consists of 81 sequences contain- 121

ing 87,000+ timestamped observations (RGB-D images and 122

2D laser scans), collected by a mobile robot in different ready 123

to move apartments. Such dataset permits us to intensively 124

analyze the semantic map building process, demonstrating the 125

claimed representation virtues. As an advance on this study, a 126

success of ∼ 81.5% and ∼ 91.5% is achieved while grounding 127

percepts to object and room concepts, respectively. 128

The next section puts our work in the context of the related 129

literature. Sec. 3 introduces the proposed Multiversal Semantic 130

Map, while Sec. 4 describes the processes involved in the build- 131

ing of the map for a given environment, including the proba- 132

bilistic symbol grounding. The suitability of our approach is 133

demonstrated in Sec. 5, and Sec. 6 discuses some of its poten- 134

tial applications. Finally, Sec. 7 concludes the paper. 135

2. Related work 136

This section reviews the most relevant related works address- 137

ing the symbol grounding problem (Sec. 2.1), aiming to put into 138

context our probabilistic solution, as well as the most popular 139

approaches for semantic mapping that can be found in the liter- 140

ature (Sec. 2.2). 141

2.1. Symbol grounding 142

As commented before, the symbol grounding problem con- 143

sists of linking symbols that are meaningless by themselves to 144

concepts in a Knowledge Base (KB), hence retrieving a notion 145

of their meanings and functionalities in a given domain [13]. In 146

the semantic mapping problem, symbols are typically abstract 147

representations of percepts from the robot workspace, namely 148

objects and rooms [15, 30]. Therefore, a common approach 149

to ground those symbols is their processing by means of cat- 150

egorization systems, whose outcomes are used to link them to 151

concepts in the KB. The remaining of this section provides a 152

brief overview of categorization approaches for both objects 153

and rooms, and concludes with our proposal for a probabilis- 154

tic grounding. 155

2
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In its beginnings, the vast literature around object categoriza-156

tion focused on the classification of isolated objects employ-157

ing their geometric/appearance features. A popular example of158

this is the work by Viola and Jones [31], where an integral im-159

age representation is used to encode the appearance of a cer-160

tain object category, and is exploited by a cascade classifier161

over a sliding window to detect occurrences of such object type162

in intensity images. A limiting drawback of this categoriza-163

tion method is the lack of an uncertainty measurement about164

its outcome. Another well known approach, which is able to165

provide such uncertainty, is the utilization of image descriptors166

like Scale-Invariant Feature Transform (SIFT) [32] or Speeded-167

Up Robust Features (SURF) [33] to capture the appearance of168

objects, and its posterior exploitation by classifiers like Sup-169

ported Vector Machines (SVMs) [34] or Bag-of-Words based170

ones [35, 36]. The work by Zhang et al. [37] provides a com-171

prehensive review of methods following this approach. It is172

also considerable the number of works tackling the room cate-173

gorization problem through the exploitation of their geometry174

or appearance, like the one by Mozos et al. [38] which employs175

range data to classify spaces according to a set of geometric fea-176

tures. Also popular are works resorting to global descriptors of177

intensity images, like the gist of the scene proposed by Oliva178

and Torralba [39], those resorting to local descriptors like the179

aforementioned SIFT and SURF [40, 41], or the works com-180

bining both types of cues, global and local, pursuing a more181

robust performance [42, 43]. Despite the acceptable success of182

these traditional approaches, they can produce ambiguous re-183

sults when dealing with objects/rooms showing similar features184

to two or more categories [44]. For example, these methods185

could have difficulties to categorize a white, box-shaped object186

as a microwave or a nightstand.187

For that reason, modern categorization systems also integrate188

contextual information of objects/rooms, which has proven to189

be a rich source of information for the disambiguation of un-190

certain results [45, 46, 47]. Following the previous example, if191

the object is located in a bedroom and close to a bed, this infor-192

mation can be used to determine that it will likely be a night-193

stand. Probabilistic Graphical Models (PGMs) in general, and194

Undirected Graphical Models (UGMs) in particular, have be-195

came popular frameworks to model such relations and exploit196

them in combination with probabilistic inference methods [21].197

Contextual relations can be of different nature, and can involve198

objects and/or rooms.199

On the one hand, objects are not placed randomly, but fol-200

lowing configurations that make sense from a human point of201

view, e.g. faucets are on sinks, mouses can be found close to202

keyboards, and cushions are often placed on couches or chairs.203

These object–object relations have been exploited, for example,204

by Anand et al. [48], which reckon on a model isomorphic to205

a Markov Random Field (MRF) to leverage them in home and206

office environments, or by Valentin et al. [49], which employ207

a Conditional Random Field (CRF), the discriminant variant208

of MRFs, to classify the faces of mesh-based representations209

of scenes compounded of objects according to their relations.210

Other examples of works also resorting to CRFs are the one by211

Xiong and Huver [50], which employs them to categorize the212

main components of facilities: clutters, walls, floors and ceil- 213

ings, and those by Ruiz-Sarmiento et al. [22, 51, 52], where 214

CRFs and ontologies [26] work together for achieving a more 215

efficient and coherent object categorization. 216

On the other hand, object–room relations also supposes a 217

useful source of information: objects are located in rooms ac- 218

cording to their functionality, so the presence of an object of 219

a certain type is a hint for the categorization of the room and, 220

likewise, the category of a room is a good indicator of the object 221

categories that can be found therein. Thus, recent works have 222

explored the joint categorization of objects and rooms leverag- 223

ing both, object–object and object–room contextual relations. 224

CRFs have proven to be a suitable choice for modelling this 225

holistic approach, as it has been shown in the works by Rogers 226

and Christensen [53], Lin et al. [54], or Ruiz-Sarmiento et 227

al. [55]. 228

In this work we propose the utilization of a CRF to jointly 229

categorize the percepts of objects and rooms gathered during 230

the robot exploration of an environment, as well as its integra- 231

tion into a symbol grounding system. This CRF is exploited by 232

a probabilistic inference method, namely Loopy Belief Propa- 233

gation (LBP) [56, 57], in order to provide uncertainty measure- 234

ments in the form of beliefs about the grounding of the symbols 235

of these percepts to categories. Such categories correspond to 236

concepts codified within an ontology, stating the typical prop- 237

erties of objects and rooms, and giving a semantic meaning to 238

those symbols. Additionally, to make the symbols and their 239

groundings consistent over time, we rely on an anchoring pro- 240

cess [14]. To accommodate the outcome of this probabilistic 241

symbol grounding, a novel semantic map representation is pro- 242

posed. 243

2.2. Semantic maps 244

In the last decade, a number of works have appeared in the 245

literature contributing different semantic map representations. 246

One of the earliest works in this regard is the one by Galindo et 247

al. [25], where a multi-hierarchical representation models, on 248

the one hand, the concepts of the domain of discourse through 249

an ontology, and on the other hand, the elements from the cur- 250

rent workspace in the form of a spatial hierarchy that ranges 251

from sensory data to abstract symbols. NeoClassic is the cho- 252

sen system for knowledge representation and reasoning through 253

Description Logics (DL), while the employed categorization 254

system is limited to the classification of simple shape primi- 255

tives, like boxes or cylinders, as furniture, e.g. a red box repre- 256

sents a couch. The potential of this representation was further 257

explored in posterior works, e.g. for improving the capabilities 258

and efficiency of task planners [19], or for the autonomous gen- 259

eration of robot goals [18]. A similar approach is proposed 260

in Zender et al. [20], where the multi-hierarchical represen- 261

tation is replaced by a single hierarchy ranging from sensor- 262

based maps to a conceptual abstraction, which is encoded in a 263

Web Ontology Language (OWL)–DL ontology defining an of- 264

fice domain. To categorize objects, they rely on a SIFT-based 265

approach, while rooms are grounded according to the objects 266

detected therein. In Nüchter and Hertzberg [58] a constraint 267
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network implemented in Prolog is used to both codify the prop-268

