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1
Introduction

Since its origins, robotics has aimed to create autonomous machines to increase the efficiency
of industrial processes, reduce manufacturing costs and free people from tedious and danger-
ous tasks. Given its complexity, different disciplines of engineering, physics and maths have
converged to what we nowadays call mechatronics to address the conception, design and manu-
facture of these complex systems called robots. Among the many challenges still unsolved, one
of upmost importance is that of endowing robots with intelligence and autonomy. In order to
emulate a person, a robot must be able to perceive its surroundings, interpret its circumstances
and decide how to act to achieve its goal. Thus, autonomy is directly related to the robot’s capac-
ity to perceive the environment and its ability to process that sensorial data. Like humans, robots
are provided with sensors (their "senses") which allow them to see, hear, touch or even smell.
And also, like for humans, the most powerful of all senses is vision. Nevertheless, robots are not
only equipped with passive sensory systems (those which measure the ambient energy) but also
with active sensory systems. In vision, these systems work by emitting a pattern of light which
is reflected back from the environment and subsequently detected by a specific sensor. By virtue
of this mechanism, active sensory systems are able to infer the geometry of the surrounding
obstacles, which is extremely useful in many technological fields.

In robotics, active visual sensory systems, also known as "range sensors", are commonly
employed for:

• Knowing the spatial distribution of obstacles around a robot.

• Knowing the location and orientation of objects to be manipulated.

• Building 2D or 3D maps of the environment where the robot operates.

• Estimating the 2D or 3D trajectory of a robot.

• Segmenting the observed scene into the different objects it is composed of.

Additionally, range sensors find a myriad of applications beyond robotics, for example in:

• Human-computer interaction and gaming.

• 3D modelling of objects.

• Motion analysis, both for professional sport training or for therapeutic treatment.
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CHAPTER 1. INTRODUCTION

• Motion estimation for devices of virtual/augmented reality.

• Driver assistance systems for cars and other vehicles.

All these applications require complex algorithms able to process the geometric data provided
by this kind of sensors. Up to date, numerous solutions have been proposed for each particular
problem. However, these solutions are often tuned to work for particular scenarios and under
controlled conditions, or present good theoretical results that lack practicality. In this thesis
we propose novel algorithms to tackle/solve many of the aforementioned examples. In general,
our goal has been the development of methods with a solid theoretical basis which, in turn,
could be directly applicable to the addressed problem, not only in theory or in simulation but
also in real-world scenarios. To this end, one must pay attention to both the formulation and
the implementation of a given algorithm in order to select precise formulations that could be
efficiently implemented. Following this utilitarian spirit, we have opted for publishing the code
of our works so that the scientific community can use and test them.

1.A Motivation

Range sensors have existed since the beginning of the XX century but they have significantly
evolved in the last decades. After the invention of the sonar during the I World War, the first
range sensors based on light emission were the laser scanners or lidars, developed in the 1960s.
The accuracy of these sensors was very high but so was their price, and for many years they were
mostly utilized for military or spatial applications. Over time their costs dropped and simple
versions (2D scanners) started to be equipped inmobile robots for obstacle detection, localization
and 2D mapping. Nevertheless, the real revolution came with the advent of Microsoft’s Kinect
camera by the end of 2010. Kinect was the first low-cost camera (150 euros) able to provide
not only colour but also depth images, and at a decently high frame rate (30 Hz). Thus, it was
the first low-cost sensor that allowed to "sense" the geometry of the environment with accuracy,
and its impact on the robotics community and in many other fields was, and still is, enormous.
However, the Kinect sensor also posed a challenge since it provides a huge amount of data to
process (colour and depth images with VGA resolution at 30 Hz). In consequence, a significant
percentage of the published papers in robotics and computer vision in the last years deals with
its use and application to different ends.

Additionally, the steady development of computers has enabled the approach of problems
that were, until recently, computationally intractable. CPU’s now offer multiple processing units
(cores) with larger cache sizes. They also include special registers and instruction sets to effi-
ciently perform certain operations on vectorized data (SSE, AVX). GPU’s are no longer mere
graphic processing units (as their name indicates) but massive units for parallel computation.
They have significantly increased their power, memory and bandwidth and, at the same time, they
have become energetically more efficient, broadening the prospects of potential applications.
Simultaneously, the appearance of new libraries and compilers has eased the implementation of
code that can run on multiple cores of a CPU or a GPU. If we focus on C++, modern compilers
(MSVS, GCC, Intel...) generate highly optimized code without requiring much programming
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effort. Newer versions of CUDA incorporate the unifiedmemory abstraction that allows program-
mers to access both GPU and CPU memory within a single memory address space. Many other
libraries include functionalities to exploit parallel programming, either through vectorization,
multi-thread or GPU implementations: STL (C++11), OpenCL, Eigen, OpenGL, etc.

These two key aspects have motivated the work presented in this thesis. In short, the challenge
is about how to exploit the newly available range sensors and the increasing computational power
of modern PCs to solve fundamental problems that remain unsolved (or only partially solved) in
computer vision and robotics.

1.B Goals

Despite the great advances seen in the last decades in computer vision, there are still many
open problems. Among those, the ones that are more relevant in robotics often require certain
geometric knowledge of the environment, and therefore can benefit from the use of range sensors.
In this thesis we mostly (but not uniquely) address the estimation of 2D and 3D motion with
different kinds of range sensors. In some cases the interest is in the motion of the sensor itself,
while in other cases the goal is to estimate the translations and rotations of the observed objects.
Besides motion estimation, we present new algorithms that also exploit geometric data for 3D
reconstruction and autonomous navigation. Thus, this thesis does not tackle a single subject but
rather covers a variety of topics. The common goal is to come up with novel solutions that are
more precise and faster than existing approaches, or that allow a robot or system to operate under
more extreme conditions (e.g. in the dark or in very dynamic environments).

Next, we explain in more detail the addressed topics, their potential applications and the
inherent difficulties associated to them:

• Range-based odometry. Odometry consists in estimating the motion of a sensor or a set
of sensors in an incremental way, i.e. by accumulating pose increments. It is a fundamental
component of many robotic systems and virtual/augmented reality devices. In robotics, for
instance, it permits us to know the pose of a robot precisely and continuously, which is crucial
if the robot must perform an autonomous task. Regarding virtual/augmented reality, knowing
the pose of the goggles in real time (and therefore the point of view of the user) is fundamental
to render virtual images from the right perspective and with low latency.
Our goal is to create new odometry algorithms based on range sensors. Given their potential
applications, it is essential that these algorithms work in real time and are accurate even in
dynamic environments where moving objects are often observed.

• Scene flow estimation. Scene flow refers to the vector field that represents the independent
3D motion (or velocity) of each point observed by a camera. It has multiple applications: 3D
modelling of non-rigid bodies, manipulation of moving objects, human-machine interaction
and motion analysis are a few examples.
The state of the art in this field is less mature if compared to odometry or optical flow
estimation. For that reason, our goal is to overcome (or alleviate) the main limitations that
currently prevent its use in real-world scenarios. Among those, the most important one is the
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high computational load associated to the estimation process, and that is what we put the focus
on.

• 3D Modelling and tracking of objects from a set (or sequence) of images. 3D modelling is
useful to measure dimensions, insert real objects in virtual worlds, or virtually combine real
objects and environments which are not in the same location (e.g. using a virtual 3D model
of a piece of furniture to see how it fits in a given room). Tracking, on the other hand, can
be employed for human-computer interaction, face reenactment or character animation for
movies or videogames.
In this field, our goal is to exploit background information (i.e. those image regions that do
not observe the object in question) to better constrain the reconstruction or tracking problem,
thereby improving the basin of convergence and the quality of the results obtained.

• Reactive Navigation with range sensors. This strategy allows a robot or vehicle to "react"
to changing environments populated with moving obstacles while advancing towards a pre-
defined target. In contrast to deliberative approaches, these methods do not require previous
knowledge of the environment (map), but can only drive the robot towards local targets, i.e.,
not very far from its pose.
Most existing approaches simplify the navigation problem by considering only 2D repre-
sentations of the robot shape and the surrounding obstacles. Our goal is to overcome this
conservative assumption and consider more realistic robot shapes and obstacle distributions
in 3D. This is possible by virtue of the rich geometric data provided by modern range sensors.

1.C Contributions

In this sectionwe enumerate the contributions of this thesis. A brief summary of each is included,
togetherwith the related published papers. Both the code and the demonstration videos associated
to them can be found in:

http://mapir.isa.uma.es/mjaimez

3D visual odometry from depth images

We present a new method to register consecutive depth images in order to estimate the camera
motion. We demonstrate that this method is much faster and more precise than other existing
techniques that are also based on geometric alignment [2]. Moreover, we show that our approach
is as accurate as other state-of-the-art methods which require both geometric and photometric
data to estimate the camera motion [3]. Last, it works in real time (30 Hz or more) running on a
single CPU core.

• M. Jaimez and J. Gonzalez-Jimenez, “Fast Visual Odometry for 3D Range Sensors”, IEEE
Transactions on Robotics, vol. 31, no. 4, pp. 809 - 822, 2015.
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2D visual odometry from laser scans

We have developed a method to register consecutive laser scans to estimate the planar motion of
a robot. This method is based on the range flow equation, applied for the first time to laser scans
in [4]. We demonstrate that our approach is more efficient and precise than some of the most
prominent works in scan matching [5, 6]. With a runtime of barely 1 millisecond, this methods
is suitable for those robotic applications that are computationally demanding and require planar
odometry.

• M. Jaimez, J. G.Monroy, J. Gonzalez-Jimenez, “PlanarOdometry fromaRadial Laser Scanner.
A Range Flow-based Approach”, IEEE International Conference on Robotics and Automation
(ICRA), pp. 4479-4485, 2016.

Such formulation was later improved by includingmulti-scan alignment and a new symmetric
range flow constraint. We also proposed a new technique to select keyscans based on modelling
the estimate error as a function of the translations and rotations between the aligned scans.
This strategy allows us to set a threshold directly on the error domain and use it to obtain
the 2D frontier on the translation-rotation plane which would trigger the selection of a new
keyscan. Moreover, we present a thorough experimental section with qualitative and quantitative
comparisons both in simulation and with real data.

• M. Jaimez, J.G. Monroy, M. Lopez-Antequera, D. Cremers and J. Gonzalez-Jimenez, “Ro-
bust Planar Odometry Based on Symmetric Range Flow and Multi-Scan Alignment”, IEEE
Transactions on Robotics. Under Review.

Scene flow estimation in real-time with RGB-D cameras

We have developed the first method able to estimate the scene flow in real time with RGB-D
cameras. It imposes photometric and geometric consistency between consecutive images and
uses the Primal-Dual algorithm [7, 8] as a solver. This choice is optimal since the Primal-Dual
algorithm can be easily parallelized and is therefore straightforward to implement on a GPU. As
a result, we achieve runtimes two or three orders of magnitude lower than those of state-of-the-art
methods, which typically require several seconds (or even a few minutes) to run.

• M. Jaimez, M. Souiai, J. Gonzalez-Jimenez and D. Cremers, “A Primal-Dual Framework
for Real-Time Dense RGB-D Scene Flow”, IEEE International Conference on Robotics and
Automation (ICRA), pp. 98-104, 2015.

Joint segmentation and scene flow estimation with RGB-D cameras

Inspired by [9], we present a new algorithm to segment the scene into the different rigid bodies
that compose it and estimate their underlying rigid motions. The main contribution of this work
is the use of a smooth (non-binary) segmentation that allows us to interpolate motions along
the transitions between rigid parts. We show this strategy provides better results than traditional
binary segmentations when the observed scene contains nonrigid parts/objects (e.g. people).
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• M. Jaimez, M. Souiai, J. Stückler, J. Gonzalez-Jimenez, D. Cremers, “Motion Cooperation:
Smooth Piece-Wise Rigid Scene Flow from RGB-D Images”, International Conference on 3D
Vision (3DV), pp. 64-72, 2015.

Visual odometry and scene flow estimation with RGB-D cameras

This is a problem of great interest and complexity because a high number of applications need to
know both the trajectory of a camera and the motion of the objects it observes. The difficulty lies
on the fact that, when the camera moves, the whole scene is in "apparent motion" and therefore
changes in the image caused by the camera motion and those caused by the own motion of
objects are hard to distinguish. In this work we describe a specific strategy to segment the image
into static and moving parts. After that, the visual odometry is computed from the static parts
and the scene flow is estimated for the moving objects. Furthermore, the whole algorithm runs
at a frequency of 10 Hz, which makes it applicable to real-world scenarios.

• M. Jaimez, C. Kerl, J. Gonzalez-Jimenez and D. Cremers, “Fast Odometry and Scene Flow
from RGB-D Cameras based on Geometric Clustering”, IEEE International Conference on
Robotics and Automation (ICRA), pp. 3992-3999, 2017.

New background term for object reconstruction and tracking from depth images

Commonly, a 3D model of an object is computed from a set or temporal sequence of images. In
those images the object is seen from different perspectives, but the surrounding objects are also
observed (and are normally referred to as "background"). In this work we present a framework
based on subdivision surfaces for 3D reconstruction and tracking, and describe a novel strategy
to penalize projections of the 3Dmodel onto the background regions of the images. This strategy
widens the basis of convergence of the algorithm by keeping the model within the visual hull of
the object.

• M. Jaimez, T. Cashman, A. Fitzgibbon, J. Gonzalez-Jimenez, D. Cremers, “An Efficient
Background Term for 3D Reconstruction and Tracking with Smooth Surface Models”, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7177-7185, 2017.

Reactive navigation based on exact 3D collision determination

We generalize the algorithm presented in [10] to the "3D world", modelling the robot as a
set of prisms (instead of just considering its 2D vertical projection) and exploiting the exact
spatial distribution of the surrounding obstacles. The resulting method works with any possible
combination of range sensors, being them 2D laser scanners, 3D laser scanners or RGB-D
cameras, and it is able to generate motion commands at a frequency of 200 Hz. Moreover, it
was tested with different robots for almost 20 km of autonomous navigation at different flats and
office-like environments.

• M. Jaimez, J. L. Blanco and J. Gonzalez-Jimenez, “Efficient Reactive Navigation with Exact
Collision Determination for 3D Robot Shapes”, International Journal of Advanced Robotic
Systems, vol. 12, no. 63, 2015.
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1.D. FRAMEWORK AND TIMELINE

1.D Framework and Timeline

Myresearchwork began in themiddle of 2012 at theMAPIR (MAchine Perception and Intelligent
Robotics) group1, which is part of the Department of System Engineering and Automation, at the
University of Málaga. This group has extensive experience in mobile robotics, computer vision
and robotic olfaction. Given my background on mechanics, control and maths, the natural choice
for my research topic was mobile robotics. Nonetheless, and probably because of the boom of
Kinect after its appearance in 2010, I ended up working at the frontiers between robotics and
computer vision or, more specifically, developing vision algorithms that are directly applicable
to robotics.

Initially, we dedicated more than half a year to exploit the geometric information provided by
depth cameras for autonomous navigation of wheeled robots. After that, we opted for addressing
the visual odometry problem, to which we have dedicated a high percentage of the time and
effort of this thesis. In this context, I had the chance to do a 4-month internship at the computer
vision group2 of the Technical University of Munich, led by Prof. Daniel Cremers. This gave
me an deeper insight into optimization and variational calculus, and let me explore a new topic
which would later become the second pillar of my thesis: scene flow estimation. Beyond that,
this collaboration was positive for both sides and, from then on, I have also been a member of
that group and pursued a dual PhD doctorate.

Subsequently, I enjoyed another 2-month internship at Microsoft Research Cambridge (UK),
under the supervision of Dr. Andrew Fitzgibbon. This stay was suitable because Microsoft is the
company that commercialized the Kinect sensor [1], on which most of my thesis is based, and
they have also authored an endless number of related publications and applications. Additionally,
my months there coincided with the launch of the Hololens [11], a device for augmented reality
equipped with two depth cameras. Thanks to this good timing I could also be in contact with
some of the projects that will allow the use and interaction with such device in the future.

Through all these years I have had the chance and the pleasure to meet some of the most
prominent figures in computer vision and robotics. Apart from the aforementioned internships, I
have attended international conferences in Seattle (USA), Lyon (France), Stockholm (Sweden),
Singapore andHawaii (USA).Aside from research, I have also participated in teaching, imparting
the "Computer Vision" course together with my supervisor Prof. Javier González Jiménez at
the University of Málaga. In summary, these have been vibrant years of constant change and
learning, enthusiasm and stress, defeats and victories.

1.E Outline

This thesis is divided into the following chapters:

• Chapter 1: Introduction. We present the theme of the thesis, describe its context, list the
contributions and detail its structure.
1http://mapir.isa.uma.es
2http://vision.in.tum.de
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CHAPTER 1. INTRODUCTION

• Chapter 2: Range Sensors. The concept of range sensing is introduced. The different types
of range sensors are enumerated and their working principles explained. We describe their
advantages and disadvantages if compared to other types of sensors commonly employed in
robotics and computer vision, and present their potential applications.

• Chapter 3: Odometry with range sensors.We introduce the concepts of odometry and visual
odometry. We describe the mathematical tools used to represent rigid transformations and to
warp images and scans according to them. Afterwards, we present our works on odometry
based on range sensors, both with depth cameras and with 2D laser scanners.

• Chapter 4: Scene flow estimation with RGB-D cameras.We introduce the concept of scene
flow as a 3D extension of the well-known optical flow. We present two different contributions:
the scene flow estimation in real time, and the joint segmentation and scene flow estimation
based on a smooth division of the scene into its rigidly moving parts. Moreover, we tackle
an ambitious problem that is not often addressed in the literature: the joint estimation of the
camera motion and the motion of the objects it observes.

• Chapter 5: Reconstruction and tracking of objects from depth images. Since the literature
on this topic is very extensive, we give a brief overview of the state-of-the-art focusing on
the different strategies that use the "background" information to constraint the model to the
visual hull of the object. We present a new background term to exploit such information and
demonstrate its advantages over existing approaches when used for modelling or tracking of
objects with subdivision surfaces.

• Chapter 6: Reactive navigation of mobile robots equipped with range sensors. In this
chapter we introduce the concept of reactive navigation which, together with path planning,
governs the autonomous motion of mobile robots. In contrast to most existing approaches,
which normally use a two-dimensional representation of the robot and the obstacles, we
propose to overcome that simplification and tackle the collision determination problem in 3D.
Hence, the proposed algorithm works precisely for robots with non-uniform shapes and for
any arbitrary combination of different range sensors.

• Chapter 7: Conclusions. We finish this thesis by summing up the presented works and their
impact. Moreover, we look towards the future, analyzing the upcoming technologies and some
of the challenges that still remain unsolved.
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2
Range sensing

2.A Introduction

The term range sensing refers to a set of technologies that allow themeasure of distances between
a given device and its surroundings. These technologies are usually (but not exclusively) based
on active sensory systems, i.e. systems that probe the environment by emitting energy and
measuring how or when it is reflected. There exists a number of different working principles on
which these systems are based, but most resort to the emission and reception of sound, light or
radio waves.

The ones based on sound are often called sonars and are mostly used for marine navigation
and submarine military applications. They are also equipped in mobile robots and cars to work as
proximity sensors for collision prevention (e.g. in the system that beeps when a car gets too close
to another car while parking). However, their limited accuracy and resolution prevents them from
being used for more complex tasks. Alternatively, systems based on radio waves (radars) are a
suitable solution to scan the environment under bad visibility conditions since radio waves can
penetrate dust, rain, fog or snow. Moreover, this technology has the advantage of allowing the
detection of multiple objects at the same bearing. However, radars have a low angular resolution
(for small-size antennas) if compared to light-based sensors and their measurements are affected
by specular reflections and depend on the different materials of the surrounding objects. For
these reasons, radars are often used in middle-to-large scale systems but are not very common
in robotics or other applications involving small devices.

This thesis focuses on the range sensors more frequently used in robotics, human-machine
interaction and visual/augmented reality: laser scanners and depth-sensing cameras. A more
detailed description of their working principles and their characteristics is given next.

2.B Laser Scanners

A laser scanner, also known as lidar, is a device that senses distance by emitting laser light
and measuring the time it takes to return to the sensor. Since light pulses or waves can only be
used to measure distance for a specific bearing, lidars normally incorporate oscillating mirrors
to be able to scan in multiple directions. Depending on the degrees of freedom of this oscillating
mechanism, lidars will provide 2D or 3D scans of their surroundings (see Figure 2.1). In robotics,
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CHAPTER 2. RANGE SENSING

2D laser

scanners

3D laser

scanners

Figure 2.1: Left: Hokuyo UTM-30LX and SICK S3000 laser rangefinders, together with an example of a 2D scan
(270◦) overlapped with a previously-built map of the environment. Right: Velodyne HDL-64E and Quanergy laser
rangefinders, with and example of a 3D scan (360◦ × 27◦) taken with a Velodyne sensor mounted on a car.