erties and relations among the different planar surfaces in a269

building (wall, floor, ceiling, and door) and classify them, while270

two different approaches are considered for object categoriza-271

tion: a SVM-based classifier relying on contour-based features,272

and a Viola and Jones cascade of classifiers reckoning on range273

and reflectance data.274

These works set out a clear road for the utilization of on-275

tologies to codify semantic knowledge [59], which has been276

further explored in more recent research. An example of this277

is the work by Tenorth et al. [60], which presents a system278

for the acquisition, representation, and use of semantic maps279

called KnowRob-Map, where Bayesian Logic Networks are280

used to predict the location of objects according to their usual281

relations. The system is implemented in SWI-Prolog, and the282

robot’s knowledge is represented in an OWL-DL ontology. In283

this case, the categorization algorithm classifies planar surfaces284

in kitchen environments as tables, cupboards, drawers, ovens285

or dishwashers [11]. The same map type and categorization286

method is employed in Pangercic et al. [61], where the authors287

focus on the codification of object features and functionalities288

relevant to the robot operation in such environments. The pa-289

per by Riazuelo et al. [62] describes the RoboEarth cloud se-290

mantic mapping which also uses an ontology for codifying con-291

cepts and relations, and rely on a Simultaneous Localization292

and Mapping (SLAM) algorithm for representing the scene ge-293

ometry and object locations. The categorization method resorts294

to SURF features (like in Reinaldo et al. [63]), and performs by295

only considering the object types that are probable to appear in296

a given scene (the room type is known beforehand). In Günther297

et al. [64], the authors employ an OWL-DL ontology in combi-298

nation with rules defined in the Semantic Web Rule Language299

(SWRL) to categorize planar surfaces.300

It has been also explored the utilization of humans for assist-301

ing during the semantic map building process through a situated302

dialogue. Examples of works addressing this are those by Bas-303

tianelli et al. [65], Gemignani et al. [66], or the aforementioned304

one by Zender et al. [20]. The main motivation of these works305

is to avoid the utilization of categorization algorithms, given306

the numerous challenges that they must face. However, they307

themselves argue that the more critical improvement of their308

proposals would arise from a tighter interaction with cutting-309

edge categorization techniques. The interested reader can refer310

to the survey by Kostavelis and Gasteratos [67] for an addi-311

tional, comprehensive review of semantic mapping approaches312

for robotic tasks.313

The semantic mapping techniques discussed so far rely on314

crispy categorizations of the perceived spatial elements, e.g. an315

object is either a cereal box or not, a room is a kitchen or not,316

etc., which are typically exploited by (logical) reasoners and317

planners for performing a variety of robotic tasks. As com-318

mented before, these approaches: (i) can lead to an incoher-319

ent robot operation due to ambiguous grounding results, and320

(ii) exhibit limitations to fully exploit the contextual relations321

among spatial elements. In this work we propose a solution322

for probabilistic symbol grounding to cope with both, the un-323

certainty inherent to the grounding process, and the contextual324

relations among spatial elements. Perhaps the closet work to 325

ours is the one by Pronobis and Jensfelt [16], which employs a 326

Chain Graph (a graphical model mixing directed and undirected 327

relations) to model the grounding problem from a probabilistic 328

stance, but that fails at fully exploiting contextual relations. We 329

also present a novel representation called Multiversal Semantic 330

Map (MvSmap ), in order to accommodate and further exploit 331

the outcome of the probabilistic symbol grounding. 332

3. The Multiversal Semantic Map 333

The proposed Multiversal Semantic Map (MvSmap ) (see 334

Fig. 1) is inspired by the popular, multi-hierarchical semantic 335

map presented in Galindo et al. [25]. This map considers two 336

separated but tightly related hierarchical representations con- 337

taining: (i) the semantic, meta-information about the domain at 338

hand, e.g. refrigerators keep food cold and are usually found in 339

kitchens, and (ii) the factual, spatial knowledge acquired by the 340

robot and its implemented algorithms from a certain workspace, 341

e.g. obj-1 is perceived and categorized as a refrigerator. These 342

hierarchies are called terminological box (T-Box) and spatial 343

box (S-Box), respectively, names borrowed from the common 344

structure of hybrid knowledge representation systems [68]. 345

MvSmaps enhance this representation by including uncer- 346

tainty, in the form of beliefs, about the groundings (catego- 347

rizations) of the spatial elements in the S-Box to concepts in 348

the T-Box. For example, a perceived object, represented by 349

the symbol obj-1, could be grounded by the robot as a mi- 350

crowave or a nightstand with beliefs 0.65 and 0.35, respec- 351

tively, or it might think that a room (room-1) is a kitchen or 352

a bedroom with beliefs 0.34 and 0.67. Moreover, in this rep- 353

resentation the relations among the spatial elements play a piv- 354

otal role, and they have also associated compatibility values in 355

the form of beliefs. To illustrate this, if obj-1 was found in 356

room-1, MvSmaps can state that the compatibility of obj-1 357

and room-1 being grounded to microwave and kitchen respec- 358

tively is 0.95, while to microwave and bedroom is 0.05. These 359

belief values are provided by the proposed probabilistic infer- 360

ence process (see Sec. 4.4). 361

Furthermore, MvSmaps assign a probability value to each 362

possible set of groundings, creating a multiverse, i.e. a set of 363

universes stating different explanations of the robot environ- 364

ment. A universe codifies the joint probability of the observed 365

spatial elements being grounded to certain concepts, hence pro- 366

viding a global sense of certainty about the robot’s understand- 367

ing of the environment. Thus, following the previous exam- 368

ple, a universe can represent that obj-1 is a microwave and 369

room-1 is a kitchen, while a parallel universe states that obj-1 370

is a nightstand and room-1 is a bedroom, both explanations 371

annotated with different probabilities. Thereby, the robot per- 372

formance is not limited to the utilization of the most probable 373

universe, like traditional semantic maps do, but it can also con- 374

sider other possible explanations with different semantic inter- 375

pretations, resulting in a more coherent robot operation. 376

The next sections introduce the terminological box (Sec. 3.1), 377

the spatial box (Sec. 3.2), and the multiverse (Sec. 3.3) in more 378

detail, as well as the formal definition ofMvSmaps (Sec. 3.4). 379
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Figure 1: Example of Multiversal Semantic Map representing a simple domestic environment.

In its turn, Sec. 4 describes how aMvSmap for a given robot380

workspace is built from scratch.381

3.1. Representing semantic knowledge: the T-Box382

The terminological box, or T-Box, represents the semantic383

knowledge of the domain where the robot is to operate, model-384

ing relevant information about the type of elements that can be385

found there. Semantic knowledge has been traditionally codi-386

fied as a hierarchy of concepts (e.g. Microwave is-a Object or387

Kitchen is-a Room), properties of that concepts (Microwave388

hasShape Box), and relations among them (Microwave isIn389

Kitchen). This hierarchy is often called ontology [26], and390

its structure is a direct consequence of its codification as a tax-391

onomy. The T-Box gives meaning to the percepts in the S-Box392

through the grounding of their symbolic representations to par-393

ticular concepts. For example, a segmented region of a RGB-D394

image, symbolized by obj-1, can be grounded to an instance395

of the concept Microwave.396

The process of obtaining and codifying semantic knowledge397

can be tackled in different ways. For example, web mining398

knowledge acquisition systems can be used as mechanisms to399

obtain information about the domain of discourse [69]. Avail-400

able common-sense Knowledge Bases, like ConceptNet [70] or401

Open Mind Indoor Common Sense [71], can be also analyzed to402

retrieve this information. Another valuable option is the utiliza-403

tion of internet search engines, like Google’s image search [72],404

or image repositories like Flickr [73], for extracting knowledge405

from user-uploaded information. In this work we have codi-406

fied the semantic knowledge through a human elicitation pro- 407

cess, which supposes a truly and effortless encoding of a large 408

number of concepts and relations between them. In contrast to 409

online search or web mining-engine based methodologies, this 410

source of semantic information (a person or a group of people) 411

is trustworthy, so there is less uncertainty about the validity of 412

the information being managed. Moreover, the time required by 413

this approach is usually tractable, as reported in [52], although 414

it strongly depends on the complexity of domain at hand. For 415

highly complex domains the web mining approach – under hu- 416

man supervision – could be explored. 417

The left part of the T-Box in Fig. 1 depicts an excerpt of the 418

ontology used in this work, defining rooms and objects usu- 419

ally found at homes. The top level sets the root, abstract con- 420

cept Thing, with two children grouping the two types of el- 421

ements that we will consider during the building of the map, 422

namely Rooms and Objects. Rooms can belong to different 423

concepts like Kitchen, Bedroom, etc., while examples of types 424

of objects are Microwave, Nightstand, etc. The right part of 425

the T-Box illustrates the simplified definitions of the concepts 426

Bedroom and Microwave, codifying some of their properties 427

and relations with other concepts. 428

3.2. Modeling space: the S-Box 429

The spatial box (S-Box) contains factual knowledge from 430

the robot workspace, including the morphology and topology 431

of the space, geometric/appearance information about the per- 432

ceived spatial elements, symbols representing those elements, 433
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and beliefs concerning their grounding to concepts in the T-434