2D lidars are commonly employed to obtain horizontal "slices" or "cuts" of the environment,
which is very useful for indoor localization, 2D mapping and obstacle avoidance. On the other
hand, 3D lidars are mostly employed for outdoor applications. In these cases, the motion of a
robot (or a vehicle) is not always planar and the 3D spatial distribution of both close and distant
obstacles becomes more relevant. Aside from robotics and autonomous navigation, the 3D lidar
technology is also of interest in geodesy, geology, meteorology and military applications, but
this is out of the scope of this thesis.

The main advantages of lidars are:

• Long range. They can provide measurements from few centimeters to more than 100
meters, depending on the model. As a consequence, they are suitable for indoor operation
in cluttered environments but also for outdoor operation at high speeds where detecting
distant objects/obstacles becomes crucial.

• Wide field of view. Their horizontal aperture typically ranges from 90 degrees to 360
degrees, which is much wider than the standard field of view of digital cameras.

• Good angular resolution, normally below 1 degree.

• High accuracy. They exhibit low measurement errors that are either constant (for short
ranges) or linear with the distance.

• Medium-high sampling rate. This is necessary to operate in dynamic environments and
react in time to changing conditions.

If compared to other sensors, their main disadvantage is their relatively high price. The cheapest
2D laser scanners on the market cost around 400€ - 500€, but that price rises up to many
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2.C. DEPTH-SENSING CAMERAS

thousands of euros for low-to-middle quality 3D laser scanners. Moreover, lidars have a high
power consumption, are not robust to shaky motions and their performance deteriorates under
the presence of fog, heavy rain or dust. Nowadays, this prevents 3D lidars from being a basic
component of mobile robots and vehicles, but advances in solid state-based technologies might
help to bring them to the consumer markets.

2.C Depth-sensing Cameras

In contrast to standard digital cameras, which capture the colour (RGB) of the scene, depth-
sensing cameras store the distance to the points they observe.With a high (spatial) resolution, they
can provide a fine-grained representation of the observed objects. Regarding their accuracy, they
tend to be precise for close distances but become inaccurate for mid-long range measurements,
with an error that typically grows quadratically with the distance [14]. On the other hand, their
field of view is normally equivalent to that of a digital camera equipped with a 25-30 mm lens
(e.g. 58◦ × 45◦ for Kinect 1). In this sense, depth cameras are inferior to laser scanners because
they do not provide a comprehensive view of the scene. Last, they can work at 30 Hz - 60 Hz,
which is sufficient for most applications.

Next, we present the two different working principles these cameras rely on, as well as their
particular advantages and disadvantages.

2.C.1 Time-of-flight Cameras

This type of cameras emit light pulses and measure their time of flight (ToF) until they are
received back at the sensor. Unlike lidars, these cameras do not incorporate rotating parts,
flashing the scene only once per image and capturing the reflection by an image sensor / pixel
matrix. Examples of these cameras are the Microsoft Kinect 2.0 and the Heptagon Swiss Ranger
4000 (Figure 2.2). Since they normally emit and detect infrared light, they are affected by the
sun radiation. However, they can still provide decent measurements in outdoor scenarios if there
is no direct sunlight. As can be seen in Figure 2.2, one of their drawbacks is the fact that they are

Camera models Perspective view Top view

Spurious 
point

Figure 2.2: Left: Kinect 2, Heptagon Swiss Ranger and Creative Gesture cameras. Middle: Example of the 3D
point cloud computed from a depth image obtained with a Kinect 2. Right: Top view of a scene observed with
Kinect 2.
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Camera models Perspective view Top view

Quantization

effect

Figure 2.3: Left: PrimeSense Carmine, Kinect 1 and Structure sensor. Middle: Example of the 3D point cloud
computed from a depth image obtained with a PrimeSense Carmine. Right: Top view of a scene observed with the
same camera.

prone to creating spurious points around the silhouettes of objects or, more precisely, at depth
discontinuities. These spurious points can be removed at a post-processing stage, at the expense
of consuming computational resources.

2.C.2 Structured light Cameras

Structured light cameras work by projecting a known pattern of light on the scene and inferring
the depth field from the way that pattern deforms. The main example of this kind is theMicrosoft
Kinect 1 (although the technology behind Kinect 1 was developed by PrimeSense, which later
also produced their own depth cameras: the PrimeSense Carmine). Structured light cameras
typically employ an infrared pattern of light and, hence, become completely blind under the
presence of sunlight. The reason is that the sun radiation is much more intense than the pattern
emitted by the camera, and therefore the latter is masked and cannot be perceived by the sensor.
Commonly, they exhibit another downside: a strong quantization of the measured depth. As
this quantization actually affects the inverse depth, it is not noticeable for short distances but
becomes extreme for distant regions, as can be seen in Figure 2.3.

2.D RGB-D Cameras

Both structured light and ToF cameras can be found as independent devices on the market, but
they are often combined with RGB cameras, leading to the so-called RGB-D cameras. This
synergy is suitable for robotics and many other fields because it combines both photometric and
geometric data to provide a four-dimensional representation of the observed scene. An issue
when jointly exploiting RGB and depth images is that of properly registering them. Since RGB
and depth images are captured by different lenses, there is no direct correspondence between
their pixels. In other words, a point observed by a certain pixel in the RGB image does not
coincide with the point observed by that same pixel in the depth image. In fact, there will often
be points of the scene which are visible from the RGB lens but not from the infrared lens,
and vice versa. Although RGB-D cameras often incorporate a function to automatically register
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Still In motion

Figure 2.4: Examples of 3D coloured point clouds built from automatically registered RGB-D images taken with a
PrimeSense Carmine.

colour and depth images, that registration is far from perfect, as illustrated in Figure 2.4. There
exist methods to improve that registration by aligning the edges (regions of high gradients) of
the two images or warping them according to the rigid transformation existing between the two
lenses (calibration). Both approaches require extra computation and will always imply at least a
small increment in the runtime of the proposed algorithm. For this reason, the solution to this
problem often consists in developing methods which are robust to the RGB-D misalignment.

23





3
Range-based Odometry

3.A Introduction

The term odometry resulted from the combination of two greek words1: odos, which means road
or path, and metros, a measure. Thus, odometry is related to the act of measuring the length of a
certain path or trajectory. Originally, the term odometry was specifically used to refer to what we
nowadays call wheel odometry, and consisted in counting the number of turns of one or several
wheels to estimate the planar trajectory of a vehicle. This process is inherently incremental,
since the trajectory can only be estimated as a sum of small pose increments (i.e. one cannot
estimate the whole trajectory of a vehicle from the final count of wheel turns, this problem
is highly underconstraint). In fact, wheel odometry can only be exact if these increments are
infinitesimally small and integrated through time, which is impossible in practice. Alternatively,
visual odometry resorts to align consecutive images to estimate the motion of the sensor. To
clarify that we employ range measurements in our work, we will also coin the term range-based
odometry, although both might be equivalent in many cases (e.g. when working with depth
images). Like wheel odometry, visual and range-based odometry work incrementally as they
require a certain degree of overlap between the incoming data to be able to align them. In
both cases, since odometry continuously builds upon previous estimates, it accumulates and
propagates the estimation errors through time. For this reason, having accurate motion estimates
becomes crucial.

In general, there exist a number of technologies to track the motion of a given vehicle or
device:

• The Global Positioning System, or GPS, was developed by the Defense Department of the
USA during the Cold War. It consists of a set of satellites that are permanently orbiting
the Earth and emitting electromagnetic signals. These signals can be received on earth
to pinpoint, through triangulation, the position of the receiver with errors of just a few
centimeters. However, GPS’s are unable to provide information about orientation and they
do not work in indoor scenarios where the satellites’ signals cannot be detected.

• Similarly, but at a lower scale, indoor systems use arrays of sensors to track the 3D motion
of a special marker. Some are based on infrared cameras and reflectors [15], others on RFID

1Etymological reference from https://en.wikipedia.org/wiki/Odometry
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tags [16], or even on ultrasounds [17]. The common limitation of all these approaches is
the need of a controlled environment, which is not possible in many applications.

• Inertial Measuring Units, or IMUs, measure accelerations, rotational velocities and some-
times the magnetic field of the Earth. Through temporal integration, and by detecting the
direction of gravity, these devices can be used to estimate translations and orientation. On
the one hand, orientation can be obtained quite accurately by leveraging the different mea-
surements that IMUs provide. On the other hand, translations are hard to obtain given the
second-order nature of the estimation process and the difficulty associated with canceling
the gravitational component of the measurements [18].

• Encoders are utilized to measure wheel turns (wheel odometry) or to know the relative
positions of robotic arms, legs, etc. The main and significant drawback associated to wheel
odometry is slippage, since in that case the rotation of the wheels does not correspond
to the motion of the vehicle/robot. More generally, estimates based on encoders require a
precise geometric model of the limbs or parts in motion, which is not always known with
such precision.

• Visual and range-based odometries are very flexible solutions since they can be particular-
ized to work with different sensors (RGB or depth cameras, stereo systems, laser scanners)
and configurations (2D, 3D or any particular combination of translations and rotations).
As a drawback, they are sensitive to the illumination conditions or the solar radiation.

Each of the aforementioned technologies are suitable for some specific tasks, but in recent
years visual odometry has demonstrated to be the most precise and versatile alternative. For
instance, it is used to provide continuous estimates of the 3D pose of a drone [19], which is
mandatory if the drone is to carry out any autonomous task. Similarly, planar odometry based on
scan matching is employed to know the position of service robots equipped with laser scanners
(e.g. telepresence robots [20]). Planar odometry does not always rely on lidars though, and other
platforms like the Roomba vacuum cleaner [21] incorporate solutions based on RGB cameras
(probably combined with wheel odometry and proximity sensors). The Microsoft augmented-
reality device Hololens [11] includes a set of RGB and depth cameras to perform 3D SLAM, and
to do so it must align the incoming photometric and geometric data provided by these cameras in
real time. In general, almost any application related to 2D or 3D mapping includes an odometry
module to be able to integrate the data from images or scans correctly. As a last illustrative case,
visual odometry is even employed for video processing, for example to render smoother versions
of time-lapse videos [22].

3.B Rigid Transformations and Lie Algebra

In this section we introduce the mathematical tools utilized throughout this thesis to handle
geometric transformations in Euclidean spaces, particularly 2D and 3D rigid transformations.
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A rigid transformation is the one that preserves distances between the transformed points,
hence moving them as if they were part of a rigid body. Rigid transformations encompass
translations and rotations, and are normally expressed as

T =

(
R t

0 1

)
, (3.1)

whereR is a rotationmatrix and t is a translation vector. In the three-dimensional case,R ∈ R3×3

and t ∈ R3, while in a 2D space R ∈ R2×2 and t ∈ R2. This matrix can be used to transform
points from one reference system to another, or equivalently, to move them according to a certain
rigid body motion. If p is a vector with the coordinates of a given point P , its transformed
coordinates p′ can be computed as

p′h = Tph, p′h =

(
p′

1

)
, ph =

(
p

1

)
, (3.2)

where ph and p′h are the homogeneous coordinates of the point before and after the transfor-
mation, respectively. Using homogeneous coordinates is advantageous because they allow us to
concatenate multiple transformations as a simple product of matrices.

The only inconvenience associated to this representation of rigid motions is the fact that it is
not minimal because the size of rotation matrices (R) is larger than the actual degrees of freedom
(e.g. rotations in 3D can be encoded by a vector of 3 elements but R is 3× 3). Fortunately, there
exists a theory that connect spatial transformations (Lie groups) and their minimal representation
(Lie algebras). A Lie group is a group that is also a differentiable manifold, with the property that
the group operations are compatible with the smooth structure. Every Lie group has an associated
Lie algebra, which is a vector space generated by differentiating the group transformations along
specific directions in the space. This vector space (or tangent space) has the same dimensions
as the number of degrees of freedom of the group transformations and is an optimal space to
represent differential quantities related to the group [23, 24]. In this thesis we will work with the
Lie algebras se(2) and se(3) associated to 2D and 3D rigid transformations, respectively. The
corresponding Lie groups are commonly denoted as SE(2) and SE(3). If ξ = (ν ω)T is a vector
of the Lie algebra where ν encodes the translational component and ω the rotational one, the
rigid transformation associated to it is given by the following exponential map:

T = exp (ξ̂) = exp

(
ω× ν

0 0

)
, (3.3)

where ω× is a skew symmetric matrix built from the rotational components of ξ:

ω× =

(
0 −ω
ω 0

)
, if ξ ∈ se(2) , (3.4)

ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 , if ξ ∈ se(3) . (3.5)
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Similarly, the vector ξ associated to a given transformation T can be computedwith the logarithm
map:

ξ̂ = log (T ) . (3.6)

Last, we want to describe the physical meaning of the vector ξ, which is normally missing in
the literature. For clarity we will consider only the 3D case, but the explanation is equally valid
for 2D. Let’s assume ξ represents the velocity of a rigid body, and P is a point that belongs to
that rigid body. Under these assumptions, the instant velocity of P can be expressed as

vP =

 νx + zωy − yωz
νy − zωx + xωz
νz + yωx − xωy

 , (3.7)

where (x, y, z) are the coordinates of P . To obtain the position of P at a given time twe integrate
its instant velocity:

p(t) = p+

∫ t

0

vp dt . (3.8)

Note that this integralmust be computed numerically because the coordinates are interdependent.
It can be proved (although we do not do it in this thesis) that, if we compute the position of P at
t=1, that position coincides with p′ (3.2):

p′ = p(1) = p+

∫ 1

0

vp dt . (3.9)

Therefore, the vector ξ contains the translational and rotational velocities of a rigid body
according to which P moves (temporally normalized). If the transformation does not correspond
to any motion but to a change of reference frame, then ξ represents the rigid velocity that would
bring one of the reference frames towards the other in one second.

3.C Coarse-to-Fine and Theory of Warping

The problem of dense image alignment has extensively been studied in computer vision. The
term dense means that all the image pixels must be aligned, not only those observing special
features. The two-dimensional motion field that encodes the displacement of each individual
pixel on the image plane is called optical flow. Virtually every problem related to image alignment
involves the estimation of the optical flow implicitly or explicitly. In visual odometry, the relation
between the camera motion and the optical flow is normally embedded in the formulation and the
projection model (e.g. pinhole). Another case/example of interest is scene flow, which is often
decomposed as the estimation of optical flow plus range flow (or disparity). All these problems
are non-convex and require linear approximations, commonly based on the optical flow constraint
[25], to be solved. However, these linearizations are quite restrictive. Since they rely on the image
gradients, each constraint becomes valid only locally in a small region surrounding each pixel,
providing very little basin of convergence for many algorithms. Fortunately, this limitation has
been overcome in the past by imposing such linearizations in a coarse-to-fine scheme [26, 27].

A coarse-to-fine strategy consists in building a pyramid of images which are subsequently
aligned from the coarsest to the finest level. The coarsest levels offer a wider basin of convergence
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Figure 3.1: Example of an image pyramid. Resolution goes from VGA (left) to 15× 20 (right). The first rows show
two consecutive intensity images taken with an RGB-D camera, and the last row shows the residual image (absolute
difference between the two). It can be observed that the misaligned areas cover many pixels in the original images,
whereas they are only one or two pixels wide in the coarsest image. Hence, any linearization applied on the finest
level would not help to align both images while the same process applied on the coarsest level would work (but not
with precision).

because each pixel there covers a "larger area" of the scene (Figure 3.1), whereas the finest levels
allow for precise alignment once the algorithm gets close to the solution. To avoid alliasing and
information loss, image pyramids are built by combining downsampling and smoothing. The
former typically divides the image resolution by two at every step, and the latter is computed
by convolving the image with a Gaussian kernel. However, when it comes to geometric data,
Gaussian smoothing generates spurious points at depth discontinuities and, for that reason, a
bilateral filter [28] can be used instead.

Once the solution is obtained for a given level of the coarse-to-fine scheme, that solution is
used to warp one of the two images to align it with the other. This step is fundamental because the
linearizations at the following levels would not hold otherwise. There are different strategies to
perform this warping, depending on the addressed problem. Next, we describe the basic warping
strategy based on the optical flow, and another case of interest for this thesis: when both the
scene geometry and the rigid transformation between the images are known.

3.C.1 Warping with optical flow

Let I1, I2 : Ω → R be two intensity images, where Ω ⊂ R2 denotes the image domain. An
image pyramid is computed for each input image; IL(.) will be used to refer to the image of the
L-th level of the pyramid. If uL is the optical flow that maps IL2 towards IL1 then:

IL2 (x+ uL) ≈ IL1 (x) , (3.10)

where x represents the coordinates of a given pixel. The warping in this case is performed by
creating a new image IL+1

2,w for the next level which is as similar/close as possible to IL+1
1 , i.e.

IL+1
2,w (x) = IL+1

2 (x+ ûL) , (3.11)
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where ûL is an upsampled version of uL. Subsequently, at level L + 1, the new warped image
IL+1

2,w will be aligned with IL+1
1 with a finer optical flow uL+1. This process is repeated for

each level, thereby concatenating the solutions obtained throughout the pyramid and bringing
I2 closer to I1 at each new step.

3.C.2 Warping with rigid transformations

In this section we describe the warping for visual odometry with RGB-D cameras and therefore
assume that the geometry of the scene is known. Let I1, I2 : Ω → R and Z1, Z2 : Ω → R be
two registered pairs of intensity and depth images, respectively. In this case four image pyramids
are built, and IL(.) and ZL

(.) will denote the intensity and depth images of the L-th level of these
pyramids. In visual odometry, the optical flow is not computed explicitly but it can be calculated
from the estimated transformation and the camera projection model. Let π : R3 → Ω be a
function that projects 3D points onto the image plane and π−1 : Ω × R → R3 be the inverse
projection function which provides the 3D coordinates of any observed point. If TL ∈ SE(3) is
the rigid transformation that aligns the points of the two images at a given level L, then

IL2
(
π(TL π

−1(x, ZL
1 (x)))

)
≈ IL1 (x) (3.12)

It must be remarked that TL actually results from composing all the transformations obtained
from the first until the L-th level of the pyramid. When working with RGB-D data, both intensity
and depth images must be warped according to the estimated transformation:

IL+1
2,w

(
π(T−1

L π−1(x, ZL+1
2 (x)))

)
= IL+1

2 (x) , (3.13)

ZL+1
2,w

(
π(T−1

L π−1(x, ZL+1
2 (x)))

)
=
∣∣T−1
L π−1(x, ZL+1

2 (x))
∣∣
z
, (3.14)

where |•|z is the z-coordinate. In this case, the inverse transformation T−1
L is employed to

transform the whole coloured point cloud (computed from the second image) and render a new
artificial image from the point of view of I1, Z1. This is the most accurate procedure to obtain the
warped images but it is not the most efficient one because it involves averaging all the projections
and/or keeping a z-buffer to take the ones which are visible from the camera. There exists a fast
alternative warping, equivalent to the one presented in (3.11), which can be computed as

IL+1
2,w (x) = IL+1

2

(
π(TL π

−1(x, ZL+1
1 (x)))

)
, (3.15)

ZL+1
2,w (x) = ZL+1

2

(
π(TL π

−1(x, ZL+1
1 (x)))

)
. (3.16)

This method computes the warped image pixel-wise and hence it is easy to parallelize, but it
might create artefacts because it combines observations from both RGB-D pairs which do not
observe exactly the same points of the scene.

3.D Contributions

We have developed a new dense method for range-based odometry. This method expresses the
range flow constraint [29, 30] as a function of the motion of the sensor, and provides accurate
estimates by minimizing the resulting overconstrained system. The two main advantages of this
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method are its low computational runtime and the fact that it does not rely on photometric data.
Consequently, it can be particularized to work with any range sensor.

First, we present our initial work on 3D visual odometry with depth cameras (§3.E). The
algorithm has a low computational cost if compared to other existing approaches and runs in
real time on a single CPU core (QVGA resolution). Aside from the main formulation, the paper
describes a new temporal filter for the camera pose based on the uncertainty of the estimates,
and a special strategy to compute the image gradients. It does not incorporate robust functions
in the minimization problem (weighted squared residuals are minimized) and, consequently, its
performance deteriorates in the presence of moving objects.

Second, we adapt that formulation to estimate planar motion with 2D laser scanners (§3.F).
In this case we minimize a robust function of the geometric residuals to improve accuracy
against moving object. Thus, we include a two-fold strategy to robustify our algorithm: a pre-
weighting stage (similar to §3.E) to downweight points for which the range flow constraint
(linearization) does not hold, and a robust penalty function to handle the remaining outliers
during the optimization. Results show that our method is very precise and much faster (0.9
millisecond) than other scan-matching algorithms.

Third, in §3.G we extend the work presented in §3.F by introducing a novel symmetric
range flow constraint and aligning multiple scans at each iteration. The symmetric formulation
equidistributes the estimated motion in both scans, which results in a lower linearization error.
The multi-scan approach combines consecutive and keyscan-based alignment to reduce drift
and increase robustness against moving objects. Moreover, we present a new keyscan-selection
criterion that allows us to impose thresholds directly on the error domain (as opposed to
traditional strategieswhich put limits to other relatedmagnitudes like themaximum translation or
rotational, average residual, etc.). We include a thorough experimental evaluation demonstrating
that our method outperforms state-of-the-art algorithms in scan matching.
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Fast Visual Odometry for 3-D Range Sensors
Mariano Jaimez and Javier Gonzalez-Jimenez

Abstract
This paper presents a new dense method to compute the odometry of a free-flying range sensor in real
time. The method applies the range flow constraint equation to sensed points in the temporal flow to
derive the linear and angular velocity of the sensor in a rigid environment. Although this approach
is applicable to any range sensor, we particularize its formulation to estimate the 3-D motion of a
range camera. The proposed algorithm is tested with different image resolutions and compared with
two state-of-the-art methods: generalized iterative closest point (GICP) [2] and robust dense visual
odometry (RDVO) [3]. Experiments show that our approach clearly overperforms GICP which uses
the same geometric input data, whereas it achieves results similar to RDVO, which requires both
geometric and photometric data to work. Furthermore, experiments are carried out to demonstrate that
our approach is able to estimate fast motions at 60 Hz running on a single CPU core, a performance
that has never been reported in the literature. The algorithm is available online under an open source
license so that the robotic community can benefit from it.

3.E.1 Introduction

Fast and accurate 6-DoF visual odometry (VO) is gaining importance in current robotics where
increasingly demanding applications are pursued. Two clear examples are terrestrial vehicles
that must operate on uneven terrains and UAVs, which often need their 3-D pose to be tracked
in order to fly autonomously. The alternative to VO in these cases is applying inertial navigation
based on IMUs, but they accumulate too much error over time due to their inability to cancel
gravity with enough exactitude [3]. On the other hand, traditional solutions like wheel odometry
or GPS navigation simply cannot replace VO as they are not able to provide 3-D pose estimates.
Another important advantage of VO is that the required sensorial data (provided by cameras or
laser scanners) is also exploited by other robotic modules, both for navigation (SLAM, obstacle
avoidance, etc.) and for scene understanding.

The emergence of RGB-D cameras has given rise to new and promising prospects in VO
but has also posed some challenges. These sensors are able to provide RGB and depth images
simultaneously at 30–60 Hz, which is a huge amount of data to process. For this reason, novel
VO approaches struggle to maintain a good computational performance while trying to make
the most of all these incoming data and frequently tend to focus on either RGB or depth images.
In any case, not many VO methods can actually run at 30 Hz, and very few of them reach the
maximum frame rate of 60 Hz that some RGB-D cameras offer.

In this paper, we introduce a novel VO method called DIFODO (DIFferential ODOmetry),
which takes 3-D range images (or scans) to estimate the linear and angular velocity of the sensor.
Its formulation is founded on the spatiotemporal linearization of a range function (the so-called
range flow constraint equation [29, 31], which is imposed pixel-wise in a coarse-to-fine scheme
in order to cope with the estimation of large motions. A distinct feature of DIFODO is that
the same input data (range measurements) are exploited both to obtain the camera motion at
each level of the coarse-to-fine pyramid and to perform the warping after the level transitions.
Thus, although here we particularize its formulation for depth cameras, DIFODO could be
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easily adapted to work with any range sensor. Another key characteristic of DIFODO is that, in
contrast to other VOmethods, it relies on a closed-form solution and runs in real time on a single
CPU core. As a consequence, DIFODO is able to estimate fast motions and finer trajectories
as it can work at the highest camera frame rate (60 Hz). As a downside, it shares the same
weakness than other geometry-based VO approaches, namely: the estimation problem becomes
underdetermined when the observations of the scene lack of enough geometric information,
which similarly occurs for VO approaches relying on photometric data when observing low
textured areas. The idea of our proposal arose from [5] and [6] which, inspired by the concept
of optical flow, presented an algorithm to estimate 2-D motion from laser scans.

In order to validate our method, extensive experimentation has been carried out. First, DI-
FODO is tested with different resolutions to analyze how its performance changes with the
number of points and levels considered. Secondly, it is compared with two prominent methods:
Generalized-ICP [2] and the robust dense VO algorithm proposed by Kerl et al. [3] (RDVO
from here onwards). The former is one of the most widespread VO strategies based on geometry,
and hence, it is the best candidate to compare with given that it uses the same input data. The
latter is one of the best-performing methods published recently and, conversely to our approach,
exploits both geometric and photometric data to estimate the camera motion. Results show that
DIFODO is about 30 times faster than generalized iterative closest point (GICP) and 2–3 times
more accurate, whereas it achieves a performance similar to RDVO with less input data (only
depth). Finally, quantitative and qualitative results are presented to demonstrate that DIFODO
is able to estimate fast and real motions, which makes it suitable for real-time applications.

The code has been added to MRPT [32] and is available under an open-source license. An
illustrative video of our approach, together with the code, can be found here:

http://mapir.isa.uma.es/mjaimez

3.E.2 Related Work

Although the term visual odometry was first introduced by Nistér in 2004 [33], the problem of
estimating motion from visual inputs has been addressed from different perspectives during the
last 30 years. Traditionally, VO systems have been developed for grayscale images coming from
one camera or a stereo pair [34]. This general approach usually relies on detecting and matching
visual features, having to deal with the problem of data association and outliers [33, 35, 36].
Most solutions resort to RANSAC [37] to solve this limitation and, although the presence of
outlier matches is an inherent limitation for these strategies, great results have been achieved
(e.g., in planetary exploration [35]). Most recently, the semidense approach of Engel et al. [38]
obtains very accurate motion estimates by imposing photoconsistency at image regions with
non-negligible gradients and estimating depth within a probabilistic framework. However, an
important drawback of these methods based only on grayscale images is that their performance
deteriorates considerably if the illumination conditions are poor.

Alternatively, range data in the form of 2-D scans have proven to be suitable to estimate
planar motion. General point registration methods, most of which are variants of ICP [39], have
been extensively utilized to find the homogeneous transformation between consecutive scans
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and have been applied not only in VO but also in Localization, Mapping, or SLAM [40, 41]. On
the other hand, some methods were specifically conceived to work with 2-D range scans. In [42],
a probabilistic framework is proposed to find the rigid-body transformation that maximizes the
probability of having observed a scan given the previous one. Rather than trusting a local search
to find the global maximum, a multiresolution CPU implementation is proposed to perform
a search over the entire space of plausible rigid-body transformations, obtaining good results
in simulation. Because of its relation with the proposal here, we have to mention the work of
Gonzalez [31], who introduced the concept of range image flow and particularized the range
flow constraint equation to 2-D scans to estimate the scanner motion in a very straightforward
manner. Yet, its applicability was only tested in simulated and simple environments.

Recently, the advent of the new and affordable RGB-D cameras has revolutionized research
in robotics. The huge amount of geometric data contained in the depth images, along with the
fact that it can be easily combined with traditional RGB ones, have given rise to a fair number
of new VO approaches. Some of them are similar to those relying on visual features but they
incorporate depth either to directly calculate the geometric transformation between matched
features or to improve the outlier rejection stage [43, 44]. Likewise, in [45], visual features
are detected and fused to a global model of features against which every new set is registered
using ICP. A completely different alternative consists in minimizing an energy function that is
usually related to the photometric or geometric error, i.e., the differences between consecutive
RGB or depth images when one of them is reprojected or warped against the other. This idea
was first presented in [46], although in this case the authors used grayscale images generated
by stereo pairs. In [47], this concept is first applied to RGB-D images and both photometric
and geometric errors are minimized in a variational framework, yet lacking implementation
details and quantitative results. Similarly, in [48], the focus is on the photometric error and the
authors employ the depth images only to construct the warping function between consecutive
intensity images. This work was extended in [3] by introducing a new probabilistic formulation
that produced impressive results. However, despite their high accuracy and robustness, most of
these proposals require registered geometric and photometric data to work, which in practice
restricts their applicability to systems or robots equipped with RGB-D cameras.

There is another group of methods which, as we do, exclusively make use of the 3D geometric
data provided by range sensors. Either ICP or some of its variants have been employed in this
regard but it is probably Generalized-ICP [1] which has demonstrated the best performance,
being commonly taken as a reference for comparison [48, 49, 50]. On the other hand, other
strategies were specifically designed to work with the range images generated by Kinect-like
cameras. A remarkable case is KinectFusion [51], which introduces a signed distance function
(SDF) to represent the observed scene and applies ICP to align the depth frames against this
scene model. In a similar way, the work presented in [52] defines a truncated SDF (TSDF) and
registers data directly to the TSDF model, rather than using it to obtain denoised depth images
from a virtual sensor (as KinectFusion does). Apart from the great qualitative and quantitative
results that these methods have achieved, all of them share two weaknesses. First, they are
computationally very expensive, an issue that is typically overcome by developing complex
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parallelized CPU or GPU implementations. Second, their performance degrades if the scene
does not present sufficient geometric-distinctive features.

Up to date, very few methods truly exploit both depth and RGB images jointly to estimate
motion. A recent example is Kintinuous [53], the extension ofKinectFusion, which added FOVIS
[43] to complement ICP in areas with lack of geometric features. Additionally, in the work of
Whelan et al. [54] different combinations of [2], [3] and [43] were implemented and tested,
reporting good qualitative and quantitative results, and low runtimes by virtue of an exhaustive
GPU implementation. The aforementioned work of Tykkala et al. [47] could also be considered
to belong to this category.

3.E.3 Velocity Constraint derived from the Range Flow Equation

This section describes how the 3-D motion of a range camera can be estimated from two
consecutive frames by applying the range flow constraint and the restriction it imposes to the
velocities of the observed points. Under the common assumption of a rigid scene, we formulate
the point velocities in terms of the camera motion, and hence the latter can be calculated if a
sufficient number of points are considered. Let Z : (Ω ⊂ R2) → R be a depth image provided
by a 3-D range camera where Ω is the image domain. According to the work of Spies et al. [29],
the range flow constraint equation for range cameras reads:

Ż =
∂Z

∂t
+
∂Z

∂u
u̇+

∂Z

∂v
v̇ +O(∆t, u̇, v̇)⇒ (3.17)

Ż ≈ Zt + Zu u̇+ Zv v̇ , (3.18)

where w = (u, v) are the pixel coordinates. Equation (3.18) reflects that the total derivative
of the depth can be calculated from the optical velocity ẇ = (u̇, v̇) and the partial derivatives
of Z with respect to the time t, u and v (Zt, Zu and Zv, respectively). Since (3.18) is derived
from a first-order Taylor series expansion (3.17), it is exact only when the higher order terms
O(∆t, u̇, v̇) are negligible. In practice, this condition is fulfilled if either the displacement
between consecutive images is small or the observed points belong to planar patches where the
linearization holds.

The three partial derivatives of Z can be directly calculated from the depth images, but
Ż, u̇ and v̇ are unknowns and should be expressed in terms of the camera velocity. Let ξ =

(vx, vy, vz, ωx, ωy, ωz)
T be the camera velocity and Pc = (x, y, z) the spatial coordinates of

an arbitrary point P of the scene, both described in the reference frame of the camera. The
relationships between Ż, ẇ and Pc can be deduced from the pinhole camera model, assuming
that the pixel and spatial coordinates of P are time-varying:

v = fy
y

z
+ vm ⇒ v̇ = fy

(
ẏz − ży
z2

)
, (3.19)

u = fx
x

z
+ um ⇒ u̇ = fx

(
ẋz − żx
z2

)
, (3.20)

where (um, vm) is the image center (principal point) and fx, fy are the focal length values, all
expressed in pixels. With respect to the camera reference frame, and under the assumption of
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a rigid and static scene, all observed points move with a velocity that is equal to the camera
velocity but opposite in sign. Thus, the velocity of any 3D point with respect to the camera can
be expressed as

Ṗc =

 ẋ

ẏ

ż

 =

 −vx − zωy + yωz
−vy + zωx − xωz
−vz − yωx + xωy

 . (3.21)

As an intermediate step, we express the range flow in (3.18) in terms of the 3-D velocity of P ,
according to (3.19) and (3.20):

−Zt = −ż + Zufx

(
ẋz − żx
z2

)
+ Zvfy

(
ẏz − ży
z2

)
. (3.22)

Notice that Z has been replaced by z because they are equivalent: the capital letter has been used
to denote the depth image while the lower case letter directly refers to the spatial coordinate of
depth. Finally, rigidity (3.21) is imposed in (3.22):

−Zt =

(
1 +

xfx
z2

Zu +
yfy
z2
Zv

)
(vz + yωx − xωy)

+
fx
z
Zu(−vx + yωz − zωy) +

fy
z
Zv(−vy − xωz + zωx) .

(3.23)

Equation (3.23) is a linear restriction that the velocity of a point of the scene (with respect
to the camera) has to fulfill and, consequently, imposes a restriction to the camera velocity.
Therefore, we can build a solvable algebraic system if at least 6 linearly independent restrictions
are available. Notice that not every point will add new information to the system and, as will be
described in §3.E.5, the problem could be ill-posed depending on the spatial distribution of the
scene points.

The linearization applied to derive the depth flow equation assumes differentiability of the
depth images, and either small displacement of the scene or constant depth gradients. As a
consequence, in the first place, points on edges must be ruled out since the depth field is not
differentiable at the object borders. Secondly, the depth image gradients may not be constant
(having higher order derivatives) which implies that, in the most general case, (3.23) only
holds for small displacements. Within our formulation, "small displacements" means that the
projection of Ṗc onto the image plane is smaller than the neighborhood used to compute the
image gradients, typically:

|u̇∆t| < 1, |v̇ ∆t| < 1, (3.24)

where ∆t is the time interval between consecutive frames. Hence, the hypothesis of small
displacements involves both the image resolution and the actual 3-D motion of the points.

The solution to the small-displacements restriction was proposed by Brox et al. [27] and
consists in utilizing a coarse-to-fine scheme. Within this strategy, a Gaussian pyramid is built
for the input images and the optical flow is solved from coarser to finer levels, capturing large
displacements at the coarsest levels that are subsequently refined throughout the pyramid. At
each level, the previously obtained solutions are employed to warp one of the images against the
other, leading to image pairs that present less differences than the original pair and for which the
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hypothesis of small displacements is fulfilled. This strategy can be applied as well to estimate
the camera motion, as explained in [3, 48]. In this case the warping is not performed in the image
plane but in the 3D space, and the geometric data captured by range sensors is exploited to warp
a given image or measurement according to a spatial transformation. This is the reason why the
methods presented in [3, 48] require both geometric and photometric data to work: they impose
photo-consistency to estimate motion but they need the geometry of the scene to perform the
warping. In our work we adopt the same warping strategy as [3, 48], but since DIFODO relies
only on geometric constraints to estimate the camera motion, it can be considered as a purely
geometry-based method, and can be generalized to work with any range sensor.

Warping has been extensively applied in computer vision and it is not a contribution of
this paper. Therefore, its mathematical formulation is not presented here; more information and
details can be found in [3, 48, 27], as well as in §3.C.1.

3.E.4 Solving the Camera Motion

Least-squares solution

As previously mentioned, at least 6 points bearing linearly independent restrictions are required
to compute the camera velocity at each level of the pyramid. In practice, however, a much higher
number (N ) of points are considered to make the solution robust to noise and errors, which leads
to an overdetermined linear system that can be solved by weighted least squares:

WA ξ = WB → ξ = (ATWA)−1ATWB = MB , (3.25)

where A ∈ RN×6 contains the coefficients that multiply ξ in (7),B ∈ RN contains the temporal
derivative of depth for each pixel (inverted in sign) and W ∈ RN×N is a diagonal matrix
containing the weights associated to the uncertainty of each equation. The M ∈ R6×6 matrix
in (9) is symmetric and positive definite or semi-definite, so a Cholesky LDLT factorization
(as implemented in Eigen [55]) can be used to compute the solution. Since such factorization
applies to a small-size matrix (6 × 6), it does not condition the computational cost of our
method. Although not all the steps of the algorithm have been detailed yet (see §3.E.6), the only
operations whose complexity is quadratic with the number of points are the products ATWA

and ATWB (using dense algebra). Nonetheless, the algebraic system (3.25) can be rewritten in
a way that these products do not need to be computed: by multiplying both sides of (3.23) by
the square root of the corresponding weight and solving the resulting equation system with the
pseudoinverse matrix:

Awξ = Bw → ξ =
(
(Aw)TAw

)−1
(Aw)TBw = MB , (3.26)

Aw =


√
w1a11 . . .

√
w1a16

... . . . ...
√
wNaN1 . . .

√
wNaN6

 , Bw =


√
w1b1

...
√
wNbN

 . (3.27)

Thus, the new formulation allows us to recover the motion parameters with a computational time
that grows only linearly with the number of points.
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Weighting Function

Weights are necessary to adjust the contribution of every point to the overall motion estimate
according to the uncertainty or error associated to its range flow equation. Without loss of
generality, this error can be expressed as the addition of two terms: the measurement error,
which measures how the sensor noise affects the range equation, and the linearization error from
the first order approximation in (3.18). The former term is typically modeled by a zero-mean
Gaussian distribution and can be calculated propagating the measurement error to the whole
equation. The latter does not follow a Gaussian model and, in general, it is more complex to
estimate because it involves studying the second order derivatives of depth to evaluate how
significant the neglected terms in (3.17) actually are. In this work we address the analysis of
both sources of error and present a weighting function that encompasses information about the
camera and the geometry of the scene from which to weight the image pixels accordingly.

In order to estimate the measurement error we need to take into consideration every stochastic
variable or parameter that appears in (3.23). Assuming that the parameters of the camera are
exactly known, (3.23) can be rearranged and expressed as a function of all noise-prone variables,
that is, those dependent on the depth:

R(x, y, z, Zt, Zu, Zv) = 0 , (3.28)

being x, y, z linearly related for a given pixel (see (3.19), (3.20)).
To propagate the error of these depth-dependent variables to the range flow equation, their

covariance matrix Σd ∈ R6×6 has to be built as a preliminary step:

Σd =

 Σxyz Σ(xyz)(Zt,u,v)

ΣT
(xyz)(Zt,u,v) ΣZt,u,v

 , (3.29)

where Σxyz, Σ(xyz)(Zt,u,v), ΣZt,u,v ∈ R3×3. The mathematical derivation of the submatrices in Σd

is based on the characteristics of Kinect-like cameras and can be found in the §3.E.9. Knowing
Σd, the variance of (3.23) associated with the measurement errors can be computed as

σ2
m = ∇R · Σd · ∇RT , (3.30)

where ∇R is the gradient of R with respect to x, y, z, Zt, Zu, Zv. Given that R also depends on
ξ, an approximation of ∇R is computed using the twist ξ estimated at the previous time step.
On the other hand, to analyze the error derived from the linearization in (3.17) we must rewrite
that equation including the second order terms:

Ż =Zt + Zuu̇+ Zvv̇ + Z2(∆t, ẇ) +O(∆t2, ẇ) ,

Z2(∆t, ẇ) =
∆t

2

(
Ztt + Ztuu̇+ Ztvu̇

2 + Zvvv̇
2 + Zuuu̇

2 + 2Zuvu̇ v̇
)
.

(3.31)

It can be observed that, neglecting third or higher order terms, the error is a function of all the
second order derivatives and the optical flow. To estimate how (3.31) deviates from linearity we
can approximate the second order derivatives from the depth images, but the optical flow is not
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known in advance. One possible solution to this problem would consist in computing the optical
flow from the previous ξ. However, this strategy loses its sense when it has to be applied at finer
levels of the Gaussian pyramid where the previous solution gives us no information about the
optical flow with respect to warped images. For that reason, we chose a quadratic expression
which penalizes the second derivatives homogeneously for all pixels:

δ2
l = kl

[
∆t2(Z2

tu + Z2
tv) + Z2

uu + Z2
vv + Z2

uv

]
. (3.32)

The constant kl weights the linearization error against the measurement error, and the time
increment multiplies the temporal derivatives so that all terms are of the same order of magnitude
(depth differences). In practice, it can be noticed that a high penalization of the second order
derivatives might discard some points or areas of the scene that, despite its inaccuracy, are useful
to constrain the motion estimate. A deeper study of the scene geometry could be performed to
detect beforehand how the range equation of every point would constrain the velocity estimate
and adapt kl accordingly. However, this procedurewould significantly increase the computational
cost of the algorithm and, hence, it is not adopted in this work. Besides, the second temporal
derivative of Z is not considered in (3.32) because it cannot be estimated at the different
pyramid levels. With the exception of the coarsest level, the others involve warped images which
are timeless and for which the concept of second temporal derivative makes no sense.