Box. The S-Box also adopts a hierarchical structure, ranging435

from sensory-like knowledge at the ground level to abstract436

symbols at the top one (see S-Box in Fig. 1). This represen-437

tation is the common choice in the robotics community when438

dealing with large environments [74].439

At the bottom of this hierarchy is the spatial level, which440

builds and maintains a metric map of the working space.441

MvSmaps do not restrict the employed metric map to a given442

one, but any geometric representation can be used, e.g. point-443

based [75], feature-based [76], or occupancy grid maps [1].444

This map permits the robot to self-localize in a global frame,445

and also to locate the perceived elements in its workspace.446

The top level of the S-Box is the symbolic level, envisioned447

to maintain an abstract representation of the perceived ele-448

ments through symbols, including the robot itself (e.g. obj-2,449

room-1, robot-1, etc.), which are modeled as nodes. Arcs be-450

tween nodes state different types of relations, as for example,451

objects connected by a relation of proximity (see close rela-452

tions in the symbolic level in Fig. 1), or an object and a room453

liked by a relation of location (at relations). In this way, the454

symbolic level constitutes a topological representation of the455

environment, which can be used for global navigation and task456

planning purposes [77].457

Finally, the intermediate level maintains the nexus between458

the S-Box and the T-Box. This level stores the outcome of an459

anchoring process, which performs the critical function of cre-460

ating and maintaining the correspondence between percepts of461

the environment and symbols that refer to the same physical el-462

ements [14, 78]. The result is a set of the so-called anchors,463

which keep geometric/appearance information about the per-464

cepts (location, features, relations, etc.) and establish links to465

their symbolic representation. Additionally, in aMvSmap an-466

chors are in charge of storing the beliefs about the grounding467

of their respective symbols, as well as their compatibility with468

respect to the grounding of related elements.469

For illustrative purposes, the middle level in Fig. 1 exem-470

plifies two anchors storing information of a percept from a471

microwave (in orange) and from a kitchen (in green). The472

coloured doted lines are pointers to their location in the metric473

map and their associated symbols, while the black doted lines474

point at the percepts of these elements from the environment.475

As an example, the outcome of a symbol grounding process is476

shown (field Concept within the anchor), which gives a belief477

for obj-1 being grounded to Microwave and Nightstand of478

0.65 and 0.35 respectively, while those for room-1 are 0.33 for479

Kitchen and 0.67 for Bedroom. It is also shown the beliefs,480

or compatibility, for the symbols obj-1 and room-1 (related481

through the connection r1) being grounded to certain pairs of482

concepts, e.g. 0.95 for Microwave and Kitchen, while 0.05 for483

Microwave and Bedroom.484

3.3. Multiple semantic interpretations: the Multiverse485

MvSmaps define the possible sets of symbols’ ground-486

ings as universes. For example, by considering only the ele-487

ments represented by obj-1 and room-1 in Fig. 1, four uni-488

verses are possible: U1:{(obj-1 is-a Nightstand), (room-1489

is-a Kitchen)}, U2:{(obj-1 is-a Microwave), (room-1 is- 490

a Kitchen)}, U3:{(obj-1 is-a Nightstand), (room-1 is-a 491

Bedroom)}, and U4:{(obj-1 is-a Microwave), (room-1 is-a 492

Bedroom)}. This multiverse considers the possible explana- 493

tions to the elements in the robot workspace. Additionally, 494

MvSmaps annotate universes with their probability of being 495

the plausible one, computed as the joint probability of ground- 496

ing the symbols to the different concepts, giving a measure of 497

certainty abut the current understanding of the robot about its 498

workspace. Thus, a universe can be understood as an instance 499

of the codified ontology with a set of grounded symbols and 500

annotated probabilities. 501

To highlight the importance of the multiverse, let’s us con- 502

sider the simplified scenario depicted in Fig. 1. Under the ti- 503

tle Multiverse, the four possible universes are displayed, with 504

their probabilities annotated in brackets along with their names. 505

The coloured (green and orange) concepts in those universes 506

state the symbols that are grounded to them. We can see how 507

the most plausible universe, i.e. , combination of groundings, is 508

Universe 3 (U3) (represented with a bold border), which sets 509

obj-1 as a nightstand and room-1 as a bedroom. Suppose now 510

that the robot is commanded to store a pair of socks in the night- 511

stand. If the robot relies only on the most probable universe, we 512

could end up with our socks heated in the microwave. However, 513

if the robot also considers other universes, it could be aware that 514

Universe 2 (U2) is also a highly probable one, considering it as 515

a different interpretation of its knowledge. In this case the robot 516

should disambiguate both understandings of the workspace by, 517

for example, gathering additional information from the environ- 518

ment, or in collaboration with humans. 519

It is worth mentioning that the information encoded in the 520

Multiverse can be exploited, for example, by probabilistic con- 521

ditional planners (e.g. those in [27] or [28]) for achieving a more 522

coherent robot operation. Also, when a certain universe reaches 523

a high belief, it could be considered as the ground, categorical 524

truth, hence enabling the execution of logical inference engines 525

like Pellet [79], FaCT++ [80], or Racer [81]. 526

3.4. Formal description ofMvSmaps 527

Given the ingredients ofMvSmaps provided in the previous 528

sections, a Multiversal Semantic Map can be formally defined 529

by the quintupleMvSmap = {R,A,Y,O,M}, where: 530

• R is the metric map of the environment, providing a global 531

reference frame for the observed spatial elements. 532

• A is a set of anchors internally representing such spatial 533

elements, and linking them with the set of symbols in Y. 534

• Y is the set of symbols that represent the spatial elements 535

as instances of concepts from the ontology O. 536

• O is an ontology codifying the semantic knowledge of the 537

domain at hand. 538

• M encodes the multiverse, containing the set of universes. 539

Notice that the traditional T-Box and S-Box are defined in 540

a MvSmap by O and {R,A,Y} respectively. Since the robot 541

is usually provided with the ontology O beforehand, building a 542
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Figure 2: UML activity diagram illustrating the pipeline for the building and maintaining of aMvSmap according to the sensory information gathered during the
robot exploration. Blue rounded boxes are processes, while white shapes stand for consumed/generated data. The processes or data related to the same component
of the semantic map are grouped together.

1 200 400 600

Figure 3: Example of the progressive building of an occupancy grid map from a home environment. The 2D laser scans in red are the scans currently being aligned
with the map, while the red boxes represent the estimated robot location. White cells in the map stand for free space, while black ones are occupied areas. Grey
cells represent unknown space. Quantities in boxes are the number of scans registered so far to build the corresponding map.

MvSmap consists of creating and maintaining the remaining543

elements in the map definition, as described in the next section.544

4. Building the Map545

This section describes the processes involved in the build-546

ing of a MvSmap for a given environment according to the547

sensory information gathered by a mobile robot (see Fig. 2).548

In our discussion, we assume that the robot is equipped with549

a 2D range laser scanner and a RGB-D camera, two sensors550

commonly found in robotic platforms, although they could be551

replaced by any other sensory system able to survey the spatial552

elements in the environment.553

In a nutshell, when a new 2D laser scan is available, it trig-554

gers the update of the 2D metric map R in the spatial level555

(see Sec. 4.1). In its turn, if a new RGB-D observation is col-556

lected, it is processed in order to characterize the percepts of557

the surveyed room and the objects therein, as well as their con-558

textual relations (see Sec. 4.2). The characterized percepts fed559

an anchoring process that compares them with those from pre-560

viously perceived elements, which are stored in the form of an-561

chors in the anchoring level (see Sec. 4.3). When a percept562

is matched with a previous one, its corresponding anchor is 563

updated, otherwise a new anchor, including a new symbol in 564

the symbolic level, is created. Finally, the information encoded 565

in the anchoring level is used to build a Conditional Random 566

Field, which is in charge of grounding the symbols of the spatial 567

elements to concepts in the T-Box, also providing a measure of 568

the uncertainty concerning such groundings in the form of be- 569

liefs (see Sec. 4.4). These beliefs are stored in the anchors, and 570

are employed to update the multiverse M. The next sections 571

describe the core processes of this pipeline in detail. 572

4.1. Building the underlying metric map 573

During the robot exploration, the collected 2D laser scans are 574

used to build a metric representation of the environment in the 575

form of an occupancy grid map [1]. For that, we rely on stan- 576

dard Simultaneous Localization and Mapping (SLAM) tech- 577

niques to jointly build the map and estimate the robot pose [82]. 578

Thus, the building process is based on an Iterative Closet 579

Point (ICP) algorithm [83], which aligns each new scan to 580

the current reference map. Once aligned, the scan measure- 581

ments are inserted into the map, hence building it incrementally. 582

Given that the robot is also localized in the map at any moment, 583
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the spatial information coming from the sensors mounted on584

it (e.g. RGB-D cameras) can be also located. For that, those585

sensors have to be extrinsically calibrated, that is, the sensors’586

position in the robot local frame must be known. Fig. 3 shows587

an example of the incremental building of a metric map from588

an apartment in the Robot@Home dataset [29].589

4.2. Characterizing percepts590

Concurrently with the metric map building, when a RGB-D591

observation is collected it is processed in order to characterize592

the percepts of the spatial elements therein. This information593

is required by the posterior anchoring process, so it can decide594

which percepts correspond to elements previously observed and595

which ones are perceived for the first time, being consequently596

incorporated to the semantic map.597

Typically, a RGB-D observation contains a number of per-598

cepts corresponding to objects, while the whole observation it-599

self corresponds to the percept of a room (see Fig. 6-left). On600

the one hand, objects’ percepts are characterized through ge-601

ometric (planarity, linearity, volume, etc.) and appearance fea-602

tures (e.g. hue, saturation, and value means). On the other hand,603

room percepts are prone to not cover the entire room, i.e. it is604

common to not survey the whole room with a single RGB-D605

observation, so the extracted geometric and appearance features606

(footprint, volume, hue, saturation and value histograms, etc.)607

are, in addition, averaged over time by considering those from608

past room percepts. Moreover, the metric map hitherto built for609

that room is also considered and characterized, since it supposes610

a rich source of information for its posterior categorization [38].611

The upper part of Tab. 1 lists the features used to describe those612

percepts.613

In addition to objects and rooms, the contextual relations614

among them are also extracted and characterized. We have con-615

sidered two types of relationships, one linking objects that are616

placed closer than a certain distance (close), and another one617

relating an object and its container room (at). The lower part618

of Tab. 1 lists the features employed to characterize such rela-619

tions. It is worth mentioning the function of the bias feature620

characterizing the object–room relations, which is a fixed value621

that permits the CRF to automatically learn the likelihood of622

finding a certain object type into a room of a certain category623

(see Sec. 4.4.1). The outcome of this characterization process624

is known as the signature of the percept.625

4.3. Modeling and keeping track spatial elements: Anchoring626

Once characterized, the percepts feed an anchoring pro-627

cess [14], which establishes the correspondences between the628

symbols of the already perceived spatial elements (e.g. obj-1629

or room-1) and their percepts. For that, it creates and main-630

tains internal representations, called anchors, which include:631

the features of the spatial elements and their relations, their ge-632

ometric location2, their associated symbols, the beliefs about633

2Notice that although the underlying metric map is 2D, the extrinsic cali-
bration of sensors can be used to locate an element in 6D (3D position and 3D
orientation).

Table 1: Features used to characterize the percepts (objects and rooms) and
contextual relations among them (object-object and object-room). These fea-
tures are grouped according to their type, geometric or appearance, stating in
parentheses the type of information from where they come, RGB-D images or
metric maps. Values in parentheses in the features’ names give the number of
features grouped under the same name (for example the centroid of an object
has x, y and z coordinates).

Object Room
Geometric (RGB-D) Geometric (RGB-D)
Planarity Scatter (2)
Scatter Footprint (2)
Linearity Volume (2)
Min. height Appearance (RGB-D)
Max. height H, S, V, means (6)
Centroid (3) H,S,V, Stdv. (6)
Volume H, S, V, histograms (30)
Biggest area Geometric (Metric map)
Orientation Elongation
Appearance (RGB-D) Scatter
H, S, V, means (3) Area
H, S, V, Stdv. (3) Compactness
H, S, V, histograms (15) Linearity

Object-Object Object-Room
Geometric (RGB-D) Bias
Perpendicularity
Vertical distance
Volume ratio
Is on relation
Appearance (RGB-D)
H, S, V, mean diff.
H, S, V, Stdv. diff.

the groundings of those symbols, and their compatibility with 634

the groundings of related elements. The content of an anchor 635

was previously illustrated in the anchoring level in Fig. 1. In its 636

turn, the sub-components of the anchoring process are depicted 637

in Fig. 4. 638

Let Sin = {s1, . . . , sn} be the set of characterized percepts 639

surveyed in the last RGB-D observation. Then, the signatures 640

of these percepts are compared with those of anchors already 641

present in the semantic map, which produces two disjoint sets: 642

the set Supdate of percepts of spatial elements that have been 643

previously observed in the environment, and the set Snew of 644

percepts of elements detected for the first time. We have con- 645

sidered a simple but effective matching algorithm that checks 646

the location of two percepts, the overlapping of their bounding 647

boxes, and their appearance to decide if they refer to the same 648

physical element. 649

The two sets of percepts resulting from the matching step are 650

processed differently: while the set Supdate triggers the update 651

of their associated anchors, i.e. their locations, features, and re- 652

lations are revised according to the new available information, 653

the set Snew produces the creation of new anchors. As a con- 654

sequence, the content of the symbolic level is also revised: the 655

symbols representing updated anchors are checked for possible 656

changes in their relations, while new symbols are created for 657

the new anchors. As an example, Fig. 5 shows two point clouds 658
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Figure 4: UML activity diagram showing the sub-processes (blue rounded boxes) and consumed/produced data (white shapes) involved in the anchoring process.

t0

timeline

ti

Figure 5: Example of the matching step within the anchoring process, show-
ing two point clouds gathered from a kitchen at different time instants. The
green shapes contain percepts that are matched as belonging to the same spatial
element, while the percepts enclosed in the blue and red ones have been cor-
rectly considered as corresponding to different elements due to their different
appearance (they contain a paper roll and a milk bottle respectively).