If N points are considered to build (3.25), for each point i ∈ 1, 2 . . . N , its corresponding
weight is inversely related to the uncertainty associated to the range flow equation:

Wii =
1

σ2
m,i + δ2

l,i

. (3.33)

3.E.5 Scene Geometry, Covariance Analysis and Velocity Filtering

Depending on the spatial distribution of the points used to build the algebraic system (3.26), the
problem can be well or ill-posed. If the points contain sufficient information about how the scene
has changed in the 3 directions of space then the matrixM will be positive definite and (3.26)
will stand for a well-posed configuration, otherwise the matrixM will be rank deficient (or close
to). Excluding the degenerated singular cases of some surfaces of revolution (i.e. the camera
in the center of a sphere), sufficient information is guaranteed if the normals of the observed
surfaces can make up a 3D vector basis, that is

rank ([n1,n2, . . . ,nN ]) = 3 , (3.34)

whereni ∈ R3 is the surface normal vector at a given point i. The unfulfillment of this condition
leads to the well-known sliding problem of ICP [56], and frequently occurs when the whole
point cloud comes from one or two planes (a wall, the floor, etc.).

If M is positive definite, the points of the scene provide enough geometric constraints to
estimate the 6 DoF of the motion. On the contrary, ifM has not full rank, some linear or angular
velocity terms cannot be estimated and the solution that the solver provides for these variables is
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arbitrary. This casuistry can be detected analyzing the covariance matrix Σξ ∈ R6×6 associated
to the least squares solution:

Σξ =

∑N
i=1 r

2
i

N − 6

(
(Aw)TAw

)−1
, (3.35)

where ri are the geometric residuals. The diagonal elements of the covariance matrix reflect the
variance of the components of the estimated ξ in the reference frame of the camera. In general,
it is more meaningful to express the matrix Σξ in a diagonal form where the eigenvalues indicate
which combinations of motions (eigenvectors) are constrained and which are undetermined.
In this way, any uncertainty in the velocity estimate that may appear due to poor geometric
information will be revealed: its corresponding eigenvalue will reflect how high or low this
uncertainty is while its eigenvector will contain the velocity terms affected by it. This information
can be employed to neglect those velocity terms whose variance (eigenvalue) is too high. Thus,
if data from other sources like IMUs or wheel odometry were available they could be fused with
the VO estimation to generate a more robust solution. When this is not the case, a suitable option
consists of applying a smooth filter based on the current and previous estimates, as explained
next.

Let E = {e1, . . . , e6} be an orthogonal basis comprising the eigenvectors (e(.) ∈ R6) of
Σξ, and D ∈ R6×6 the covariance diagonal matrix containing the associated eigenvalues. At a
given interval of time [t, t+ 1], the solution provided by the solver ξt,s and the previous velocity
estimate ξt−1 have to be expressed in the basis Et, which is always computed from the last
covariance matrix Σt

ξ. Then, the filtered velocity ξtE in the basis Et is obtained as a weighted
sum of the current estimate and the previous velocity:[

(1 + k1)I + k2D
t
]
ξtE = ξt,sE + (k1I + k2D

t) ξt−1
E . (3.36)

Equation (3.36) represents a low-pass filter with dynamic smoothing, where k1 helps to soften
the estimated trajectory and k2 controls how the eigenvalues in D affect the final estimate. A
high value of k2 implies that those velocity terms with uncertainty will be approximated to
their previous value in ξt−1

E , whereas the current estimate (interval [t, t+ 1]) will have a higher
importance if k2 is low.

3.E.6 Framework and Implementation

Overall, the algorithm carries out a sequence of steps that are depicted in Algorithm 1. It receives
as inputs the new depth image, the previous pyramid of depth images and the last motion estimate,
and yields the average camera linear and angular velocities during the last interval of time, from
which the camera pose will be updated. Important aspects and implementation details of this
algorithm are explained below.
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Algorithm 1 DIFODO
Inputs:
New depth frame −Zt
Previous Gaussian pyramid −GP (Zt−1)
Previous velocity estimate −ξt−1

Build the new Gaussian pyramid→ GP (Zt)
for i=1:number of pyramid levels do

if (i > 1) then
Perform warping (see §3.C.2)

end if
Discard pixels with null depth
Compute depth derivatives→ Ztt , Z

t
u, Z

t
v

Compute the weighting function→W t

Solve weighted least squares→ ξt,si ,Σtξ,i
Filter level solution→ ξti

end for
Compute overall solution and update pose→ ξt

Gaussian Pyramid

The Gaussian pyramid is built by downsampling the depth images with a standard 5×5Gaussian
kernel. However, a pure Gaussian smoothing would create artifacts in the depth images because
it would mix very dissimilar depth values at the object borders. For that reason, a bilateral filter
is applied instead to preserve the geometry of the scene. In our work, the Gaussian pyramid
starts to be built at a QVGA resolution (240 × 320). As will be discussed in §3.E.7, in order
to estimate fast motions it might be advantageous to run DIFODO with a lower resolution of
120 × 160 (QQVGA), in which case the image pyramid should be built from this resolution
onwards, saving computational time.

Warping

At every new level of the Gaussian pyramid, one of the two depth images must be warped against
the other. To perform the warping, all the motion estimates from the previous levels must be
integrated to obtain the overall transformation accumulated up to the present level. A special
case is, of course, the first level where no warping is needed. In our formulation, the new frame
is always warped against the old frame and the motion estimates of every level are expressed in
the same reference frame: the last known pose of the camera.

Depth Image Gradients and Weights

The implementation of DIFODO requires a discrete formulation that estimates the average cam-
era velocity between two consecutive depth frames. Unlike in intensity-based image alignment,
where intensity gradients remain almost constant for all perspectives from which the scene is
observed, the depth gradients change as the camera moves. For this reason, the depth gradients
should not be computed from either the initial or the final depth images at a given interval of time.
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As an alternative, we demonstrate that a better choice to approximate the depth gradients consists
in applying a trapezoidal solution that averages values from both images. If ∆w = (u̇∆t, v̇∆t)

is the motion of a given point projected onto the image domain (optical flow), its depth motion
is given by:

Ż(w)∆t = Zt(w + ∆w)− Zt−1(w) . (3.37)

Equation (3.37) is the general and non-linear expression of geometric consistency from which
(3.18) is derived. Instead of substituting the term Zt(w + ∆w) by the standard Taylor lin-
earization, we employ a more accurate approximation which weights the initial and final depth
gradients at a given time instant:

Zt(w + ∆w) = Zt(w) +∇
(
Zt(w) + Zt(w + ∆w)

2

)
·∆w . (3.38)

At the right-hand side of (3.38), the term Zt(w+ ∆w) is still present and needs to be expressed
as a function of the previous depth image and the depth motion, according to (3.37):

Zt(w + ∆w) = Zt(w) +∇

(
Zt(w) + Zt−1(w) + Żt(w)∆t

2

)
·∆w . (3.39)

As commonly done in variational methods, we can impose regularization over the depth motion
and assume that the depth motion field is locally constant:

∇Żt(w) ∼ 0 . (3.40)

Finally, this smoothness constraint is imposed in (3.39) which, in turn, is substituted in (3.37)
to obtain a more accurate expression of the range flow constraint equation:

Żt(w) ' Zt(w)− Zt−1(w)

∆t
+∇

(
Zt(w) + Zt−1(w)

2

)
· ẇ . (3.41)

On the other hand, the image gradients must be approximated by some finite difference formula,
given that Ω is not a continuous domain but a discrete one. Most of the times this aspect does not
receive much attention in the literature and a certain constant kernel is applied over the whole
image. However, this is not the best strategy to compute the depth gradients because it leads to
very high values at the object borders which does not reflect the real gradients of the surfaces of
these objects. As an alternative, we make use of an adaptive formula of finite differences which,
for a point P observed at a pixel w, computes the depth gradients taking into account those
surrounding pixels that observe points close to P . Mathematically, it implies that two nearness
functions ru, rv : Ω→ R must be computed as

ru(u, v) =
1

‖X(u+ 1, v)−X(u, v), Z(u+ 1, v)− Z(u, v)‖
, (3.42)

rv(u, v) =
1

‖Y (u, v + 1)− Y (u, v), Z(u, v + 1)− Z(u, v)‖
, (3.43)
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where ‖•‖ is the Euclidean norm andX, Y : Ω→ R represent the x, y coordinates of the points
of the scene. The depth gradients are calculated then from the depth images and the nearness
functions:

Zu(u, v) =
ru(u, v)Z+

u (u, v) + ru(u− 1, v)Z−u (u, v)

ru(u, v) + ru(u− 1, v)
, (3.44)

Z+
u (u, v) = Z(u+ 1, v)− Z(u, v), Z−u (u, v) = Z(u, v)− Z(u− 1, v) ,

Zv(u, v) =
rv(u, v)Z+

v (u, v) + rv(u, v − 1)Z−v (u, v)

rv(u, v) + rv(u, v − 1)
, (3.45)

Z+
v (u, v) = Z(u, v + 1)− Z(u, v), Z−v (u, v) = Z(u, v)− Z(u, v − 1) .

For simplicity’s sake, the temporal superscripts have been omitted. These expressions always
upweight the closest points in space to approximate the depth gradients, hence avoiding the
assignment of huge values at the object borders. If they are evaluated at pixels which do not lie
on borders of objects then the right and left derivatives (Z+ and Z−) will be similarly weighted,
which results in a standard centered approximation of the image gradients.

Regarding the weighting function, the constant kl that weights the linearization error against
the measurement error is set to 5 · 10−6. The second order derivatives are approximated by
constant centered formulas (using the stencil [-1 0 1]) applied over the first order derivatives.

Filter Velocity and Update Pose

The velocity estimate must be filtered at each level of the pyramid because each level can suffer
from the lack of geometric distinctive features. However, the last velocity estimate cannot be
used directly to filter the solution of every level because all the previous levels have already
estimated some motion which should be subtracted from it. The sequential steps that the filter
performs at each level of the pyramid are:

1. Compute the overall estimate ξt,acu accumulated up to the present level i.

2. Subtract ξt,acui from the last velocity estimate ξt−1 to obtain ξt,subi .

3. Compute the covariance matrix Σt
ξ,i.

4. Calculate the eigenvalues Dt
i and the eigenvectors Et

i .

5. Express the least squares solution ξt,si and ξt,subi in the base Et
i .

6. Apply (3.36) with ξt,si,E and ξt,subi,E as inputs, and obtain ξti,E .

7. Transform ξti,E to the reference frame of the camera.

When the process is finished in all the pyramid levels, the final motion estimate ξt is computed
and integrated over the last time interval to update the camera pose.

Although the same filtering process is followed in every level, there is an important aspect
that should be taken into account: the coarsest levels capture the trend of the motion while the
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last levels refine it to get an accurate estimate. As a consequence, the coarsest levels are likely to
get solutions which are similar to the previous velocity of the camera whereas the estimates of
the finer levels are probably quite independent of it. Therefore, our filter should give a weight to
the last motion estimate that decreases from coarser to finer levels. To this end, and to smooth
the trajectory estimates, we have empirically chosen the following weighting functions:

k1 = 0.5 e−(l−1), k2 = 0.05 e−(l−1) , (3.46)

where l is the pyramid level that ranges from 1 (coarsest) to the number of levels considered.
These functions have heuristically proved to be a good trade-off between smoothness of the
estimated trajectory and capability to accommodate motion changes in a huge variety of scenes
(as shown in §3.E.7).

3.E.7 Experiments and Results

This section is divided into four parts corresponding to four distinct series of experiments.
Firstly, DIFODO is tested with different resolutions to analyze how its performance changes
with the number of pyramid levels considered. Secondly, several experiments are conducted
to compare DIFODO, GICP [2] and RDVO [3] focusing on their speed and accuracy. Thirdly,
we demonstrate the suitability of our approach to estimate fast motions, comparing results
of increasing camera velocities and analyzing its performance using QVGA at 30 Hz against
QQVGA at 60 Hz. Fourthly, qualitative results will be shown in the form of 3-D maps built
purely from odometry pose estimations.

For the first three groups of experiments we have utilized some data series from the TUM
datasets [49], given that they provide the ground truth to calculate the estimate error. The
selected datasets reproduce varied camera motions at different speeds and include scenes that
contain sufficient geometric and photometric information (the latter is necessary for RDVO).
The datasets chosen, according to the authors of [49], belong to 3 different categories:

1. Handheld SLAM: It includes general camera motions in office-like or house-like environ-
ments.Within this category, we use "Freiburg1/desk" (f1-desk), "Freiburg1/desk2" (f1-desk2),
"Freiburg1/room" (f1-room) and "Freiburg2/desk" (f2-desk).

2. 3D Object Reconstruction: It includes trajectories around certain objects. Within this cate-
gory we use "Freiburg1/teddy" (f1-teddy) and "Freiburg1/plant" (f1-plant).

Sequence Duration Avg. trans. vel Avg. rot. vel Est. traj. length
(s) (m/s) (deg/s) (m)

f1-desk 23.4 0.413 23.33 9.66
f1-desk2 24.86 0.426 29.31 10.59
f1-teddy 50.82 0.315 21.32 16.01
f1-plant 41.53 0.365 27.89 15.16
f1-room 48.9 0.334 29.88 16.33
f2-desk 99.36 0.193 6.34 19.18

f2-deskwp 142.08 0.121 5.34 17.19

Table 3.1: Dataset characteristics.
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3. Dynamic objects: In these scenes there are one or more moving objects and, hence, the rigid
scene hypothesis is not fulfilled. Within this category we use "Freiburg2/desk with person"
(f2-deskwp).

Relative and absolute pose errors will be considered, as described in [49], to study the accuracy
of our approach. For the relative pose error, both translational and rotational deviations per
second will be evaluated with the root mean squared error (RMSE). Besides, we will evaluate
the RMSE and the maximum values of the absolute trajectory errors (translational) to analyze
the robustness of these approaches to reproduce 3D trajectories faithfully. A brief summary of
the datasets considered is presented in Table I. Because of the lack of ground truth at some
trajectory stretches, the trajectory length is estimated using the datasets duration and their
average translational speed. For all the experiments, the test platform used is a standard desktop
PC running Ubuntu 12.04 with an Intel Core i7-3820 CPU at 3.6 GHz.

DIFODO with different resolutions

Several tests have been carried out to analyze how the accuracy and speed ofDIFODOare affected
by the maximum resolution of the depth images employed in the coarse-to-fine scheme. A total
amount of 28 experiments have been performed, 4 for each dataset, with maximum resolutions
of 30×40, 60×80, 120×160 and 240×320. In every case, the coarsest level of the pyramid had
a resolution of 15 × 20, implying that the number of levels in the aforementioned experiments
were 2, 3, 4 and 5, respectively. No results are presented with a resolution of 15× 20 because it
is a too low resolution to produce decent estimates. Initially, relative translational and rotational
errors are compared (Figure 3.2). As expected, accuracy increases with higher resolutions. It
can be noticed that the RMSE of each dataset varies as accuracy does not only depend on the
VO method but also on the camera speed and the geometry of the observed scenes. Likewise, in
Figure 3.2 the RMSE and maximum absolute translational errors are plotted. It can be observed
that, on average, the longest datasets present the highest absolute error since the errors of every
iteration are propagated over a longer period of time. It is worth mentioning that the highest
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Figure 3.2:Left: Comparison of translational and rotational drifts per second with DIFODO at different resolutions.
Right: Comparison of accumulated translational errors with DIFODO at different resolutions.
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Figure 3.3: Percentage computational load of the main steps that DIFODO performs to estimate motion with QVGA
resolution.

resolution (QVGA) does not provide significantly improved estimates respect to those of the
previous level (QQVGA).Although it is logical that the solution refinement becomes less and less
noticeable with higher resolutions, the main factor that explains this result is the fact that images
at QVGA resolution are not filtered because they represent the finest level of the pyramid. As a
consequence, the noise of the measurements affects the derivatives calculation more drastically
than at any other level. At the finest level, points are closer to each other, and the differences
between their depth values are caused not only by the geometry of the scene but also by the noise
of the measurements. Hence, the depth gradient approximation becomes imprecise and does not
perfectly reflect the real gradients of the observed surfaces. Overall, Figure 3.2 shows that it is
beneficial to set QVGA as the maximum resolution although there might be some exceptions
like the sequence f2-desk. If necessary, this effect could be partially alleviated by applying a
previous bilateral filter to the finest level, at the expense of a higher computational cost.

Runtimes are reported in Table 3.2. As DIFODO provides a closed-form solution, its runtime
is essentially the same for all the datasets and the exact values might slightly differ depending
on how many pixels present null measurements. In Figure 3.3 we show how the runtime of
DIFODO at QVGA is distributed among the main steps that comprise it (see Algorithm 1).
The velocity filter is significantly faster than any other step because it is the only one which

Sequence Resolution
30 × 40 60 × 80 120 × 160 240 × 320

f1-desk 3.79 5.12 10.09 28.51
f1-desk2 3.78 5.13 10.03 28.30
f1-teddy 3.94 5.30 10.18 28.99
f1-plant 3.91 5.27 10.17 28.57
f1-room 3.87 5.12 9.92 28.58
f2-desk 3.85 5.23 10.14 29.19

f2-deskwp 3.78 5.09 9.73 28.14
Average 3.85 5.18 10.04 28.61

Table 3.2: Runtime of DIFODO (ms).
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does not perform pixel-wise operations. Besides, one aspect should be remarked. In all cases
the Gaussian pyramid was built starting from a resolution of 240× 320, which on average takes
3.5 milliseconds. However, if DIFODO is configured to work with any inferior resolution, the
Gaussian pyramid can be built from 120 × 160 upwards, which takes less than 1 millisecond.
As a consequence, DIFODO runtime can be actually lower than it is shown in Table 3.2 for any
resolution inferior to QVGA. This aspect makes QQVGA resolution particularly appropriate for
fast robotic applications because it can provide quite accurate results (see Figure 3.2) with a
very low runtime.

Comparison between DIFODO, GICP and RDVO

In this subsection we compare our approach with two state-of-the-art methods: GICP and RDVO.
For everymethodwewill consider QVGA resolution, although results of DIFODOwithQQVGA
will be also included to analyze how its performance deteriorates if a faster version of it is needed.
To refer to them we will use the names DIFODOHR and DIFODOLR which stand for high and
low resolution, respectively. The results for RDVO have been generated with the code that the
authors published online for ROS [57]. Regarding GICP, we make use of the implementation
included in PCL [58]. For a fair comparison, a bilateral filter with a 5 × 5 mask is applied to
the depth images before running GICP, which smoothes the raw data and leads to better results.
The GICP parameters have been chosen as follows:

• The maximum correspondence distance is set to 0.5 m to cover all the translations and
rotations of the datasets where the scenes are sampled at 30 Hz and the maximum observed
distance is about 5 meters.

• The maximum number of iterations is set to 10 although we observed in the experiments that
the method almost always converges at the 3th – 4th iteration.

• Transformation epsilon is set to 10−5 which marks the minimum difference between con-
secutive transformations to assume that the algorithm has converged. It is actually applied
separately to translations and rotations (with this same value).

First, Table 3.3 presents the execution time statistics for each algorithm and dataset. From the
results in Table 3.3 we can conclude that our proposal is almost 30 times faster than GICP and

Sequence Average runtime (ms)
DIFODOLR DIFODOHR RDVO GICP

f1-desk 10.09 28.51 28.96 838.2
f1-desk2 10.03 28.3 27.00 877.5
f1-teddy 10.18 28.99 27.66 862.4
f1-plant 10.17 28.57 41.82 824.1
f1-room 9.92 28.58 27.39 856.7
f2-desk 10.14 29.19 42.85 769.8

f2-deskwp 9.73 28.14 32.43 677.7
Average 10.04 28.61 32.43 815.2

Table 3.3: Runtime comparative.
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Sequence RMSE Translational deviations (cm/s) RMSE Rotational deviations (deg/s)
DIFODOLR DIFODOHR RDVO GICP DIFODOLR DIFODOHR RDVO GICP

f1-desk 3.98 3.66 4.08 10.17 2.73 2.56 2.18 6.88
f1-desk2 5.96 5.28 6.45 11.66 3.39 3.31 3.55 6.66
f1-teddy 5.47 5.18 9.67 12.73 2.85 2.77 2.46 4.71
f1-plant 3.56 2.98 3.41 11.17 2.31 2.18 1.25 4.78
f1-room 5.31 4.89 6.22 9.93 2.85 2.69 2.62 4.37
f2-desk 3.17 3.13 2.39 7.68 1.18 1.26 1.02 2.98

f2-deskwp 5.85 5.42 3.12 7.19 1.85 1.74 0.90 2.89
Average 4.76 4.36 5.05 10.08 2.45 2.36 1.99 4.75

Table 3.4: Relative Errors: translational and rotational deviations per second.