representing RGB-D images gathered from the same kitchen659

at different time instants. At time t0, two new anchors are cre-660

ated for accommodating the information from the two percepts661

(highlighted in green and blue). Then, at time t1, the signature662

of the percept in green is matched with the one with the same663

color at t0, while the percept in red, despite their similar location664

and size, is considered different from the one in blue at t0 due665

to their appearance, and a new anchor is created. Notice that666

to complete the aforementioned content of anchors the beliefs667

about the grounding of their symbols, as well as the compatibil-668

ity with the groundings of related elements, must be computed.669

This is carried out by the probabilistic techniques in the next670

section.671

Although the described anchoring process could appear sim-672

ilar to a tracking procedure, it is more sophisticated regarding673

the information that is stored/managed. For example, in typical674

tracking problems, it is usually not needed to maintain a sym-675

bolic representation of their tracks, nor to ground them to con-676

cepts within a knowledge base. Further information in this re-677

gard can be found in the work by Coradeschi and Saffiotti [14].678

4.4. Probabilistic symbol grounding679

We holistically model the symbol grounding problem em-680

ploying a Conditional Random Field (CRF) (see Sec. 4.4.1),681

a probabilistic technique first proposed by Lafferty et al. [84]682

that, in addition to exploiting the relations among objects and683

rooms, also provides the beliefs about such groundings through 684

a probabilistic inference process (see Sec. 4.4.2). These belief 685

values are the main ingredients for the generation and update of 686

the multiverse in theMvSmap (see Sec. 4.5). 687

4.4.1. CRFs to model the symbol grounding problem 688

The following definitions are required in order to set the 689

problem from this probabilistic stance: 690

• Let s = [s1, .., sn] be a vector of n of spatial elements, 691

stating the observed objects or rooms in the environment, 692

which are characterized by means of the features in their 693

associated anchors. 694

• Define Lo = {lo1 , .., lok } as the set of the k considered object 695

concepts (e.g. Bed, Oven, Towel, etc.). 696

• Let Lr = {lr1 , .., lr j } be the set of the j considered room 697

concepts (e.g. Kitchen, Bedroom, Bathroom, etc.). 698

• Define y = [y1, .., yn] to be a vector of discrete random 699

variables assigning a concept from Lo or Lr to the symbol 700

associated with each element in s, depending on whether 701

such symbol represents an object or a room. 702

Thereby, the grounding process is jointly modeled by a CRF 703

through the definition of the probability distribution P(y | s), 704

which yields the probabilities of the different assignments to 705

the variables in y conditioned on the elements from s. Since its 706

exhaustive definition is unfeasible due to its high dimension- 707

ality, CRFs exploit the concept of independence to break this 708

distribution down into smaller pieces. Thus, a CRF is repre- 709

sented as a graph G = (V,E), where the set of nodes V mod- 710

els the random variables in y, and the set of undirected edges 711

E ⊆ V × V links contextually related nodes. Notice that this 712

graph can be built directly from the codified information within 713

the symbolic level. Thus, mimicking the representation in that 714

level, the same types of edges are considered in the CRF: prox- 715

imity of two objects, and presence of an object into a room. 716

Intuitively, this means that, for a certain object, only the nearby 717

objects in the environment and its container room have a direct 718

influence on its grounding, while the grounding of a room is 719

affected by the objects therein. Fig. 6-right shows an example 720

of a CRF graph built from the spatial elements in the observa- 721

tion depicted in Fig. 6-left, also including elements that were 722

perceived in previous observations of the same room and were 723

stored in the S-Box. 724
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Figure 6: Left, RGB image from a RGB-D observation of a sequence where the robot is exploring a bedroom. The objects’ percepts are enclosed in coloured shapes
and represented by s5-s12, while the whole image is considered the room percept and is represented by s1. Right, CRF graph representing the spatial elements and
relations in such image as random variables and edges respectively (solid lines), as well as the elements and relations from previously surveyed objects (doted lines,
represented as s2 − s4). The area highlighted in blue states the scope of an unary factor, while the one in orange stands for the scope of a pairwise factor.

According to the Hammersley-Clifford theorem [85], the725

probability P(y | s) can be factorized over the graphG as a prod-726

uct of factors ψ(·):727

p(y|s; θ) =
1

Z(s, θ)

∏
c∈C

ψc(yc, sc, θ) (1)

where C is the set of maximal cliques3 of the graph G, and Z(·)728

is the also called partition function, which plays a normalization729

role so
∑
ξ(y) p(y|s; θ) = 1, being ξ(y) a possible assignment to730

the variables in y. The vector θ stands for the model param-731

eters (or weights) to be tuned during the training phase of the732

CRF. Factors can be considered as functions encoding pieces of733

P(y | s) over parts of the graph. Typically, two kind of factors734

are considered: unary factors ψi(yi, si, θ), which refer to nodes735

and talk about the probability of a random variable yi belonging736

to a category in Lo or Lr, and pairwise factors ψi j(yi, y j, si, s j, θ)737

that are associated with edges and state the compatibility of two738

random variables (yi, y j) being tied to a certain pair of cate-739

gories. As a consequence, the cliques used in this work have at740

most two nodes (see Fig. 6-right). The expression in Eq.1 can741

be equivalently expressed for convenience through log-linear742

models and exponential families as [86]:743

p(y|s; θ) =
1

Z(s, θ)

∏
c∈C

exp(〈φ(sc, yc), θ〉) (2)

being 〈·, ·〉 the inner product, and φ(sc, yc) the sufficient statis-744

tics of the factor over the clique c, which comprises the features745

extracted from the spatial elements (recall Tab. 1). Further in-746

formation about this representation can be found in [55].747

3A maximal clique is a fully-connected subgraph that can not be enlarged
by including an adjacent node.

Training a CRF model for a given domain requires the find- 748

ing of the parameters in θ, in such a way that they maximize the 749

likelihood in Eq.2 with respect to a certain i.i.d. training dataset 750

D = [d1, . . . dm], that is: 751

max
θ
Lp(θ : D) = max

θ

m∏
i=1

p(yi | si; θ) (3)

where each training sample di = (yi, si) consists of a num- 752

ber of characterized spatial elements (si) and the correspond- 753

ing ground truth information about their categories (yi). If no 754

training dataset is available for the domain at hand, the codified 755

ontology can be used to generate synthetic samples for training, 756

as we have shown in our previous work [51, 55]. The optimiza- 757

tion in Eq.3 is also known as Maximum Likelihood Estimation 758

(MLE), and requires the computation of the partition function 759

Z(·), which in practice turns this process into aNP-hard, hence 760

intractable problem. To face this in the present work, the cal- 761

culus of Z(·) is estimated by an approximate inference algo- 762

rithm during the training process, concretely the sum-product 763

version of the Loopy Belief Propagation (LBP) method [56], 764

which has shown to be a suitable option aiming at categorizing 765

objects [23]. 766

4.4.2. Performing probabilistic inference 767

Once the CRF representation modeling a given environment 768

is built, it can be exploited by probabilistic inference methods 769

to perform different probability queries. At this point, two types 770

of queries are specially relevant: the Maximum a Posteriori 771

(MAP) query, and the Marginal query. The goal of the MAP 772

query is to find the most probable assignment ŷ to the variables 773

in y, i.e. : 774

ŷ = arg max
y

p(y | s; θ) (4)
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Once again, the computation of the partition function Z(·) is775

needed, but since given a certain CRF graph its value remains776

constant, this expression can be simplified by:777

ŷ = arg max
y

∏
c∈C

exp(〈φ(sc, yc), θ〉) (5)

778

Nevertheless, this task checks every possible assignment to779

the variables in y, so it is still unfeasible. An usual way to ad-780

dress this issue is the utilization of approximate methods, like781

the max-product version of LBP [87]. The alert reader may782

think that, in the end, the MAP assignment provides crispy re-783

sults. Although this is undoubtedly true, the computation of784

those results considers both the relations among the spatial ele-785

ments in the environment, and the belief about their belonging786

to different categories, so it is clearly differentiated from the787

crispy results given by an off-the-shelf categorization method788

working on individual elements. The black boxes in Fig. 6-789

right show an example of the outcome of a MAP query over the790

defined CRF graph.791

In its turn, the Marginal query, which can be performed by792

the aforementioned sum-product version of LBP, provides us793

the beliefs about the possible groundings. In other words, this794

query yields the marginal probabilities for each symbol being795

grounded to different concepts, as well as the compatibility of796

these groundings with respect to the grounding of contextually797

related symbols. Therefore, it is also possible to retrieve the798

probability of a certain assignment to the variables in y, which799

is of interest for managing universes (see Sec. 4.5). Recall that,800

in a MvSmap , these beliefs are stored in their corresponding801

anchors for their posterior exploitation during the robot opera-802

tion (see anchors in Fig. 1). Sec. 5 will show both MAP and803

Marginal queries in action.804

4.5. Managing the Multiverse805

To conclude the building of the MvSmap , the outcome of806

the marginal query is exploited to generate and update the mul-807

tiverse. The probability for each possible universe can be re-808

trieved by means of Eq.1, replacing the factors ψ(·) by the pro-809

vided beliefs b(·), and the partition function Z(·) by its approxi-810

mation ZLBP(·) computed by the LBP algorithm, that is:811

p(y|s; θ) =
1

ZLBP(s, θ)

∏
c∈C

bc(yc, sc) (6)

The exhaustive definition of such multiverse, that is, to com-812

pute and store the probabilities and groundings in each possible813

universe, highly depends on the complexity of the domain at814

hand. The reason for this is that the number of possible uni-815

verses depends on both, the number of spatial elements, and816

the number of concepts defined in the ontology. For example,817

let’s suppose a domain with 3 types of rooms and 4 types of818

objects. During the robot exploration, 5 objects have been ob-819

served within 2 rooms, so a total of 45 × 32 = 9, 216 possi-820

ble interpretations, or universes, exist. This is a large number821

for a small scenario, but it supposes a reduced size in memory822

since each universe is defined by: (i) its probability, and (ii) its823

grounded symbols. Concretely, in this case each universe can824

be codified through a float number for its probability (4 bytes) 825

and 7 char numbers for the groundings (7 bytes in total, sup- 826

posing that each concept can be identified by a char number 827

as well), so the size of the multiverse is 11 × 9, 216 = 99kB. 828

Notice that such a size grows exponentially with the number 829

of spatial elements, so in crowded environments this exhaustive 830

definition is unpractical, or even unfeasible. 831

In those situations, the exhaustive definition can be replaced 832

by the generation of the more relevant universes for a given 833

task and environment. Thus, for example, the MAP grounding 834

yielded by a MAP query permits the definition of the most prob- 835

able universe. Recall that the probability of this or other uni- 836

verses of interest can be retrieved by inserting their respective 837

groundings and stored beliefs in Eq.6. Other probable universes 838

can be straightforwardly identified by considering the ambigu- 839

ous groundings. For example, if an object is grounded to con- 840

cepts with the following beliefs {Bowl 0.5, Milk-bottle 841

0.45, Microwave 0.05}, and the MAP query grounds it to 842

Bowl, it makes sense to also keep the universe where the object 843

is grounded to Milk-bottle, and vice versa. As commented 844

before, the set of relevant universes is task and domain depen- 845

dant so, if needed, they should be defined strategies for their 846

generation in order to keep the problem tractable. 847

To tackle this issue we propose a simple but practical strategy 848

based on the utilization of a threshold, or ambiguity factor, that 849

determines when a grounding result is ambiguous. For that, if 850

the ratio between the belief about a symbol being grounded to 851

a certain concept (bi) and the highest belief for that symbol (bh) 852

is over this threshold (α), then these two possible groundings 853

are considered ambiguous. Mathematically: 854

ambiguous(bi, bh) =

1 (true) if bi/bh > α

0 (false) otherwise
(7)

Therefore, if a pair of grounding values are ambiguous ac- 855

cording to this strategy, their associated universes are consid- 856

ered relevant, being consequently stored in the multiverse. Con- 857

tinuing with the previous example, the ratio between the beliefs 858

for Milk-bottle and Bowl is 0.45/0.5 = 0.9, while between 859

Microwave and Bowl is 0.05/0.5 = 0.1. Thus, with a value 860

for α higher than 0.1 and lower than 0.9, this strategy would 861

consider the first pair of groundings as ambiguous, but not the 862

second one. The efficacy of this strategy for keeping the number 863

of universes low, without disregarding relevant ones, is shown 864

in Sec. 5.3. 865

5. Experimental Evaluation 866

To evaluate the suitability of both, the proposed probabilis- 867

tic symbol grounding as well as the novel semantic map, we 868

have carried out a number of experiments using the chal- 869

lenging Robot@Home [29] dataset, which is briefly described 870

in Sec. 5.1. More precisely, to test the symbol grounding capa- 871

bilities of our approach (see Sec. 5.2), it has been analyzed its 872

performance both (i) when grounding object and rooms sym- 873

bols in isolation, i.e. using the traditional categorization ap- 874

proach that works with the individual features of each spacial 875
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Table 2: Performance of baseline methods individually grounding objects and rooms. Rows index the results employing features of different nature, while columns
index the different methods (CRF: Conditional Random Fields, SVM: Supported Vector Machines, NB: Naive Bayes, DT: Decision Tress, RF, Random Forests,
NN: Nearest Neighbors). Please refer to App. A for a description of the used performance metrics.

CRF SVM NB DT RF NN

Objects Macro p./r. Micro p. Micro r. Macro p./r. Macro p./r. Macro p./r. Macro p./r. Macro p./r.

Geometric 72.86% 52.12% 42.41% 62.84% 66.67% 71.61% 73.20% 40.69%
Appearance 34.08% 18.50% 14.58% 33.72% 19.07% 25.25% 33.41% 16.39%
Geometric + Appearance 73.64% 53.30% 51.62% 71.06% 70.00% 72.38% 74.53% 43.04%

Rooms Macro p./r. Micro p. Micro r. Macro p./r. Macro p./r. Macro p./r. Macro p./r. Macro p./r.

Geometric (RGB-D) 25.53% 22.92% 18.33% 32.60% 25.00% 7.40% 22.50% 21.40%
Geometric (Metric map) 27.66% 16.25% 17.38% 40.20% 32.10% 43.80% 45.30% 29.80%
Geometric (All) 46.81% 36.64% 37.94% 41.70% 28.30% 37.90% 52.50% 36.10%
Appearance 44.68% 38.43% 35.73% 37.80% 32.60% 22.10% 42.40% 28.90%
Geo. (All) + Appearance 57.45% 50.09% 48.12% 37.40% 38.20% 37.90% 37.40% 44.00 %

RGB-D rig

2D laser scanner

Figure 7: Robotic platform used to collect the Robot@Home dataset.

element (see Sec. 5.2.1), and (ii) when also considering the con-876

textual relations among elements (see Sec. 5.2.2). To conclude877

this evaluation, we also describe some sample mapping scenar-878

ios in Sec. 5.3, aiming to illustrate the benefits of the proposed879

MvSmap .880

5.1. Testbed881

The Robot@Home dataset provides 83 sequences contain-882

ing 87,000+ observations, divided into RGB-D images and883

2D laser scans, which survey rooms of 8 different types sum-884

ming up ∼1,900 object instances. From this repository we have885

extracted 47 sequences captured in the most common room886

types in home environments, namely: bathrooms, bedrooms,887

corridors, kitchens, living-rooms and master-rooms. These se-888

quences contain ∼1,000 instances of objects that belong to one889

of the 30 object types considered in this work, e.g. bottle, cab-890

inet, sink, toilet, book, bed, pillow, cushion, microwave, bowl.891

etc.892

The observations within the sequences come from a rig of 4893

RGB-D cameras and a 2D laser scanner mounted on a mobile894

robot (see Fig. 7). However, to match this sensory configuration 895

with one more common in robotic platforms, we have only con- 896

sidered information from the 2D laser scanner and the RGB-D 897

camera looking ahead. 898

5.2. Probabilistic symbol grounding evaluation 899

In this section we discuss the outcome of a number of ex- 900

periments that evaluate different configurations for the proba- 901

bilistic symbol grounding process. To obtain the performance 902

measurements (micro/macro precision/recall, see App. A), a 903

MvSmap has been built for each sequence, and MAP queries 904

are executed over the resultant CRFs (recall Sec. 4.4). Con- 905

cretely, a leave-one-out cross-validation technique is followed, 906

where a sequence is selected for testing and the remaining ones 907

for training. This process is repeated 47 times, changing the 908

sequence used for testing, and the final performance is obtained 909

averaging the results yielded by those repetitions. 910

5.2.1. Individual grounding of object and room symbols 911

The aim of this section is to evaluate the performance of our 912

proposal without exploring contextual relations, i.e. only con- 913

sidering the geometric/appearance features characterizing the 914

symbols. This individual grounding is the traditional approach 915

in semantic mapping, and permits us to set a baseline for mea- 916

suring the real enhancement of the joint grounding in the next 917

section. Thereby, only the nodes in the CRFs have been consid- 918

ered, characterized by the object and room features in Tab. 1. 919

The first three columns in Tab. 2 report the results for ground- 920

ing object and room symbols according to the described con- 921

figuration. For objects, we can see how the used geometric 922

features are more discriminative than the appearance ones, but 923

their complementary nature makes that the CRFs resorting to 924

their combination achieves the highest results (73.64%). The 925

same happens when grounding rooms, where the winning op- 926

tion, reaching a performance of 57.45%, combines geometric 927

and appearance features from the RGB-D observations, as well 928

as geometric features from the part of the metric map corre- 929

sponding to the room. 930
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a) b) c)

Figure 8: Confusion matrices relating the ground truth information about rooms (rows) with the concept to which they are grounded (columns). a) Confusion matrix
for a CRF only employing nodes, b) including object-room relations, and c) considering all the contextual relations.

Table 3: Performance for grounding symbols of CRFs exploiting contextual
information. Rows index the type of contextual relations modeled by the CRFs.
App. A describes the used metrics.

Objects Macro p./r. Micro p. Micro r.

Object-Object 78.70% 65.58% 53.34%
Object-Room 78.69% 59.38% 53.09%
Object-Object + Object-Room 81.58% 70.71% 60.94%

Rooms Macro p./r. Micro p. Micro r.