Sequence RMSE (cm) Maximum (cm)
DIFODOLR DIFODOHR RDVO GICP DIFODOLR DIFODOHR RDVO GICP

f1-desk 4.66 4.76 6.36 18.29 8.77 9.4 11.9 36.38
f1-desk2 9.37 7.93 8.46 22.75 18.73 15.54 42.7 58.08
f1-teddy 24.12 20.41 27.1 28.49 59.83 51.47 48.23 55.98
f1-plant 9.17 6.45 4.56 24.44 22.03 16.67 9.62 53.92
f1-room 10.94 10.88 33.19 33.86 19.18 20.37 56.7 62.38
f2-desk 34.24 56.02 34.51 134.3 67.6 116.6 61.4 284.8

f2-deskwp 27.74 22.89 25.9 67.88 41.05 42.23 50.01 151.6
Average 17.18 18.48 20.01 47.14 33.88 38.90 40.08 100.4

Table 3.5: Absolute translational errors.

as fast as RDVO although our runtime is more deterministic since DIFODO is not iterative.
On the other hand, we also compare how precise these methods are in estimating the camera
motion. Relative pose errors in the form of translational and rotational deviations per second are
analyzed and shown in Table 3.4. It can be noticed that DIFODO, with both QVGA and QQVGA
resolutions, is the most accurate method to estimate translations whereas RDVO provides the
best results for rotations. GIPC, on the other hand, is always considerably less accurate than the
other two approaches. Moreover, absolute trajectory errors are presented in Table 3.5, where it
can be seen that DIFODO is the method that estimates the whole trajectories more faithfully.
Curiously, DIFODOLR provides, on average, the best estimated trajectories although DIFODOHR

performs better locally. This apparent contradiction is caused by one single sequence: f2-desk,
where DIFODOHR produces a particularly bad overall result.

A special case is the sequence f2-deskwp because it is the only one that purposely incorporates
moving objects, breaking the rigid scene assumption on which DIFODO relies. RDVO includes
in its formulation a weighting function tomitigate (but not eliminate) errors derived frommoving
objects and, hence, presents a considerable smaller relative RMSE thanDIFODO for this dataset.
Nevertheless, but for the stretches where the moving person appears, DIFODO performs better
than RDVO and, surprisingly, is able to produce the best overall trajectory estimate even for this
dataset where RDVO was expected to significantly outperform any other method.
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Sequence Translational RMSE (cm/s) Rotational RMSE (deg/s)
Original × 2 × 3 Original × 2 × 3

f1-desk 3.7 5.0 8.9 2.56 4.28 6.26
f1-desk2 5.3 8.9 17.7 3.31 3.59 4.00
f1-teddy 5.2 7.7 10.9 2.77 4.41 7.15
f1-plant 3.0 3.0 3.5 2.18 2.13 2.41
f1-room 4.9 4.9 9.0 2.69 2.69 3.77
f2-desk 3.1 2.5 2.4 1.26 0.96 0.88

f2-deskwp 5.4 5.1 4.9 1.74 1.57 1.47
Average 4.4 5.3 8.2 2.36 2.80 3.71

Table 3.6: Relative pose errors with the original and the time-decimated sequences.

Sequence RMSE (cm) Maximum (cm)
Original × 2 × 3 Original × 2 × 3

f1-desk 4.8 17.1 23.6 9.4 41.8 46.4
f1-desk2 7.9 13.1 27.1 15.5 30.5 64.7
f1-teddy 20.4 25.6 35.0 51.5 56.4 61.3
f1-plant 6.5 6.5 9.0 16.7 15.1 21.6
f1-room 10.9 18.2 38.8 20.4 35.8 76.2
f2-desk 56.0 35.2 26.2 116.6 70.4 46.8

f2-deskwp 22.9 18.9 17.8 42.2 34.6 32.8
Average 18.5 19.2 25.4 38.9 40.6 50.0

Table 3.7: Absolute trajectory errors with the original and the time-decimated sequences.

Estimation of fast motions

In this subsection,we study how the performance of our approach varieswhen the camera velocity
increases. To this end, we simulate faster motions by time-decimating the input data from the
TUM dataset. In this set of experiments, which have been carried out with QVGA resolution,
the input image sequences are decimated by a factor of 2 and 3, representing velocities that are
2 times and 3 times faster than the original ones. Relative and absolute pose errors are shown in
Table 3.6 and Table 3.7 respectively. It can be noticed that the accuracy of our method decreases
when a faster motion is simulated on the "f1 dataset", whereas the opposite occurs for the "f2
dataset". To understand these disparate results we have to take into account that the average
camera velocities at each dataset are quite different. In particular, the average camera velocities
at the "f2 dataset" are about 3 times slower than those at the "f1 dataset", which explains why the
decimated sequences of the "f2 dataset" provide good results. On the contrary, theworst estimates
are found for the accelerated sequences of f1-desk and f1-desk2, which present the fastest camera
motions. It is worth noting that accuracy improves for the "f2 dataset" when the sequences are
decimated or accelerated, effect that can be explained by analyzing the measurement noise of
Kinect-like cameras. The depth images provided by this kind of cameras present a flickering or
trembling over time that grows quadratically with depth [14]. This implies that no scene looks
perfectly static to the camera even if the camera is still. For this reason, every new execution
of the algorithm introduces some error in the trajectory estimation which, in the case of small
motions, can be partially prevented with a lower sampling rate. This is essentially what causes
the improved performance of the decimated "f2-sequences".
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In view of these results, we can conclude that DIFODO with QVGA provides very accurate
estimates for camera velocities up to 0.7 m/s. If a faster motion needs to be estimated, QQVGA
should be chosen to work at 60 Hz which would double the velocity estimation range without
compromising the accuracy significantly (see comparison in §3.E.7). For very slow motions, it
would be advantageous to reduce the frequency of the estimates, according to the results of the
"f2 dataset".

Real-time operation and map building

Last, we have performed real experiments with a handheld camera to demonstrate the accuracy
of our approach to estimate geometrically consistent trajectories. To this purpose, DIFODO has
been utilized to build 3-D maps of two different scenarios (a living room and our lab). These
maps are built as a concatenation of point clouds along the trajectory that DIFODO estimates,
without resorting to global consistency or any other mapping strategy. The images are taken with
a PrimeSense Carmine 1.08 at 30 Hz with QVGA resolution. A brief summary of the estimated
trajectories is presented in Table 3.8. The maximum velocity values have been obtained after
applying a median filter to the sequence of velocities to reject possible outliers. Figure 3.4 and
Figure 3.5 depict the generated maps from different views. In both cases the real geometry of
the mapped environments is preserved quite accurately: flat surfaces remain flat in the map (see
the floor in Figure 3.4), walls remain perpendicular to each other, etc. However, the scene colors
are not consistent because the shutter speed of the camera was automatic and, therefore, the
object colors vary depending on the average brightness of the scene. In any case, we do not
aim to address the map building problem but to show that DIFODO is able to provide very
accurate estimates not only locally but for full trajectories. Color has simply been added to the
maps to enhance their appearance but, as has been repeatedly said throughout the paper, it is not
employed to estimate motion.

Lab Living room
Duration (s) 33.66 20.31
Length (m) 18.65 8.611

Aver. trans. velocity (m/s) 0.554 0.424
Aver. rot. velocity (deg/s) 16.91 20.55
Max. trans. velocity (m/s) 0.841 0.770
Max. rot. velocity (deg/s) 47.95 49.32

Table 3.8: Real trajectories estimated with DIFODO.

3.E.8 Conclusions and Future Work

In this paper we have introduced a novel visual odometry algorithm based on geometric data,
and have detailed its formulation to work with range cameras. Within a coarse-to-fine scheme,
the camera motion is estimated by assuming rigid motion of the scene with respect to the
camera and finding the rigid body velocity that best describes the velocity of all the points of
the scene. A velocity filter is proposed to detect and mitigate wrong estimates under cases of
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Figure 3.4: Three-dimensional map of a living room generated with an RGB-D camera from DIFODO motion
estimates. The map is shown in top (1), perspective (2) and front (3) views. The camera trajectory is depicted with
a green line.

geometric uncertainty, and a detailed study on how to accurately approximate the depth gradients
is presented.

In terms of speed and precision, our approach has been compared with GICP [2] and RDVO
[3]. With respect to GICP, which also estimates motion from geometry, our method is about 30
times faster and more than 2 times more accurate. Regarding RDVO, which needs geometric and
photometric data to work, similar results (or even slightly better) are obtained from purely geo-
metric inputs. Maps of 2 different scenarios have been built from real-time odometry estimates
to demonstrate qualitatively that DIFODO is able to reproduce full trajectories consistently. Fur-
thermore, DIFODO has proved to provide accurate motion estimates with low image resolutions
(120 × 160) which makes it suitable for real-time robotic applications that might involve fast
motions and demand a higher frame rate (60 Hz).

On the other hand, there are some factors that limit the performance of our approach.
Firstly, the currently available range cameras are not very precise and generate depth images
that considerably deform the real geometry of the scenes they observe. This defect will surely
be alleviated at the upcoming new generations of range sensors given the attention that big
companies like Microsoft, Apple or Samsung are paying to 3D sensing. Secondly, its accuracy
worsens when the rigid scene hypothesis is not fulfilled. We believe that the real solution to
this problem will be given by scene flow algorithms that estimate the dense 3-D motion field
of the scene points. Particular solutions (like that of [3]) can help to deal with moving objects
if a very high percentage of the scene is still rigid, but would fail to estimate motion when the
number of moving objects increases or the moving object itself represents a substantial part of
the whole scene. Therefore, a more general solution that could be generalized to any arbitrary
scene composed of any arbitrary number of moving objects should be found. Last, similarly
to GICP or other geometry-based VO methods, DIFODO is unable to estimate some linear or
angular velocity components when the scene does not present sufficient geometric-distinctive
features. Although the proposed velocity filter helps to mitigate this limitation, a more robust
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Figure 3.5: Three-dimensional map of our lab generated with an RGB-D camera from DIFODO motion estimates.
An overall top view is shown (left) together with some local views: a detailed top view (1) and two perspective
views (2 and 3). The camera trajectory is depicted with a green continuous line.

solution should incorporate RGB or inertial information to effectively tackle the problem of
ill-posed configurations.

3.E.9 Appendix: Covariance Computation

This appendix derives the expression of the matrix Σd which, according to (3.29), is composed
of the following blocks:

Σxyz =

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 ,ΣZt,u,v =

 σ2
Zt

σZtZu σZtZv

σZtZu σ2
Zu

σZuZv

σZtZv σZuZv σ2
Zv

 ,

Σ(xyz)Zt,u,v =

 σxZt σxZu σxZv

σyZt σyZu σyZv

σzZt σzZu σzZv

 . (3.47)

Assuming that the only source of error is the inaccuracy of the depth measurements, we first
characterize this error according to the work of Khoshelham and Elberink [14]:

σzm =
σd
fb
z2 ∼ 1.4 · 10−5z2 , (3.48)

where σzm is the standard deviation of the depth measured at a given pixel, f is the focal distance
of the IR camera, b is the baseline between the IR camera and projector and σd is the disparity
measurement error. Since the depth images are filtered with a Gaussian mask of 5× 5, the actual
standard deviation of z should take it into account:

σz =
σd
5fb

z2 = kzz
2 ∼ 2.8 · 10−6z2 . (3.49)
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Knowing the pinhole camera model (see (3.19) and (3.20)), it can be deduced that:

σx =
(u− um)

fx
σz = kzxz , (3.50)

σy =
(v − vm)

fy
σz = kzyz . (3.51)

On the other hand, the standard deviation of the depth derivatives should be computed as the
difference of Gaussians but, for simplicity’s sake, it is calculated as if both the subtrahend and
minuend of the finite difference expressions were equal to the value of z at the corresponding
pixel, i.e.

zt+1(u, v) ∼ zt(u± 1, v) ∼ zt(u, v ± 1) ∼ zt(u, v)⇒

σZt =
kzz

2

√
s∆t

, σZu =
kzz

2

2
√

2
, σZv =

kzz
2

2
√

2
.

(3.52)

The covariance terms in (3.47) can be obtained analytically, but only those which are not null
will be explicitly derived. The null terms correspond to independent variables (Zt, Zu and Zv
respect to each other and x, y and z) and, hence, do not need further consideration.

σxy = E [(x− E[x])(y − E[y])] =
(u− um)(v − vm)

fxfy
E
[
(z − E[z])2

]
= k2

zxyz
2 , (3.53)

σxz = E [(z − E[z])(x− E[x])] =
(u− um)

fx
E
[
(z − E[z])2

]
= k2

zxz
3 , (3.54)

σyz = E [(z − E[z])(y − E[y])] =
(v − vm)

fy
E
[
(z − E[z])2

]
= k2

zyz
3 , (3.55)

σzZt = σzZu = σzZv = σxZt = σxZu = σxZv = σyZt = σyZu = σyZv = 0,

σZtZu = σZtZv = σZuZv = 0 . (3.56)

This is all the information required to build the matrix Σd. A similar study is presented in [45]
but based on different assumptions and applied to a different set of variables. It focuses on the
3-D uncertainty of a point (variables x, y and z above) and, although they also model the pixel
coordinates u and v as normal distributions, their results are similar to ours if the variance of u
and v are set to zero.
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Planar Odometry from a Radial Laser Scanner.
A Range Flow-based Approach

Mariano Jaimez, Javier G. Monroy and Javier Gonzalez-Jimenez

Abstract
In this paper we present a fast and precise method to estimate the planar motion of a lidar from con-
secutive range scans. For every scanned point we formulate the range flow constraint equation in terms
of the sensor velocity, and minimize a robust function of the resulting geometric constraints to obtain
the motion estimate. Unlike traditional approaches, this method does not search for correspondences
but performs dense scan alignment based on the scan gradients, in the fashion of dense 3D visual
odometry. The minimization problem is solved in a coarse-to-fine scheme to cope with large displace-
ments, and a smooth filter based on the covariance of the estimate is employed to handle uncertainty
in unconstraint scenarios (e.g. corridors). Simulated and real experiments have been performed to
compare our approach with two prominent scan matchers and with wheel odometry. Quantitative and
qualitative results demonstrate the superior performance of our approach which, along with its very
low computational cost (0.9 milliseconds on a single CPU core), makes it suitable for those robotic
applications that require planar odometry. For this purpose, we also provide the code so that the robotics
community can benefit from it.

3.F.1 Introduction

Odometry is an essential component for robot localization. It is commonly solved through
three major techniques that are based on inertial devices, wheel encoders or visual odometry
(either by feature tracking or by dense image alignment). Inertial measurement units (IMUs)
are ideal to estimate spatial orientation but accumulate too much translational error over time
due to their inability to cancel the gravitational component of the measurement [18]. Odometry
based on enconders has extensively been used to provide fast motion estimates for wheeled or
legged robots, though this approach is prone to being inaccurate due to wheel/leg slippage and
the impreciseness of the kinematic robot models. Lastly, vision-based methods are arguably
the most flexible and powerful solution to the motion estimation problem because they can
be adapted to work with different types of robots (wheeled, legged, aerial) and configurations
(2D-3D motion).

Our proposal here relies on laser scans and has the advantage over the aforementioned
methods to be independent of the vehicle’s type of locomotion as well as very fast and precise,
as supported by experimental validation. Thus, it turns out to be particularly suitable for those
(very common) cases where the robot already uses a laser range scanner for mapping, obstacle
avoidance or localization. Our approach, named RF2O (Range Flow-based 2D Odometry),
builds upon [30] and represents the apparent motion of any point observed by the sensor as a
function of the velocity of the sensor, assuming that the environment is static. Thus, every point
defines a geometric residual which can be minimized within a dense formulation to obtain the
lidar motion. To overcome the assumption of a motionless environment (i.e. to handle moving
objects), we compute the CauchyM-estimator of the geometric residuals, a more robust estimate
than traditional choices like the L2 or L1 norms. Furthermore, we solve this estimation problem
within a coarse-to-fine scheme, which provides finer results and allows the method to handle
larger motions.

56



3.F. PLANAR ODOMETRY FROM A RADIAL LASER SCANNER. A RANGE FLOW-BASED APPROACH

We have conducted a set of experiments to compare our method against point-to-line iterative
closest point (PL-ICP) [5] and the polar scan matching approach (PSM) [6]. Firstly, their
performances are evaluated at different scan rates on simulated scenarios where the ground truth
is available. Secondly, qualitative results are shown for a real experiment where 2D maps are
built by concatenating the scanned points according to the odometry motion estimates of each
method. Thirdly, we devise a real experiment to evaluate how robust the methods are against
the presence of noise and moving objects. Overall, results show that RF2O is significantly more
precise for both translations and rotations, and presents the lowest runtime (2 times faster than
PSM and 20 times faster than PL-ICP). Besides analyzing the results presented herein, we
encourage the reader to watch the demonstration video which, together with the available code,
can be found at:

http://mapir.isa.uma.es/work/rf2o

3.F.2 Related Work

Although low-cost RGB-D cameras have recently favoured the transition to 3D odometry,
localization and mapping strategies, it is a matter of fact that a fair number of mobile robots
move on planar surfaces and rely on laser scanners to navigate. In this context, very successful
results have been achieved in the fields of 2D Localization [59, 60] and SLAM [61], and many
algorithms have been proposed to solve the general scan matching problem [62, 5, 39]. In this
paper we focus on pure 2D odometry, which can be regarded as a particular case of scanmatching
where the scans to be aligned are taken consecutively and are normally close to each other.

Traditionally, ICP [39] or some of its variants have been applied to solve the registration prob-
lem between consecutive scans. A very successful approach was proposed by Censi [5], where a
point-to-line metric is used instead of the point-to-point original metric of ICP. Futhermore, the
author presented an implementation which ran one order of magnitude faster than existing ICP
variants, and was more precise and efficient than the pioneer point-to-segment work in [4]. More
recently, Generalized-ICP [2] showed an improved performance over previous ICP versions,
but has been mostly used for the registration of 3D point clouds. For this family of methods,
accuracy depends on every particular version and implementation, yet they all share the same
weakness: they are computationally expensive.

Alternatively, other methods were specifically designed to solve the 2D scan matching prob-
lem. Gonzalez and Gutierrez [30] formulated the velocity constraint equation, an adaptation of
the optical flow constraint for range scans, and proposed to estimate the lidar motion by imposing
this restriction for every point observed in the scans. However, their method was only tested
with simple simulated scenarios and provided modest results. Diosi and Kleeman presented
the Polar Scan Matching approach [62], where the translation and rotation between two scans
are alternately estimated until convergence. In contrast to ICP, this method avoids searching
for correspondences by simply matching points with the same bearing, which leads to a higher
computational performance. This approach was subsequently extended and further evaluated
in [6]. A different method proposed by Olson [42] tries to find the rigid transformation that
maximizes the probability of having observed the latest scan given the previous one. Additional

57



CHAPTER 3. RANGE-BASED ODOMETRY

information is used (control inputs or wheel odometry) to ease the method convergence and two
different implementations, GPU and multi-resolution CPU, are presented. A thorough evalua-
tion is performed in terms of computational performance but, surprisingly, no results for the
method’s accuracy are presented.

More recently, other approaches have built upon the aforementioned works. It is the case
of [63] and [64], which fuse laser odometry (the Olson’s laser odometry [42] and point-to-
line ICP [5], respectively) with stereo vision to perform autonomous navigation with UAVs.
Furthermore, the work of Pomerleau et al. [65] presents a fast implementation and a through
evaluation of some ICP variants on real-world 2D and 3D data sets.

3.F.3 Velocity of the Lidar and 2D Range Flow

In this section we describe how the 2D velocity of a laser scanner can be estimated from the
apparent motion that it observes, assuming that the environment is static and rigid. Let R(t, α)

be a range scan where t is the time and α ∈ [0, N) ⊂ R is the scan coordinate, being N the
size of the scan. The position of any point P with respect to the local reference frame attached
to the sensor is given by its polar coordinates (r, θ) (see Figure 3.6). Provided that P is visible
from the lidar, it will be observed at a scan coordinate α that is directly related to the angular
coordinate of P :

α =
N − 1

FOV
θ +

N − 1

2
= kαθ +

N − 1

2
, (3.57)

where FOV is the field of view of the scanner. Similarly to the optical flow constraint equation,
a linear constraint can be derived from the general expression of geometric consistency of two
scan pairs. Assuming the differentiability of R, the range of any point in the second scan can be
expressed as the Taylor expansion

R(t+ ∆t, α + ∆α) = R(t, α) +
∂R

∂t
(t, α) ∆t+

∂R

∂α
(t, α) ∆α +O(∆t2,∆α2) , (3.58)

where ∆t is the time lapse between consecutive scans and ∆α represents the change in the scan
coordinate of the point considered. Neglecting second and higher order terms, and dividing by
∆t, we can obtain a simple expression that relates the scan gradients with the change of the
range and the scan coordinate of a point during the interval [t, t+ ∆t]:

∆R

∆t
' Rt +Rα

∆α

∆t
, (3.59)

with

∆R = R(t+ ∆t, α + ∆α)−R(t, α),

Rt =
∂R

∂t
(t, α), Rα =

∂R

∂α
(t, α).

If we consider that ṙ = ∆R/∆t and α̇ = ∆α/∆t are the average velocities of a point in range
and scan coordinates during the interval [t, t+ ∆t], we obtain:

ṙ ' Rt +Rαα̇ = Rt +Rαkα θ̇ . (3.60)
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Figure 3.6: Top view representation of a laser scan that intersects with a certain object. An observed point P moves
with respect to the scanner to P ′ after an interval of time ∆t.

Equation (3.60) was firstly introduced by Gonzalez and Gutierrez [30] and subsequently gener-
alized and named as the range flow constraint equation in [29].

In order to describe the velocities of all points with respect to the same vector basis, we
transform the radial and azimuthal velocities (ṙ, θ̇) to a cartesian representation (ẋ, ẏ), as shown
in Figure 3.6:

ṙ = ẋ cos θ + ẏ sin θ , (3.61)

r θ̇ = ẏ cos θ − ẋ sin θ . (3.62)

As a last step, we need to impose that every apparent motion is actually caused by the translation
and rotation of the lidar. In other words, we assume that every point moves with respect to the
sensor as if it was part of a rigid body whose velocity is the same but opposite in sign to that of
the sensor: (

ẋ

ẏ

)
=

(
−vx,s + y ωs
−vy,s − xωs

)
, (3.63)

being ξs = (vx,s , vy,s , ωs) a 2D twist (sensor velocity) and (x, y) the cartesian coordinates of
P . If the cartesian velocities (3.61) (3.62) are substituted in (3.60) and the rigidity hypothesis
(3.63) is imposed, we can transform the range flow constraint equation into a constraint for the
lidar velocity: (

cos θ +
Rαkα sin θ

r

)
vx,s +

(
sin θ − Rαkα cos θ

r

)
vy,s

+ (x sin θ − y cos θ −Rαkα)ωs +Rt = 0 .

(3.64)

As a result, every scanned point imposes a restriction to the motion of the sensor and, therefore,
three linearly independent restrictions would theoretically suffice to estimate it.
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3.F.4 Velocity Estimation

In practice, the motion of the lidar cannot be estimated with only three independent restrictions
because, in general, (3.64) is inexact due to the noise of the range measurements, the errors made
by the linear approximation (3.59) or the presence of moving object (non-static environment).
Therefore, we propose a dense formulation in which all the points of the scan contribute to the
motion estimate. For every point, we define the geometric residual ρ(ξ) as the evaluation of the
range flow constraint (3.64) for a given twist ξ:

ρ(ξ) = Rt + (x sin θ − y cos θ −Rαkα)ω

+

(
cos θ +

Rαkα sin θ

r

)
vx +

(
sin θ − Rαkα cos θ

r

)
vy .

(3.65)

To obtain an accurate estimate, the sensor motion is computed by minimizing all the geometric
residuals within a robust cost function F :

ξM = arg min
ξ

N∑
i=1

F (ρi(ξ)) , (3.66)

F (ρ) =
k2

2
ln

(
1 +

(ρ
k

)2
)
. (3.67)

The function F is the Cauchy M-estimator, and k is an adjustable parameter. Unlike the more
common choices of the L2 or L1 norms, this function reduces the relevance of those points with
very high residuals, and represents an effective and automatic way to deal with outliers. The
optimization problem is solved with Iteratively Reweighted Least Squares (IRLS), where the
weights associated to the Cauchy M-estimator are:

w(ρ) =
1

1 +
(
ρ
k

)2 . (3.68)

With IRLS, the system is iteratively solved by recomputing the residuals and the weights until
convergence.

Pre-weighting strategy

As previously mentioned, there are some factors that can render (3.64) inaccurate, mainly the
unfulfillment of the rigidity hypothesis (3.63) and the deviations from the linear approximation
made in (3.59).Although theCauchyM-estimator can alleviate their effect over the overallmotion
estimates, it does not eliminate it completely. The presence of moving objects is hard to detect
before solving themotion and, therefore, we rely on the CauchyM-estimator to downweight them
during the minimization process. On the other hand, deviations from the linear approximation
adopted in (3.59) can be detected beforehand, which helps to accelerate convergence in (3.66)
and also leads to more accurate results. To this purpose, we propose a pre-weighting strategy
to downweight the residuals of those points where the range function is nonlinear or even non-
differentiable. We call it pre-weighting because it is applied before the minimization problem
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(3.66) is solved. In order to quantify the error associated to the linearization of (3.58), we expand
the Taylor series to the second order:

ṙ = Rt +Rαα̇ +R2o(∆t, α̇) +O(∆t2, α̇) , (3.69)

R2o(∆t, α̇) =
∆t

2

(
Rtt +Rtαα̇ +Rααα̇

2
)
. (3.70)

It can be noticed that, neglecting higher order terms, the second order derivatives in R2o(∆t, α̇)

can be used to detect the deviations from linearity. One special case is the second order derivative
with respect to time (Rtt), which cannot be computed in a coarse-to-fine scheme because the
warped images are timeless and, therefore, the concept of second temporal derivative makes no
sense (coarse-to-fine is described in §3.F.5). Moreover, it is important to detect those regions of
the scans where the range function is not only nonlinear but non-differentiable. These regions are
mainly the edges of the different objects observed, and are typically characterized by very high
values of the first order derivatives (Rt and/or Rα). To penalize these two effects, nonlinearities
and discontinuities, we define the following pre-weighting function for each scanned point:

w̄ =
1√

ε+Rα
2 + ∆t2Rt

2 +Kd

(
Rαα

2 + ∆t2Rtα
2
) . (3.71)

The parameterKd marks the relative importance of first order and second order derivatives, and
ε is a small constant to avoid the singular case.

Thus, we initially compute a pre-weighted set of residuals

ρwi (ξ) = w̄i ρi(ξ) ∀i ∈ {1, 2...N} , (3.72)

which are subsequently minimized according to (3.66) (3.67). Although we do not show compar-
isons in the paper, this strategy provides better results than standard IRLS minimization without
pre-weighting and converges faster (approximately by a factor of 2).

3.F.5 Coarse-to-Fine Scheme and Scan Warping

The linearization presented in (3.59) holds either for small displacements between consecutive
scans or at areas with constant range gradients (which, in the case of a lidar, would occur for a
very unusual geometry: an Archimedean spiral). To overcome this limitation, we estimatemotion
in a coarse-to-fine scheme, where the coarser levels provide a rough estimate which is improved
subsequently in finer levels. The coarse-to-fine scheme was introduced by Battiti et al. [26] to
solve the optical flow problem for large displacements, and has commonly been adopted ever
since [27, 66].

LetR0, R1 be two consecutive laser scans. Initially, two Gaussian pyramids are to be created
by successively downsampling (typically by 2) the original scans R0, R1. Normally, a Gaussian
mask is applied to downsample RGB or grayscale images but, in the case of range data, a
standard Gaussian filter is not the best choice since it creates artefacts on the filtered scans. As
an alternative, we employ a bilateral filter [28] that does not mix distant points which are likely
to belong to different objects of the scene. Once the pyramids are built, the velocity estimation
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problem is iteratively solved from the coarsest to the finest level. At every transition to a finer
level, one of the two input scans must be warped against the other according to the overall
velocity estimated in previous levels (ξp). This warping process is always divided into two steps
and, in our formulation, is applied over the second scan R1. Firstly, every point P observed in
R1 is spatially transformed using the rigid body motion associated to the twist ξp:xwyw

1

 = eξ̂p

xy
1

 , ξ̂p = ∆t

 0 −ωp vx,p
ωp 0 vy,p
0 0 0

 . (3.73)

Secondly, the transformed points must be reprojected onto R1 to build the warped scan Rw
1 so

that:

Rw
1 (αw) =

√
(xw)2 + (yw)2, (3.74)

αw = kα arctan

(
yw

xw

)
+
N − 1

2
. (3.75)

Several points could be warped to the same coordinate αw, in which case the closest one is
preserved (the others would be occluded). If ξp is converging to the real velocity, then the
warped scan Rw

1 will be considerably closer to the first scan R0 than the original R1, which
allows us to apply the linear approximation in (3.58) with a finer resolution.

3.F.6 Implementation

Our algorithm pays special attention to the computation of the range gradients. Normally, a
fixed discrete formula is employed to approximate either scan or image gradients. In the case of
range data, this strategy leads to very high values of the gradients at the object borders, which
do not represent the real gradients over those objects. As an alternative, we make use of an
adaptive formula that regards the geometry of the environment. This formula weights forward
and backward derivatives in the scan with the 2D distances between contiguous observations
(points):

Rα(α) =
d(α + 1)R−α (α) + d(α)R+

α (α)

d(α + 1) + d(α)
, (3.76)

d(α) = ‖((x(α)− x(α− 1), y(α)− y(α− 1))‖ ,
R−α = R(α)−R(α− 1), R+

α = R(α + 1)−R(α) .

Thus, the closest neighbour is always contributing more to the gradient computation while
distant points barely affect it. In the case that both neighbours are approximately equidistant,
the presented formula is equivalent to a centered finite difference approximation. More details
about the gradient computation can be found in [66].

Last, it is important to remark that there are some geometric configurations of the environment
from which the sensor motion cannot be recovered. The most common case arises when the lidar
only observes a wall. Under this circumstance, the motion parallel to the wall is undetermined
and therefore the solver would provide an arbitrary solution for it (not only our method but any
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approach based purely on geometry). In order to mitigate this problem, we apply a low-pass
filter in the eigenspace of the velocity ξ which works as explained next. First, the eigenvalues of
the covariance matrix Σ ∈ R3×3 of the IRLS solution are analyzed to detect which motion (or
combinations of motions) are undetermined and which are perfectly constrained. In the space of
the eigenvectors, the velocity ξtM provided by (3.66) is weighted with that of the previous time
interval ξt−1 to obtain the new filtered velocity ξt:

[(1 + kl)I + keE] ξt = ξtM + (klI + keE) ξt−1 , (3.77)

where E is a diagonal matrix containing the eigenvalues and kl, ke are parameters of the filter.
Concretely, kl imposes a constantweighting between the solution from the solver and the previous
estimate while ke defines how the eigenvalues affect the final estimate. These parameters are set
to the following values:

kl = 0.05 e−(l−1), ke = 15 · 103 e−(l−1) , (3.78)

where l is the pyramid level that ranges from 1 (coarsest) to the number of levels considered.
Please refer to [66] for a more detailed explanation on this filter and how it is applied.

3.F.7 Experiments

This section is composed of a set of three different experiments. The two first experiments address
the evaluation of the proposed RF2O algorithm and its comparison with other approaches in
simulated and real environments, respectively. The third experiment is carried out to analyze
the robustness of the motion estimates against noise and the presence of moving objects. For
comparison, two state-of-the-art scan matchers are selected: Point-to-Line ICP (PL-ICP) [5],
and Polar ScanMatching (PSM) [6]. In both cases, we use the implementations that their authors
published online. For quantitative evaluation, the relative pose errors as described in [49] will

GT RF2O PL-ICP PSM

Start

End

1

2

3

Figure 3.7: Simulated environment and the best path as estimated by each method (RF2O@5Hz, PL-ICP@10Hz,
PSM@2Hz). Numbers indicates the different scenarios of the environment.
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be considered. Both translational and rotational deviations per second will be evaluated with the
root mean squared error (RMSE), which corresponds to a performance measure independent of
the experiment duration.

For real experiments, a Hokuyo URG-04LX-UG01 laser scanner mounted on a Giraff mobile
robot [20] is used to gather the laser scans at a maximum frequency of 10 Hz. For the case
of simulated experiments, the laser characteristics have been imitated (ray number = 682,
FOV = 240 ◦, max distance = 5.5 m). Moreover, a Gaussian noise with σ = 1 cm is added to the
simulated scans to make them more realistic.

Comparison in a simulated environment

In this experiment, the compared methods estimate the planar motion of a laser scanner that
moves in a simulated environment. We use the precise ground truth available in simulation to
perform a quantitative evaluation of the different approaches. The simulated environment is
divided into three distinct scenarios (Figure 3.7): a room containing only objects formed by
straight line segments (Scen. 1), a room that contains only curved obstacles and curved walls
(Scen. 2) and a straight corridor with scattered small objects (Scen. 3). During the experiment,
the lidar travels along a predefined path, covering a distance of 43.47 meters at an average speed
of 0.398 m/s. Furthermore, four different scan rates (10, 5, 2 and 1 Hz) are tested to analyze the
influence of the frequency of execution in the odometry estimates. Table 3.9 depicts the relative
pose errors in the form of translational and rotational deviations per second, together with the
runtimes of the three compared methods. Figure 3.7 plots the simulated environment with the
best estimated trajectory of each method. That is, from all the execution rates, only the one with
overall minimum error is plotted for qualitative assessment. As can be noticed, RF2O exceeds
the other two approaches for all the scenarios in the experiment, providing much more accurate
estimates. PL-ICP presents relatively good estimates for the room scenarios, but it drastically
fails at the corridor (specially for translations). On the other hand, PSM presents much higher
relative errors in general, and concretely at the second scenario where only curved objects can
be found. Furthermore, it presents important problems at narrow places such as doors.

Scan rate Translational RMSE (cm/s) Rotational RMSE (deg/s) Runtime (ms)
(Hz) RF2O PSM PL-ICP RF2O PSM PL-ICP RF2O PSM PL-ICP

Scen. 1

10 0.425 14.82 1.860 0.108 2.412 0.524 0.941 1.837 15.98
5 0.308 7.363 0.759 0.054 1.572 0.321 0.933 1.979 18.51
2 0.248 3.071 0.584 0.043 0.598 0.281 0.904 2.205 23.79
1 0.273 12.27 0.396 0.372 2.290 0.108 0.900 2.675 27.58

Scen. 2

10 0.398 19.56 1.904 0.121 4.725 0.473 0.951 1.994 19.02
5 0.346 18.60 1.084 0.084 4.370 0.268 0.935 2.642 23.84
2 0.785 18.13 10.14 0.339 4.155 3.042 0.931 3.351 28.59
1 5.250 42.67 24.07 3.669 15.67 7.282 0.892 3.656 35.56

Scen. 3

10 0.461 4.940 18.44 0.071 1.469 0.246 0.922 1.826 19.55
5 0.382 5.499 39.74 0.054 2.027 0.129 0.940 2.296 15.25
2 0.249 7.138 38.48 0.033 2.328 0.071 0.900 2.911 17.54
1 0.439 33.51 40.19 0.106 3.693 0.068 0.875 3.677 26.74

Table 3.9: Simulated experiment: translational and rotational deviations per second, and execution times.
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Figure 3.8: Translation errors averaged over all sub-sequences of a given length for the three scenes of the simulated
experiment.

It is interesting to notice that the best results are not obtained with the highest frequency.
Experiments at 10 Hz provide worse results than those at 5 or 2 Hz, which indicates that data
oversampling leads to error accumulation. On the other hand, if the scanning frequency is too
little then consecutive scans are too separate and more difficult to align (as occurs at 1 Hz).
Thus, the optimal frequency is not always the highest available and depends on the average (or
maximum) linear and angular speeds of the lidar.

An alternative and helpful way to compare these methods is to calculate their RMS errors
per segment length, as described in [67]. Figure 3.8 depicts these average translational errors as
a percentage of the segment length considered (computed independently for the three scenes of
the experiment). It can be seen that our approach is in all cases superior to the other twomethods,
being always under 1% RMSE for all three scenes. PL-ICP is the second best candidate, having
around 5% RMSE, except for the long corridor (Scen. 3) where it completely fails.

Finally, from the computational point of view, the last columns on Table 3.9 show the runtimes
in milliseconds measured on an AMD Phenom II X6 1035T CPU at 2.6 GHz. Overall, RF2O
takes less than 1 ms, followed by PSM with 2.85 ms and PL-ICP with more than 19 ms. Taking
this into account, the presented approach not only provides more accurate estimates but it is also
much faster than its competitors.

Real experiment

To validate the results obtained in the simulated experiments, we employ a real mobile robot
equipped with a Hokuyo laser scanner for navigation in an office-like environment. Making
use of a mobile robot allows us to include the odometry estimates from the onboard encoders
(a pair of low-cost AMT102-v incremental encoders from CUI Inc.), but prevents us from
performing a quantitative comparison given the lack of a precise ground truth. Therefore, in this
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RF2OReference PL-ICP PSM Encoder

0            10          20m

Figure 3.9: Maps built as a concatenation of 2D point clouds along the estimated trajectories for different methods.
The reference map is built using the accurate localization of a particle filter-based approach. Trajectories are shown
in red and the scanned points in blue.

section the different methods are compared just qualitatively by plotting 2D maps built purely
from the odometry pose estimates. In other words, for each method we present maps built as a
concatenation of 2D point clouds along their estimated trajectories, without resorting to global
consistency or any other mapping strategy.

The path covered by the robot during this experiment is roughly 49 meters long, and is
travelled at an average speed of 0.535 m/s (max speed of 0.6 m/s). For all methods, we set the
scan rate at 10 Hz. Figure 3.9 shows the maps built from the trajectory estimates of the different
approaches. As a reference, we plot themap built from the accurate localization provided by [60],
which does not compute odometry but finds the pose of the robot within a previously built map.
As can be seen, the map derived from our odometry estimation is noticeably closer to the
reference map than any of the others. PL-ICP provides the second best estimation after RF2O,
failing mostly in the corridor areas, which results in a shortening of the map and overlapping of
scan points in such areas. PSM and the encoder-based maps follow the comparison, being the
latter the worst of all of them, with difference.

Robustness against noise and non-static environments

Lastly, we analyze how noise and moving objects affect the motion estimation of the proposed
method, i.e., when the assumption of a static environment is violated.

This section is composed of two experiments. The first one aims to evaluate the drift of the
compared methods caused by the noise of the measurements. To this end, a real experiment is
conducted where a lidar working at 10 Hz is kept still in a static environment for three minutes.
Under this setup, since the only error involved is the sensor noise, the outcome represents
how noise affects the motion estimates of the different methods. Table 3.10 shows the relative
deviations per second of the compared methods. We have also considered a simplified version of
our approach (RF2O-NC), where we remove the Cauchy M-estimator and simply minimize the
squared residuals (see (3.67)). From these results we can conclude that both RF2O and PL-ICP
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Figure 3.10: First row: Sequence of images taken during the second experiment described in §3.F.7. Second row:
3D representation of the scans and the robot at those particular instants, where the non-static points are shown in
red.

are equally good at translations, being marginally worse than the non-robust RF2O-NC, while,
at rotations, PL-ICP is slightly superior than the others.

The second experiment is conducted in the same scenario but, in this case, several moving
objects are introduced. During the experiment two persons are walking around the robot, opening
and closing a door and displacing a cardboard box (see Figure 3.10). The reader is encouraged
to watch the demonstration video where the experiment is shown in detail (http://mapir.
isa.uma.es/work/rf2o). As can be seen in the second part of Table 3.10, PL-ICP is the
most robust method in such situations, followed by the proposed RF2O. It is important to notice
that, although PL-ICP is between two and three times better than RF2O, the magnitude of the
errors is still pretty small for both methods, unlike the PSM estimates, which show important
translational and rotational drifts. Finally, comparing the two versions of our approach, it can
be noticed that under the presence of moving objects, the Cauchy M-estimator provides results
that are 25% more accurate than those obtained with standard quadratic minimization.

Static Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.125 0.113 0.268 0.125
Rotation (deg/s) 0.075 0.064 0.216 0.043

Moving Objects Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.636 0.879 3.548 0.412
Rotation (deg/s) 0.267 0.321 1.091 0.082

Table 3.10: Translational and rotational deviations per second: robustness against noise and moving objects.