Object-Room 80.85% 65.08% 61.33%
Object-Object + Object-Room 91.49% 85.25 % 84.98%

To complete this baseline, they have been also evaluated931

some of the most popular classifiers also resorting to individ-932

ual object/room features. In order to make this comparison as933

fair as possible the same features employed for the CRFs have934

been used, as well as the same leave-one-out cross-validation935

approach. Concretely, we have resorted to the implementation936

in the scikit-learn library [88] of the following widely-used937

methods4: Supported Vector Machines, Naive Bayes, Decision938

Trees, Random Forests, and Nearest Neighbors. The yielded939

results are reported in the last five columns of Tab. 2, where it940

is shown how the CRF achieve a similar or even higher success941

than those classifiers. In fact, the more serious competitor is the942

one based on Random Forests, which achieves a ∼ 1% higher943

success when categorizing objects, but a ∼ 5% lower one when944

dealing with rooms.945

5.2.2. Joint object-room symbol grounding946

This section explores how the progressive inclusion of dif-947

ferent types of contextual relations to the CRFs affects the per-948

formance of the grounding method. Tab. 3 gives the figures ob-949

tained from this analysis. Taking a closer look at it, we can950

4Further information about these classifiers can be found in the library web-
page: http://scikit-learn.org/

Table 4: Example of the outcome of a grounding process where the contextual
relations modeled in a CRF help to disambiguate wrong individual groundings.
The first column states the symbols’ names, the second one their ground truth
category, while the third and fourth columns report the two categories that re-
ceived the highest beliefs (in parentheses) after a Marginal inference query. The
MAP assignment is highlighted in bold.

Symbol Ground truth Beliefs

obj-3 Microwave Microwave (0.38) Nightstand (0.29)
obj-5 Counter Table (0.39) Counter (0.30)
obj-9 Counter Counter (0.26) Table (0.12)
room-1 Kitchen Bedroom (0.49) Kitchen (0.22)

see how the inclusion of contextual relations among objects in- 951

creases the success of grounding them by ∼ 5%. By only con- 952

sidering relations among objects and rooms, the performance 953

of grounding objects is increased almost the same percentage, 954

while the success of rooms considerably grows from 57.45% up 955

to 80.91%. Finally, with the inclusion of all the contextual rela- 956

tions, the reached grounding success is of 81.58% and 91.49% 957

for objects and rooms respectively. Comparing these numbers 958

with the baseline performance obtained in the previous section 959

also employing CRFs, they achieve a notorious increment in the 960

performance of ∼ 8% for objects and ∼ 34% for rooms. This 961

approach also clearly outperforms the success reported by the 962

other methods in Tab. 2. 963

Fig. 8 depicts the confusion matrices obtained while ground- 964

ing room symbols for each of the aforementioned configura- 965

tions. In these matrices, the rows index the room ground truth, 966

while the columns index the grounded concept. We can no- 967

tice how the performance reported in these matrices improves 968

progressively (the values in their diagonals grow) with the in- 969

clusion of contextual relations. 970

To further illustrate the benefits of the conducted joint sym- 971

bol grounding, Tab. 4 shows the results of the grounding of a 972

number of symbols from a kitchen sequence. The third and 973

fourth columns of this table report the concepts with the two 974

highest beliefs for each symbol, retrieved by a Marginal infer- 975
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Table 5: Example of grounding results yielded by the proposed method for the symbols within a simple kitchen scenario. The first and the second columns give the
symbols’ names and their ground truth respectively, while the remaining columns report the five categories with the highest beliefs (in parentheses) as yielded by a
Marginal inference query. The MAP assignment is highlighted in bold.

Symbol Ground truth Beliefs

obj-1 Microwave Nightstand (0.46) Microwave (0.42) Wall (0.06) Bed (0.04) Counter (0.04) Floor(0.1)
obj-2 Counter Counter (0.70) Bed (0.24) Floor (0.04) Wall (0.01) Nightstand (0.01) Microwave (0.0)
obj-3 Wall Wall (0.99) Counter (0.1) Nightstand (0.0) Floor (0.0) Microwave (0.0) Bed (0.0)
obj-4 Wall Wall (0.99) Bed (0.01) Microwave (0.0) Nightstand (0.0) Floor (0.0) Counter (0.0)
obj-5 Floor Floor (0.99) Bed (0.01) Wall (0.0) Counter (0.0) Nightstand (0.0) Microwave (0.0)
room-1 Kitchen Bedroom (0.51) Kitchen (0.22) Bathroom (0.19) Living-room (0.06) Master-roomr (0.01) Corridor (0.01)

ence query over the CRF built from such sequence. A tradi-976

tional grounding approach would only consider the concepts in977

the third row, while our holistic stance is able to provide the re-978

sults highlighted in bold (through a MAP query), which match979

the symbols’ ground truth.980

5.3. Sample mapping scenarios981

In this section we exemplify the building of MvSmaps for982

two scenarios exhibiting different complexity. We start by de-983

scribing a simple scenario where the possible object categories984

are: floor, wall, counter, bed, nightstand, and microwave. The985

possible room categories are the same as in the previous sec-986

tion. This is an extension in a real setting of the toy example987

described in Sec. 3. The chosen sequence of observations from988

Robot@Home corresponds to a kitchen containing 5 objects of989

these categories: a counter, a microwave, two walls and the990

floor. Thus, theMvSmap built for that scenario consist of (re-991

call Sec. 3.4):992

• An occupancy grid map of the explored room.993

• 6 anchors representing the spatial elements (5 objects and994

a room).995

• 6 symbols in the symbolic level.996

• An ontology of the home domain.997

• 65 × 61 = 46, 656 possible universes, which supposes a998

multiverse size of ∼ 456kB.999

Tab. 5 shows the grounding results yielded by the execution1000

of MAP and Marginal queries over the CRF representation of1001

such map. We can see how the MAP assignment fails at ground-1002

ing the symbols obj-1 and room-1, but the right groundings of1003

such symbols also receive a high belief value. As a consequence1004

of this, their respective universes could also exhibit high proba-1005

bilities, hence the importance of their consideration. Notice that1006

the size of the multiverse could be further reduced by applying1007

the previously proposed strategy. For example, considering an1008

ambiguity factor of α = 0.2, the number of possible universes1009

is 12, being the size (in memory) of the multiverse of only 1321010

bytes.1011

We also describe a more complex scenario considering the1012

room and object categories introduced in Sec. 5.1. In this case,1013

we discuss the progressive building of the MvSmap at 4 dif-1014

ferent time instants during the robot exploration of a bedroom.1015

Fig. 9 depicts the evolution of the groundings of the spatial el-1016

ements perceived by the robot during such exploration, where1017

the big and small coloured boxes represent the groundings with 1018

the two highest beliefs. In this case, the groundings provided 1019

by MAP queries match with those showing the highest beliefs. 1020

We can see how until the time instant t1 the robot surveyed 8 1021

objects, being so confident about the category of 5 of them. This 1022

supposes a total of 9 anchors and 9 symbolic representations (8 1023

objects plus a room). The most ambiguous result is for an ob- 1024

ject placed on the bed, which is in fact a towel. This ambiguity 1025

is due to the features exhibited by the object, its position, and 1026

its unusual location in a bedroom. In its turn, the belief about 1027

the room being grounded to the Bedroom concept is high, 0.76, 1028

as a result of the surveyed spatial elements and their relations. 1029

Until time t2 the room is further explored, appearing three new 1030

objects: a chair, a table and a wall, hence adding 3 new anchors 1031

and their respective symbols to the MvSmap . The surveyed 1032

table is the only one showing an ambiguous grounding because 1033

of its features and few contextual relations. However, in the 1034

observations gathered until the time instant t3, two new objects 1035

are perceived on top of the table, a book and a bottle, increasing 1036

the belief value about its grounding to the Table concept. With 1037

these new objects and relations the uncertainty about the cat- 1038

egory of the room also decreases. Finally, considering all the 1039

information gathered until the time instant t4, where a pillow 1040

has been observed on top of the bed, the belief about the room 1041

category increases up to 0.99. Notice how the detection of such 1042

pillow also decreases the uncertainty about the grounding of 1043

the bed. The modus operandi of traditional semantic maps is 1044

to consider the towel on the bed as a book, which can lead to, 1045

for example, the failure of a robot ordered to bring all the tow- 1046

els in the house to the bathroom. This can be tackled through 1047

the utilization of MvSmaps and the clarification of uncertain 1048

groundings. 1049

Thereby, theMvSmap built in this scenario is compounded 1050

of 15 anchors (14 objects plus a room), 15 symbols at the sym- 1051

bolic level, and a total of 3014 × 61 ' 2.8 × 1021 universes. 1052

This supposes a multiverse with an intractable size, however, 1053

applying the previous strategy where only uncertain results gen- 1054

erate new universes, the size of the multiverse is considerably 1055

reduced to 40 universes and 760 bytes. 1056

6. Potential Applications of Multiversal Semantic Maps 1057

The main purpose of the proposed MvSmap is to provide 1058

a mobile robot with a probabilistic, rich representation of its 1059

environment, empowering the efficient and coherent execution 1060
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Figure 9: Grounding results and their belief values for the symbols of spatial elements perceived during the robot exploration of a bedroom. The registered point
clouds in each image are shown for illustrative purposes.