3.F.8 Conclusions

We have presented a novel approach named RF2O to estimate the planar motion of a lidar by
imposing the range flow constraint equation on consecutive scan pairs. Various experiments have
been carried out to demonstrate the accuracy of our method, and comparisons with point-to-line
ICP, Polar Scan Matching and the standard wheel odometry have been performed in different
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scenarios and frame rates. Results show that RF2O provides the most accurate estimates for both
translations and rotations, except for non-static environments, where PL-ICP is slightly superior.
With a reported runtime of barely 1 millisecond, planar motion can be easily estimated with
almost no computational cost, which makes this method attractive for many robotic applications
that are computationally demanding and require real-time performance. For future work, we
plan to analyze the effect of small deviations from planar motion, which might be useful if this
method is applied to estimate the motion of a quadcopter or a vehicle with strong dynamics.
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Robust Planar Odometry based on
Symmetric Range Flow and Multi-Scan Alignment

Mariano Jaimez, Javier G. Monroy, Manuel Lopez-Antequera,
Daniel Cremers and Javier Gonzalez-Jimenez

Abstract
This paper presents a dense method for estimating planar motion with a laser scanner. Starting from
a symmetric representation of geometric consistency between scans, we derive a precise range flow
constraint and express the motion of the scan observations as a function of the rigid motion of the
scanner. In contrast to existing techniques, which align the incoming scan with either the previous
one or the last selected keyscan, we propose a combined and efficient formulation to jointly align all
these three scans at every iteration. This new formulation preserves the advantages of keyscan-based
strategies but is more robust against suboptimal selection of keyscans and the presence of moving
objects.
An extensive evaluation of our method is presented with simulated and real data in both static and
dynamic environments. Results show that our approach is one order ofmagnitude faster and significantly
more accurate than existing methods in all the conducted experiments. With a runtime of about
one millisecond, it is suitable for those robotic applications that require planar odometry with low
computational cost. The code is available online as a ROS package.

3.G.1 Introduction

Motion estimation is one of themajor challenges in robotics and computer vision. Virtually every
robot, be it a drone, a humanoid or a manipulator, needs to accurately keep track of its position
to perform an autonomous task. Although different technologies exist for estimating the motion
of a robot (e.g. GPS systems, inertial sensors or encoders), visual odometry is arguably the most
flexible and powerful solution since it canworkwith different input data (photometric/geometric)
and can be adapted to almost any type of robot.

Among the many robotic platforms used nowadays, a significant percentage of them operate
in structured environments and move on a planar surface. Examples of those are:

• Service robots working in hospitals, museums, hotels or airports [68].

• Telepresence robots that operate in domestic environments to monitor and assist old or
disabled people [69, 70].

• Autonomous mobile robots employed in warehouses for sorting and delivery of goods [71].

• Modern vacuum cleaners like the iRobot Roomba or the Dyson 360 Eye.

To perceive their surroundings, these robots are often equipped with one or more laser
scanners that allow them to survey the environment in a plane parallel to the floor. The data
provided by these sensors is suitable for this kind of applications since it can be simultaneously
exploited for obstacle avoidance, odometry, localization and 2D mapping.

In this paper we address the problem of estimating planar motion with a radial laser scanner.
Our proposal takes inspiration from the latest research on dense and direct 3D visual odometry
[48, 47, 3, 66] and expresses the odometry as an energy minimization problem where the scans
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are aligned as piecewise continuous functions without searching for explicit correspondences.
Despite the extensive body of literature in the field and the remarkable results achieved thus far,
we demonstrate that this formulation provides more accurate results than existing techniques.
Moreover, these results are achieved with a lower runtime (around 1 millisecond), which renders
ourmethod suitable for those robotic systems or applications that are computationally demanding
and require real-time operation.

Our approach, which we will refer to as Symmetric Range Flow-based Odometry (SRF-
Odometry), extends and improves the algorithm presented in [72]. That algorithm is based
on the range flow constraint equation and formulates the motion of every observed point as a
function of the velocity of the sensor, assuming that the environment is static. In this paper we
build upon the same idea, and introduce the following contributions:

• A new symmetric formulation of geometric consistency between scans. To the best of our
knowledge, this technique has been applied for the estimation of optical flow but never in the
context of visual odometry.

• A new multi-scan formulation which combines the two standard techniques in visual odom-
etry: alignment of consecutive scans/images and alignment against keyscan/keyframe.

• A procedure for modeling the accuracy of our algorithm as a function of the translation and
rotation between the registered scans. Based on this model, we propose a new criterion for
selecting keyscans by imposing thresholds on themaximum acceptable/desirable translational
and rotational errors.

• Faster and more accurate estimates than state-of-the-art techniques, both in static environ-
ments or in the presence of moving objects.

We present a thorough evaluation of our method with both synthetic and real data.We analyze
how each of its main components contribute to its overall performance and test several versions
of it (e.g. two-scan vs multi-scan alignment or robust optimization vs non-robust optimization).
Furthermore, we compare our methodwith four state-of-the-art techniques [5, 6, 73, 74]. Besides
analyzing the results presented herein, we encourage the reader to watch the demonstration video
and to test the algorithm by themselves. Both the video and the code, which is available as a
ROS package, can be found at:

http://mapir.isa.uma.es/work/SRF-Odometry

3.G.2 Related Work

Over the last few decades, the scan matching problem has been extensively studied in robotics
and computer vision. Although it can be regarded as a general problem, many of the proposed
techniques focus on specific applications like localization [59] [60], SLAM [61] or odometry
[30]. Since our interest is in the latter, this section will primarily consider those methods which
have been particularly designed for (or are commonly applied to) the estimation of planar motion
from a sequence of range scans.
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In the context of 2D visual odometry, the majority of the existing approaches are based
on a dense formulation, i.e., they use all the observations in the scans to align them. Sparse
formulations based on interest points like FLIRT [75] or FALCO [76] have been employed for
global pose optimization, localization and loop closure, but are rarely used for odometry.

Traditionally, ICP [39] or a number of its variants have been applied to solve the registration
problem between consecutive scans. The Iterative Dual Correspondence method (IDC) [77]
combines two different criteria to find correspondences between the scans: the standard closest-
point rule and a new closest-range rule which leads to faster convergence thanks to a better
estimation of rotations. Metric-based ICP (MB-ICP) [78] includes a new weighted angular term
in its distance metric to improve the search for correspondences under rotation. In [78], MB-ICP
obtains very accurate trajectory estimates when the robot wheel odometry provides the algorithm
with an initial guess, but no information is provided about how these results would change if no
external inputs (wheel odometry) were used. A different approach was proposed by Censi [5],
where a point-to-line metric was used instead of the original point-to-point metric of ICP.
Furthermore, the author presented an implementation which was an order of magnitude faster
than existing ICP variants, while being more precise and efficient than the previous point-to-
segment work in [4]. More recently, Generalized-ICP [2] improved the performance of existing
ICP versions by including the covariance of both scans in the minimization problem (instead of
using only that of the reference scan). However, Generalized-ICP has mainly been used for the
registration of 3D point clouds and its performance in aligning 2D range scans does not seem
to have been reported yet. In general, for this family of methods, accuracy depends on each
particular version and implementation, yet they all share the same weakness: they tend to be
computationally expensive.

Alternatively, other methods were specifically designed to solve the 2D scan matching prob-
lem:

• Gonzalez &Gutierrez [30] formulated the “velocity constraint equation", an adaptation of the
optical flow constraint for range scans, and proposed estimating the lidar motion by imposing
this restriction for every observation in the scans. However, their method was only tested on
simple simulated scenarios and provided modest results.

• Remarkable results were presented by Biber and Strasser in [73]. Their method, named the
Normal Distributions Transform (NDT), models the probability of finding a point at a certain
position by using a collection of normal distributions to generate a piecewise continuous
representation of the 2D plane. This model is created for the reference scan, and is used
to evaluate the second scan by projecting it according to the estimated transformation. In
this way, the NDT defines and minimizes a cost function which does not include the typical
(and slow) search for correspondences. A similar idea based on the Distance Transform was
presented by Fitzgibbon [79] to register 2D and 3D point sets and, more recently, a Signed
Distance Function-based formulation was proposed by Fossel et al. [74] to solve the 2D
SLAM problem for laser scanners.

• Censi et al. [80] proposed a newmethod based on the Hough Transform (HT) that permits the
combining of the advantages of dense and feature-based scan matching algorithms. Their HT
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parameter space is the one associated with lines, and therefore the best results are achieved
when the algorithm is tested in polygonal environments. Neither comparisons with other
methods nor information about its runtime are provided.

• Diosi & Kleeman presented the Polar Scan Matching approach [62], where the translation
and rotation between two scans are alternately estimated until convergence. In contrast to
ICP, this method avoids the need to search for correspondences by simply matching points
with the same bearing, resulting in better computational performance. This approach was
subsequently extended and further evaluated in [6].

• The probabilistic method proposed by Olson [42] attempts to find the rigid transformation
that maximizes the probability of obtaining the latest scan given the previous one. Additional
information is used (control inputs or wheel odometry) to improve the method convergence
and two different implementations, GPU andmulti-resolution CPU, are presented. A thorough
evaluation of its computational performance is included but, surprisingly, no results for the
method’s accuracy are presented.

More recently, other approaches have built upon the aforementioned works. This is the
case for [63] and [64], which fuse laser odometry (Olson’s laser odometry [42] and point-to-
line ICP [5], respectively) with stereo vision to perform autonomous navigation with UAVs.
Furthermore, the work of Pomerleau et al. [65] presents a fast implementation and a thorough
evaluation of some ICP variants using real-world 2D and 3D data sets.

3.G.3 Range Flow Constraint for Visual Odometry

In this section we derive a simple and linear constraint for the motion of the sensor by imposing
geometric consistency between two consecutive scans. This constraint builds upon two main as-
sumptions: the environment is static and the translation and rotation of the sensor are sufficiently
small.

Let r, θ be the polar coordinates of a point with respect to the laser scanner and R1, R2 :

Ω → R+ be two radial scans taken at consecutive instants of time t1 and t2, respectively. For
simplicity, we assume that Ω is a continuous domain within the field of view (FV ) of the laser
and is given directly in angular coordinates, i.e., Ω := [−FV /2, FV /2]. During the time interval
[t1, t2], the apparent motion ∆r,∆θ of any point of the environment with respect to the laser
scanner must be consistent with the observations of the scans:

∆r = R2(θ + ∆θ)−R1(θ) . (3.79)

This constraint is illustrated in Figure 3.11 and is generally valid except in the case of occlusions.
Often, this expression is linearized to obtain the so-called "range flow constraint" [29, 72]:

∆r = R2(θ) +
dR2

dθ

∣∣∣∣
θ

∆θ −R1(θ) +O(∆θ2) , (3.80)

O(∆θ2) =
1

2

d2R2

dθ2
∆θ2 +O(∆θ3), (3.81)
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Figure 3.11: Left: Standard formulation of geometric consistency between two scans R1 and R2 for a given
point observed initially at θ. Right: Symmetric formulation of geometric consistency applied for the same point
considered at the left scheme. The value of θ differs between the schemes because in the symmetric formulation θ
represents the average of the initial and the final angles at which the point is observed.

which is a geometric version of the well-known optical flow constraint if the second and higher
order terms are neglected. This linearization (3.80) is also a particular 2D case of the general
dynamic model presented in [81] for a laser rangefinder.

We propose using a slightly modified version of (3.80), where the motion is equidistributed
between the two scans:

∆r = R2(θ + ∆θ/2)−R1(θ −∆θ/2) . (3.82)

This alternative representation (Fig. 3.11) has already been used in computer vision to estimate
an inherently symmetric optical flow [82]. For us, the major advantage of this formulation is that
its linearization is more precise than (3.80):

∆r = R2(θ)−R1(θ) +

(
dR2

dθ

∣∣∣∣
θ

+
dR1

dθ

∣∣∣∣
θ

)
∆θ

2
+O

(
∆θ2

4

)
, (3.83)

O

(
∆θ2

4

)
=

∆θ2

8

(
d2R2

dθ2

∣∣∣∣
θ

− d2R1

dθ2

∣∣∣∣
θ

)
+O

(
∆θ3

8

)
. (3.84)

As can be seen, this symmetric formulation requires more information than the standard range
flow constraint (it requires the gradients of both scans) but it has a smaller linearization error
for any given ∆θ.

Next we need to express the motion in Cartesian coordinates. The transformation from polar
to Cartesian coordinates (x, y) is exact and linear if applied to instant velocities:

ṙ = ẋ cos θ + ẏ sin θ , (3.85)

r θ̇ = ẏ cos θ − ẋ sin θ . (3.86)
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To formulate (3.85) and (3.86) in terms of increments, they must be integrated between t1 and
t2. By assuming that the displacements are small, we can approximate those integrals by the
following linear terms:

∆r =

t2∫
t1

ẋ cos θ + ẏ sin θ dt ≈ ∆x cos θ + ∆y sin θ , (3.87)

∆θ =

t2∫
t1

ẏ cos θ − ẋ sin θ

r
dt ≈ ∆y cos θ −∆x sin θ

r̄
, (3.88)

with r̄ = (R1(θ) +R2(θ))/2 being the best constant approximation of r between t1 and t2.
On the other hand, we need to impose the constraint that the relative motion between the

environment and the sensor is only caused by the motion of the sensor itself (the environment
is static). This motion is encoded by the velocity vector ξs = (ξsx, ξ

s
y, ξ

s
ω), an element of the Lie

algebra associated with 2D rigid transformations (i.e. ξs ∈ se(2)). The motion of every point of
the environment can thus be expressed as a function of ξs according to the kinematics of a rigid
body: (

∆x

∆y

)
=

t2∫
t1

(
ẋ

ẏ

)
dt ≈

(
−ξsx + ȳ ξsω
−ξsy − x̄ ξsω

)
, (3.89)

where the average coordinates are computed as(
x̄

ȳ

)
=
R1(θ) +R2(θ)

2

(
cos θ

sin θ

)
. (3.90)

Finally, plugging (3.87), (3.88) and (3.89) into the range flow (3.83) and discarding the higher
order terms, we end up with a linear constraint for the motion of the sensor:(

cos θ +
R̄θ sin θ

r

)
ξsx +

(
sin θ − R̄θ cos θ

r̄

)
ξsy

+
(
x̄ sin θ − ȳ cos θ − R̄θ

)
ξsω +R2(θ)−R1(θ) = 0 , (3.91)

where
R̄θ =

1

2

(
dR2

dθ

∣∣∣∣
θ

+
dR1

dθ

∣∣∣∣
θ

)
(3.92)

is the average derivative of the two consecutive scans. Therefore, the motion of the sensor ξs

can be obtained by matching consecutive scans (which should be differentiable or piece-wise
differentiable) without searching for and aligning explicit correspondences.

As previously stated, this derivation is valid under the assumption of small motions, i.e. those
for which the linearization (3.83) holds. Although there is no sharp transition between "small"
and "large" motions, we generally consider that the motion is small if ∆θ is always less than
or equal to the local neighbourhood used to approximate the range gradients R̄θ. Commonly,
these gradients are approximated with a centred formula using the values of the following and
previous observations and, therefore, the angular increment ∆θ should be less than or equal to
the angle between contiguous observations in the scan.
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3.G.4 Optimization Problem

Theoretically, three independent constraints would suffice to obtain the lidar motion but in
practice this is unfeasible because (3.91) tends to be inexact due to the noise of themeasurements,
the errors made by the linear approximation (3.83) or the presence of moving objects (non-static
environment). Therefore,we use a dense formulation inwhich all the scan observations contribute
to the motion estimate.

The geometric residual ρ(ξ, θ) is defined as the evaluation of the range flow constraint (3.91)
for a given motion ξ at a given angle θ:

ρ(ξ, θ) = R2(θ)−R1(θ) +
(
x̄ sin θ − ȳ cos θ − R̄θ

)
ξω

+

(
cos θ +

R̄θ sin θ

r̄

)
ξx +

(
sin θ − R̄θ cos θ

r̄

)
ξy. (3.93)

Since not every arbitrary angle θ can be evaluated, rather only those sampled by the laser scanner,
we simplify notation and use ρn(ξ) to refer to the residual associated with the n-th observation
of the scans. To obtain an accurate motion estimate, all the geometric residuals are minimized
within a robust cost function:

ξM = arg min
ξ

N∑
n=1

F
(
ρn(ξ)

)
, (3.94)

F (ρ) =


ρ2

2

(
1− ρ2

2c2

)
|ρ| ≤ c

c2

4
|ρ| > c

, (3.95)

N being the number of points in the scan. The function F (ρ) is a smooth version of a truncated
parabola (Figure 3.12), and c is an adjustable parameter. F (ρ) is continuous and differentiable
everywhere, and becomes flat for residuals higher than c, which represents an effective and
automatic way to downweight (or even discard) outliers. The parameter c is computed as a ratio
of the median absolute deviation (MAD) of the residuals (see §3.G.8).

𝜌

𝐹(𝜌)

𝑐−𝑐

Figure 3.12: Robust penalty function employed to minimize the geometric residuals.
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Pre-Weighting Strategy

There are some factors that can render (3.91) inaccurate, mainly the unfulfillment of the rigidity
hypothesis (3.89) and deviations from the linear approximation made in (3.83). Although the
robust functionF (ρ) can alleviate their effect on the overall motion estimate, it does not eliminate
it completely. The presence of moving objects is hard to detect before solving the system and we
therefore rely on the robust function F (ρ) to downweight them during the minimization process.
On the other hand, deviations from the linear approximation adopted in (3.83) can be detected
beforehand, which helps to accelerate convergence in (3.94) and also leads to more accurate
results. For this purpose, we propose a pre-weighting strategy to downweight the residuals of
those observations where the range function (3.82) is highly nonlinear or even non-differentiable.
We call it “pre-weighting" because it is applied before the minimization problem (3.94) is solved.

In order to quantify the error associated with the linearization of (3.83), we evaluate the
second order terms (3.84) of the Taylor series. Moreover, it is important to identify those regions
of the scans where the range function is not only nonlinear but also non-differentiable. These
regions are mainly the edges of the various observed objects, and are typically characterized by
very high values of the first order derivatives, both the angular R̄θ and the temporalRt = R2−R1.
To penalize these two effects, nonlinearities and discontinuities, we define the following pre-
weighting function:

w =
1

σ2
s +KD

(
R̄2
θ +R2

t

)
+K2D R̄2

θθ

, (3.96)

where R̄θθ is the averaged second-order derivative of R1 and R2. The parameters KD, K2D

quantify the relative importance of first and second order derivatives. Furthermore, we add an
additional term σ2

s to model the noise of the measurements. In this paper we employ a simple
constant value for σs, but more elaborate and precise noise models could be used instead.

In summary, to estimate the sensormotionwe initially compute a pre-weighted set of residuals

ρwn (ξ) = wn ρn(ξ) n ∈ {1, 2...N} (3.97)

which are subsequently minimized according to (3.94),(3.95).

3.G.5 Multi-Scan Formulation

Pure odometry always estimates motion between consecutive sets of input data, irrespective
of whether these data are wheel rotations, RGB images or range scans. However, this purely
incremental strategy has onemajor drawback in visual odometry: every new increment introduces
some error in the pose estimate, even if the real motion is very small or null. This deficiency is
commonly solved by periodically selecting a particular scan of the sequence, named as “reference
scan" or “keyscan", and aligning every new scan against it. This keyscan acts as a local anchor,
helping to reduce the drift of the estimated trajectory. When the incoming scans get too far from
the selected keyscan, in the sense that there is not much overlap between the two, a new keyscan
must be set and the process continues. A keyscan-based formulation is typically more accurate
than purely incremental estimation, but strongly depends on the criterion used to introduce new
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Figure 3.13: Left: Schematic representation of our three-scan formulation, with the last scan Ri shown in green,
the previous one Rj in blue and the keyscan Rk in orange. Right: Diagram of the proposed optimization problem.
First, the keyscan Rk needs to be warped according to Tkj and, afterwards, both Rwk and Rj are aligned with Ri.
Notice that the warping for Rwk was performed by keeping the most distant points of Rk after projection, which are
likely to represent the structure of the environment and will also provide additional information when compared to
Rj .

keyscans. This criterion must prevent the inserting of redundant keyscans and, above all, it must
guarantee that the latest scan is always close enough to the keyscan so that they can be aligned.

In this paper we propose a hybrid formulation in which the latest scan is aligned simultane-
ously against the previous scan and against a keyscan (Figure 3.13). This strategy preserves the
advantages of a keyscan-based approach while at the same time reducing the risks originating
from inappropriate selection of keyscans. Since three different scans are now fed to the algo-
rithm, the detrimental effects of the sensor noise and the presence of moving objects are also
alleviated.

Let Tki, Tkj ∈ SE(2) be the homogeneous transformations between the scans Ri and Rj

(j = i − 1) and the last keyscan Rk respectively, and let Tji ∈ SE(2) be the incremental
transformation between Ri and Rj (see Fig. 3.13). Since these transformations form a loop, the
following constraint must be fulfilled:

Tkj Tji = Tki , (3.98)

where Tkj is assumed to be known from the previous estimation. Therefore, we can build an
optimization problem for jointly aligning the scans Rk, Rj with Ri, subject to (3.98). There are
two possible ways of formulating this problem:

• Optimizing for the two sets of unknowns explicitly , i.e., for the vectors ξji and ξki associated
with Tji and Tki.