of high-level tasks. For that, theMvSmap accommodates the1061

uncertainty about the grounded concepts as universes, which1062

can be seen as different interpretations of the workspace. No-1063

tice that MvSmaps can be exploited for traditional semantic1064

map applications (e.g. task planning, planning with incomplete1065

information, navigation, human-robot interaction, localization,1066

etc.) by considering only a universe, albeit its potential to mea-1067

sure the (un)certainty of the robot’s understanding can be ex-1068

ploited for an intelligent, more efficient robotic operation.1069

A clear example of this can be envisioned while planning an1070

object search task. Let’s suppose an scenario where the robot1071

is commanded to bring the slippers to the user. If the slippers1072

have not been detected before, the robot could infer (according1073

to its semantic knowledge) that their most probable location is1074

a bedroom. Fortunately, a room, corresponding to the farthest 1075

one from the robot location, has been already grounded as be- 1076

ing a bedroom with a belief of 0.42, and 0.41 of being a kitchen. 1077

Another room, close to the robot location, has been grounded to 1078

the Kitchen concept with a belief of 0.47, and to the Bedroom 1079

one with 0.45. The utilization of only the most probable uni- 1080

verse would lead to the exploration of the farthest room, with a 1081

42% of being the correct place, while the consideration of both 1082

interpretations would produce the more logical plan of taking 1083

a look at the closer one first. Moreover, the Conditional Ran- 1084

dom Field employed in this work is able to provide a more fine- 1085

grained and coherent prediction than just employing semantic 1086

knowledge: it permits to hypothesize about the exact location 1087

of an object or a room, and to retrieve the likelihood of such lo- 1088
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cation through an inference method [48, 16]. By repeating this1089

process in different locations, the robot can operate according1090

to a list of possible object locations ordered by their likelihood.1091

Another typical application of semantic maps resorting to1092

logical reasoning engines is the classification of rooms ac-1093

cording to the objects therein [25]. For example, if an object1094

is grounded as a refrigerator, and kitchens are defined in the1095

Knowledge Base as rooms containing a refrigerator, a logical1096

reasoner can infer that the room is a kitchen. Again, this rea-1097

soning relying on crispy information can provoke undesirable1098

results if the symbol grounding process fails at categorizing the1099

object, which can be avoided employingMvSmaps .1100

Galindo and Saffiotti [18], envisages an application of se-1101

mantic maps where they encode information about how things1102

should be, also called norms, allowing the robot to infer devia-1103

tions from these norms and act accordingly. The typical norm1104

example is that ”towels must be in bathrooms”, so if a towel is1105

detected, for example, on the floor of the living room, a plan1106

is generated to bring it to the bathroom. This approach works1107

with crispy information, e.g. an object is a towel or not. In-1108

stead, the consideration of aMvSmap would permit the robot1109

to behave more coherently, for example gathering additional1110

information if the belief of an object symbol being grounded1111

to Towel is 0.55 while to Carpet is 0.45. In this example, a1112

crispy approach could end up with a carpet in our bathroom, or1113

a towel in our living room. The scenarios illustrated in this sec-1114

tion compound a – non exhaustive – set of applications where1115

MvSmaps clearly enhance the performance of traditional se-1116

mantic maps.1117

7. Conclusions and Future Work1118

In this work we have presented a solution for tackling the1119

symbol grounding problem in semantic maps from a probabilis-1120

tic stance, which has been integrated into a novel environment1121

representation coined Multiversal Semantic Map (MvSmap ).1122

Our approach employs Conditional Random Fields (CRFs) for1123

performing symbol grounding, which permits the exploitation1124

of contextual relations among object and room symbols, also1125

dealing with the uncertainty inherent to the grounding process.1126

The uncertainties concerning the grounded symbols, yielded1127

by probabilistic inference methods over those CRFs, allow the1128

robot to consider diverse interpretations of the spatial elements1129

in the workspace. These interpretations are called universes,1130

which are encoded as instances of the codified ontology with1131

symbols grounded to different concepts, and annotated with1132

their probability of being the right one. Thereby, the proposed1133

MvSmap represents the robot environment through a hierar-1134

chy of spatial elements, as well as a hierarchy of concepts, in1135

the form of an ontology, which is instantiated according to the1136

considered universes. This paper also describes the processes1137

involved in the building ofMvSmaps for a given workspace.1138

We have also proposed an strategy for tackling the exponen-1139

tial growing of the multiverse size in complex environments,1140

and analyzed some of the applications whereMvSmaps can be1141

used to enhance the performance of traditional semantic maps.1142

The suitability of the proposed probabilistic symbol ground- 1143

ing has been assessed with the challenging Robot@Home 1144

dataset. The reported success without considering contextual 1145

relations were of ∼ 73.5% and ∼ 57.5% while grounding ob- 1146

ject and room symbols respectively, while including them these 1147

figures increased up to ∼ 81.5% and 91.5%. It has been also 1148

shown the building ofMvSmaps according to the information 1149

gathered by a mobile robot in two scenarios with different com- 1150

plexity. 1151

Typically, the semantic knowledge encoded in a semantic 1152

map is considered as written in stone, i.e. it is defined at the 1153

laboratory and does not change during the robot operation. We 1154

are studying how to modify this knowledge according to the 1155

peculiarities of a given domain, also in combination with a 1156

CRF [24]. We think that this line of research is interesting since 1157

it would permit the robot, for example, to consider new object 1158

or room types not previously introduced, or to modify the prop- 1159

erties and relations of those already defined. Additionally, we 1160

plan to progressively exploit the presented MvSmaps for the 1161

applications analyzed in this paper and/or other of interest. 1162
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Appendix A. Performance metrics 1169

The precision metric for a given type of object/room li re- 1170

ports the percentage of elements recognized as belonging to li 1171

that really belong to that type. Let recognized(li) be the set of 1172

objects/rooms recognized as belonging to the type li, gt(li) the 1173

set of elements of that type in the ground-truth, and | · | the car- 1174

dinality of a set, then the precision of the classifier for the type 1175

li is defined as: 1176

precision(li) =
|recognized(li)

⋂
gt(li)|

|recognized(li)|
(A.1)

In its turn, the recall for a class li expresses the percentage of 1177

the spatial elements that belonging to li in the ground-truth are 1178

recognized as members of that type: 1179

recall(li) =
|recognized(li)

⋂
gt(li)|

|gt(li)|
. (A.2)

Precision and recall are metrics associated to a single type. 1180

To report more general results, we are interested in the perfor- 1181

mance of the proposed methods for all the considered types. 1182

This can be measured by adding the so-called macro/micro con- 1183

cepts. Macro precision/recall represents the average value of 1184

the precision/recall for a number of types, defined in the fol- 1185

lowing way: 1186

macro precision =

∑
i∈L precision(li)

|L|
(A.3)
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macro recall =

∑
i∈L recall(li)
|L|

(A.4)

being L the set of considered objects/rooms. Finally, micro pre-1187

cision/recall represents the percentage of elements in the dataset1188

that are correctly recognized with independence of their belong-1189

ing type, that is:1190

micro precision(li) =

∑
i∈L |recognized(li)

⋂
gt(li)|∑

i∈L |recognized(li)|
(A.5)

micro recall(li) =

∑
i∈L |recognized(li)

⋂
gt(li)|∑

i∈L |gt(li)|
(A.6)

Since we assume that the spatial elements belong to a unique1191

class, then
∑

i∈L |gt(li)| =
∑

i∈L |recognized(li)|, and conse-1192

quently the computation of both micro precision/recall metrics1193

gives the same value.1194
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