• Warping Rk towards Rj according to the already known transformation Tkj and solving for
Tji in both cases.
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The second option is more efficient because it involves less unknowns (we only need to estimate
ξij) and implicitly imposes the constraint (3.98) through the warping of Rk towards Rj . Thus,
the optimization problem associated with the proposed multi-scan formulation is:

ξM = arg min
ξ

N∑
n=1

F (wjin ρ
ji
n (ξ)) + F (wkin ρ

ki
n (ξ)) . (3.99)

3.G.6 Solver

Our motion estimation problem is nonlinear and non-convex because both the original constraint
of geometric consistency (3.82) and the robust function F (ρ) (3.95) are nonlinear and non-
convex. Where the constraint of geometric consistency is concerned, this limitation is solved by
deriving the range flow equation (3.83) and defining the geometric residuals as linear functions
of the motion of the lidar. However, the resulting linear constraints are only valid for very small
displacements and/or rotations and would fail to estimate real motions in practice. This issue has
already been addressed in the literature and can be solved by formulating the motion estimation
problem within a coarse-to-fine scheme. In a coarse-to-fine scheme, two pyramids of scans (or
typically images) are built and aligned, starting from the coarsest level, where the linearization
(3.83) holds for larger displacements, and then following this by subsequent refinements in levels
with increasing resolutions. Thus, each level incrementally improves the alignment and leaves
“less motion" to estimate in the remaining (and finer) levels. More details about coarse-to-fine
strategies and warping can be found in [72, 26].

At each level of the coarse-to-fine scheme, the optimization problem (3.99) is solved using
Iteratively Reweighted Least Squares (IRLS), where the weights associated with the smooth
truncated parabola F (ρ) are:

W (ρ) =

{
1− ρ2

c2
|ρ| ≤ c

0 |ρ| > c
, (3.100)

Since the robust function F (ρ) is non-convex, we have also contemplated and tested other
alternatives for optimizing (3.99), like the lifting strategy proposed in [83], but they do not
improve results if compared to IRLS and involve more complicated and slower implementations.

Lastly, for the coarser levels of the coarse-to-fine scheme, it can occur that the motion to be
estimated is actually outside the range of motions for which the linearization (3.83) holds. In
this case, two different outcomes are possible:

• The real motion is much larger than the valid range for the linearization, and therefore the
solver will provide a completely wrong solution.

• The real motion is out of but close to the valid range for the linearization, and therefore the
solver will provide a solution which is not precise but comes close to the real motion.

The big failure of the first case cannot be avoided: the scans are simply too far apart and the
algorithm will fail. Nevertheless, in the second case the solution can be used to warp one of the
two scans towards the other, creating a new configuration in which the remaining motion (to be
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estimated) is smaller and, hence, can be obtained more precisely by re-running the algorithm.
This process of estimating motion and warping scans can be performed iteratively as long as the
last estimated motion is larger than a given threshold ε, improving the basin of convergence of
our method. The whole estimation process is summarized in Algorithm 2, where the operator⊕
represents

ξa ⊕ ξb = log
(

exp
(
ξ̂a

)
· exp

(
ξ̂b

))
(3.101)

and the ξ̂ is the skew-symmetric matrix associated to ξ.

Algorithm 2Motion estimation in a coarse-to-fine scheme
Build Scan Pyramids
Initialize estimated motion: ξS = 0

for l = 1 : number of levels do
Initialize motion in this level: ξSl = 0

form = 1 : max iterations do
Compute ξMl solving (3.99) with IRLS
Update ξSl = ξSl ⊕ ξMl
Warp Ri → Rj according to ξSl
if ‖ξMl ‖ < ε then break
end if

end for
Update ξS = ξS ⊕ ξSl
Warp Ri → Rj according to ξS

end for

3.G.7 Keyscan Selection

As previously mentioned, a keyscan-based formulation provides more accurate trajectory es-
timates than consecutive scan alignment, but requires a suitable keyscan selection criterion.
Different strategies have been proposed to introduce new keyscans (or keyframes) when a cer-
tain magnitude exceeds a manually set threshold. Typically, this threshold is applied to the
estimated angular and linear displacement [84], the residual after image alignment [85] or the
entropy of the estimation [86]. The main problem with these approaches is that the selection
of thresholds is not directly related to the final performance of the algorithm and, hence, the
pose estimation error is not constrained to a well defined range. Consequently, these approaches
involve tedious trial-and-error stages to tune their thresholds until the desired performance is
achieved.

In this work we propose to model the pose estimation error of our algorithm as a function
of the translation and rotation between the registered scans. Using this model, thresholds for
the keyscan selection can be set directly over the error domain such that a maximum rotation
and/or translation error is not surpassed. These thresholds define a 2D working region over the
translation and rotation domains, which will be used during operation to trigger the selection of
new keyscans.
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Model Samples FOV (deg) Range (m)
Hokuyo UTM-30LX 1080 270 30
SICK LMS-500 361 180 80

Table 3.11: Rangefinders used for modeling the error of the algorithm.

When modeling the error, the specifications of the laser scanner (field of view, maximum
range and number of points in the scan) are the main source of performance variability. This
means that it is not possible to obtain a single and universal error model, but instead the model
must be tuned according to the characteristics of the scanner employed. In this section we
obtain the error models for two different laser rangefinders: a Hokuyo UTM-30LX and a SICK
LMS-500 (see Table 3.11), used in the simulated and real experiments presented in §3.G.9.

We rely on simulated experiments with precise ground truth to generate sufficient and varied
samples to model the estimation error. The data is generated by simulating a laser scanner in a
certain environment and applying random displacements and rotations to it in the range of [0, 1]

metres and [0, 1] radians. For these simulations we make use of three publicly available sce-
narios/maps: Belgioioso Castle and Intel Research Lab from the Robotics Data Set Repository
(Radish) [87], and the Sarmis domestic environment from Robot@home dataset [88]. Further-
more, Gaussian noise with σ ranging from 5 mm to 25 mm is added to the laser measurements.
Overall, 60,000 odometry estimates (i.e 20,000 error samples per scenario) are employed to
model the error.

After collecting the samples, we estimate the translational eT and rotational eR errors at any
location (xT , xR) of the translation-rotation plane by calculating a weighted mean of the errors
obtained in simulation using an anisotropic Gaussian windowing function with σR = 0.1 rad
and σT = 0.12 m:

eT (xT , xR) =

∑S
s=1 λs e

T
s∑S

s=1 λs
, (3.102)

eR(xT , xR) =

∑S
s=1 λs e

R
s∑S

s=1 λs
, (3.103)

λs = exp

(
−(xT − xTs )2

2σ2
T

− (xR − xRs )2

2σ2
R

)
(3.104)

where S is the total number of samples. The resulting surfaces are shown in Figure 3.14. As
expected, when the translation and/or rotation between consecutive scans increases, so does the
average error in the pose estimation. Comparing the error models of the two laser scanners,
we can see that they both have a similar shape, but the error values are higher for the SICK
LMS-500. This is to be expected because the SICK rangefinder has a smaller field of view and
fewer points per scan than the Hokuyo scanner.

Making use of these models, we set thresholds directly for the translational and rotational
errors to restrict them to an acceptable range. Specifically, in this work we set these thresholds
to 10 mm and 0.1 degrees, respectively. By intersecting them with the surfaces of the error
models, we obtain the final working regions shown in Figure 3.14. It can be seen that the shapes
of the regions are similar but their scales differ. The scanner with larger field of view and higher
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Error Models Working regions

Figure 3.14: Left: Translation and rotation error models of the presented odometry algorithm when employing:
(top) SICK LMS-500, and (bottom) Hokuyo UTM-30LX. Right: Working regions obtained from the error models
for two different laser rangefinders, setting a maximum translation error of 10 mm, and a maximum rotation error
of 0.1 degrees. If an odometry estimate falls outside the working region, a keyscan update is triggered.

number of points offers a larger working region, indicating that scans carrying more information
can work with sparser keyscans while keeping the pose error within the same bounds. Once the
working region has been calculated, we fit a fourth-degree polynomial to its boundary, which
will be evaluated at each iteration to determine whether the system is inside or outside of the
working region. If the estimated pose with respect to the current keyscan falls within the working
region, we trust the odometry estimation and keep the current keyscan while otherwise we trigger
a keyscan update.

3.G.8 Implementation Details

In this sectionwe describe important details of our algorithmwhich are not a part of its theoretical
core but have an impact on its performance. We also set the values of the parameters introduced
throughout the paper and explain how they affect the motion estimates.

Gradient Approximation

Typically, a fixed discrete formula is employed to approximate scan or image gradients. In the
case of range data, this strategy leads to very high values of the gradients at the object borders,
which do not represent the real gradients of the observed surface(s). As an alternative, we make
use of an adaptive formula that weights forward (R+

θ ) and backward (R
−
θ ) derivatives in the scan

with the 2D distances between contiguous observations (points):

Rθ(n) =
d(n+ 1)R−θ (n) + d(n)R+

θ (n)

d(n+ 1) + d(n)
, (3.105)
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d(n) = ‖((x(n)− x(n− 1), y(n)− y(n− 1))‖ ,

where n refers to a specific index in the scan. Thus, the closest neighbour always contributes
more to the gradient computation while very distant points barely affect it. If both neighbours
are approximately equidistant, the presented formula is equivalent to a centred finite-difference
approximation.

Motion Filter

The environments in which the robot operates sometimes includes rooms or areas where the
sensor motion cannot be fully recovered, e.g. a long corridor. This is the so-called aperture
problem: some components of the motion are undetermined and the solver can only provide an
arbitrary solution for them. In order to mitigate this problem, we apply a low-pass filter in the
eigenspace of the velocity ξ and use the previous estimate to constrain the underdetermined
motion. First, we obtain the covariance matrix Σ ∈ R3×3 associated with the IRLS solution of
(3.99). Second, the eigenvalues of Σ are computed and analyzed to detect which components
of the motion are undetermined and which are perfectly constrained. In eigenvector space, the
velocity ξMi provided by (3.99) is weighted with that of the previous time interval ξi−1 to obtain
the new filtered velocity ξi:

[(1 + kl)I + keE] ξi = ξMi + (klI + keE) ξi−1 , (3.106)

where E is a diagonal matrix containing the eigenvalues and kl, ke are parameters of the filter.
Actually, kl imposes a constant weighting between the solution from the solver and the previous
estimate while ke defines how the eigenvalues affect the final estimate. These parameters are set
to the following values:

kl = 0.02 e−(l−1), ke = 5× 103e−(l−1) (3.107)

where l is the pyramid level that ranges from 1 (coarsest) to the number of levels considered.
These values provide good results in all the experiments presented in this paper but they have
been obtained heuristically. As a general rule, these values could be decreased if the environment
is known to be “geometrically well-constrained", and could be increased in the opposite case.
Please refer to [66] for a more detailed explanation on how this filter is applied in a coarse-to-fine
scheme.

Parameters for the Robust Optimization

There are several parameters that directly affect the optimization problem (3.99). On the one
hand, the pre-weighting function w depends on two parameters (KD and K2D) and the sensor
noise model σs. We do not present a formal procedure for tuning KD and K2D but rather
use the values that empirically provided us with the most accurate results. Specifically, we set
KD = 0.01 andK2D = 2×10−4. In general, higher values ofKD andK2D lead to higher weights
for points close to the sensor (whose coordinates and derivatives tend to bemore precise) but will
excessively downweight distant points which are sometimes necessary to constrain the estimated
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motion. For the sensor noise we set σs = 0.02 m in all cases, which is a representative average
value of the noise found in common laser scanners used in robotics. On the other hand, the
robust penalty function F (ρ) (3.95) includes the parameter c which marks the limit between
inliers and outliers (residuals higher than c lie on the flat area of F (ρ) and therefore do not
contribute during the optimization process). We use the median absolute deviation (MAD) of
the residuals to tune c and, more specifically, we set c = 4MAD (ρn). This is a high threshold
for outlier rejection, in the sense that it keeps most of the observations as inliers and only those
with noticeably high residuals will become outliers (e.g. moving objects).

3.G.9 Experiments

We present a thorough evaluation of our method with simulated and real data in static and
dynamic environments. First, we analyze the contribution of each component of our algorithm
to its overall performance. We compare different versions of it: with or without pre-weighting
(3.97), robust or non-robust minimization, symmetric versus nonsymmetric formulation, and
multi-scan versus scan-to-scan alignment. Second, our method is quantitatively and qualitatively
compared with some of the most prominent algorithms on scan matching.

For the synthetic experiments we use the environments presented in Figure 3.15 and simulate
a Hokuyo UTM-30LX laser scanner (see Table 3.11), including Gaussian noise in the range
measurements of σ = 1 cm. Note that to avoid any bias in these experiments related to the
learned error model presented in §3.G.7, we employ different testing scenarios here.

In both the real and simulated experiments, we do not make use of the robot wheel odometry
as an initial guess for the motion estimate. Unlike other approaches, which assume that a good
initial estimate is always provided, we consider that the scans are the only available inputs for
the algorithms.

All the experiments presented here have been run under Ubuntu 16.04 using a single core of
an Intel(R) Core(TM) i7-2600K at 3.40GHz.

A) Comparative Analysis of Each Component of the Algorithm

In this section, several versions of our algorithm are evaluated. We simulate a robot equipped
with a laser scanner navigating randomly around the free space of themaps shown in Figure 3.15.

(B)

(C)

(D)
(A)

20 m

Figure 3.15: Occupancy gridmaps of the environments used in the experiments (simulations). (A) Synthetic map
based on curved lines, (B) real map of an office environment, (C) synthetic polygonal map and (D) dynamic
environment with additional mobile robots to test robustness to moving objects.
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Traj. Translational RMSE (cm/s) Rotational RMSE (deg/s) Overall drift (m)
Map length (m) SQ SQ+PW RF RF+PW SQ SQ+PW RF RF+PW SQ SQ+PW RF RF+PW
A 148.3 86.87 0.688 0.396 0.298 7.147 0.096 0.096 0.026 12.98 0.799 0.277 0.225
B 137.5 617.0 1.212 0.596 0.505 6.915 0.105 0.069 0.044 483.4 0.862 0.156 0.164
C 144.9 193.4 0.759 0.436 0.225 15.06 0.129 0.104 0.023 42.35 0.201 0.264 0.084

Table 3.12: Effect of pre-weighting and robust minimization - Accuracy measured as relative and overall drift.

We use simulations instead of real data because they provide a perfect ground truth, which is
necessary for quantitative comparisons. The maximum translational and rotational velocities of
the robot are set to 0.5 m/s and 45 degrees/s respectively.

Pre-Weighting and Robust Minimization: We assess the usefulness of the pre-weighting strategy
(3.97) and the robust minimization of the residuals (3.94) within the overall motion estimation
process. To this end, we compare four basic versions of our method which minimize:

• Squared residuals |ρ(ξ)|2 without pre-weighting (SQ).

• Squared residuals |ρw(ξ)|2 with pre-weighting (SQ+PW).

• Robust residuals F (ρ(ξ)) without pre-weighting (RF).

• Robust residuals F (ρw(ξ)) with pre-weighting (RF+PW).

In these experiments, the motion is estimated by aligning consecutive scans (we do not evaluate
the multi-scan formulation yet). We simulate a robot navigating for 10 minutes in the three
environments A-C shown in Figure 3.15. The scanning frequency is set to 5 Hz. The estimation
errors are measured as the root mean square (RMSE) translational and rotational deviations
per second, as described in [49]. Results are presented in Table 3.12, where it can be seen that
all versions except SQ provide fairly good estimates with overall translational drifts always far
below 1% of the distance travelled by the robot. Robust estimation without pre-weights is more
accurate than non-robust estimation with pre-weights, but it is the combination of both strategies
which leads to the best results. Moreover, the associated runtimes (Table 3.13) show that the
pre-weighting actually accelerates convergence of the solver when combined with the robust
function F (ρ).

SQ SQ+PW RF RF+PW
0.629 0.645 1.254 1.139

Table 3.13: Runtime (ms) of the Simplified Versions of Our Algorithm.

Symmetric vs Non-symmetric Formulation: In this section we compare two different versions
of our method: one based on symmetric range flow (3.83) (SRF) as described in §3.G.3, and
another derived from the standard non-symmetric range flow constraint (3.80) (NSRF). For this
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Translational Rotational Overall
Map Traj. length (m) RMSE (cm/s) RMSE (deg/s) drift (m)

SRF NSRF SRF NSRF SRF NSRF
A (5Hz) 158.0 0.314 0.323 0.025 0.025 0.11 0.01
B (5Hz) 122.8 0.517 0.537 0.043 0.048 0.33 0.29
C (5Hz) 163.9 0.227 0.231 0.025 0.025 0.21 0.23
A (2Hz) 374.6 0.233 0.325 0.016 0.274 0.15 2.27
B (2Hz) 376.9 0.704 1.433 0.736 1.293 2.55 3.19
C (2Hz) 393.1 0.191 0.372 0.017 0.219 0.27 2.08

Table 3.14: Symmetric vs nonsymmetric formulation - Accuracy measured as relative and overall drift.

and the rest of the experiments presented below we minimize the geometric residuals using pre-
weighting and the robust penalty function F (ρ). The methodology is similar to that described
in Section 3.G.9 but in this case two different scanning frequencies are employed: 2Hz and 5Hz.

Results are shown in Table 3.14. It can be seen that differences between the two methods
are negligible when the scanning frequency is 5Hz, but they become significant for 2Hz. These
results are consistent with the theory presented in §3.G.3. When the scanning frequency is 5Hz
consecutive scans are close to each other and hence both linear approximations (3.80) and (3.83)
are valid and provide accurate results. However, the alignment of consecutive scans taken at 2Hz
involves estimating larger translations and rotations for which the non-symmetric linearization
(3.80) is not always valid.

Scan-to-Scan vs Multi-Scan Alignment: In this section we compare three different strategies
to estimate motion: consecutive-scan alignment (CA), keyscan-based alignment (KA) and the
multi-scan approach (MA) described in §3.G.5. Experiments include normal operation at 5Hz in
static and dynamic environments, the estimation of large displacements when the laser frequency
is set to 2Hz and estimation with noisy measurements. For the experiment with moving objects,
we introduce additional robots in the simulation that are permanently wandering and contradict
the assumption of a "static environment". In this case we employ a very simple synthetic map
(Figure 3.15-D) which, due to its limited number of obstacles and small dimensions, ensures
that the additional robots are visible from the laser scanner. As a consequence of the multiple
random navigations, which often lead to some robots blocking the way of the others, the distance
travelled during these tests is considerably shorter than in the remainder of the experiments.

Results are presented in Table 3.15. It can be observed that KA and MA provide equally
good results in static environments when the scanning frequency is 5Hz, while CA always being
less accurate both locally and globally. However, the multi-scan formulation is the most precise
alternative in the other (more challenging) experiments. It is slightly more precise than KA for
large displacements because it is less dependent on the right selection of keyscans. It is also
more precise when tested with very noisy scans (σ = 0.1m) since it has more information than
CA or KA alone with which to constrain the motion estimate. Lastly, it significantly outperforms
CA and KA in the presence of moving objects: the use of multiple scans implicitly facilitates the
discernment and downweighting of the moving parts of the scene. In this case, MA is locally as
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Experiment Map Trajectory Translational RMSE (cm/s) Rotational RMSE (deg/s) Overall drift (m)
length (m) CA KA MA CA KA MA CA KA MA

Standard
A 162.6 0.327 0.208 0.222 0.025 0.018 0.017 0.152 0.045 0.034
B 168.7 0.596 0.421 0.452 0.043 0.032 0.030 0.595 0.315 0.433

(5Hz) C 165.4 0.252 0.182 0.186 0.024 0.018 0.018 0.092 0.033 0.033
Large A 175.8 0.216 0.181 0.186 0.018 0.016 0.015 0.320 0.140 0.101

displacements B 139.7 0.905 0.938 0.734 0.614 0.483 0.360 1.417 1.959 2.646
(2Hz) C 152.8 0.193 0.178 0.173 0.017 0.017 0.015 0.017 0.020 0.015
noise A 172.9 1.894 1.557 1.397 0.205 0.151 0.141 0.372 0.766 0.256

σ = 0.1m B 163.8 1.922 1.613 1.555 0.095 0.096 0.078 0.502 0.416 0.302
(5Hz) C 148.9 1.803 1.542 1.418 0.203 0.149 0.139 1.386 0.590 0.496
moving D (3 obj.) 17.65 0.251 0.363 0.186 0.046 0.063 0.037 0.123 0.097 0.104
objects D (5 obj.) 16.34 0.364 0.943 0.197 0.051 0.428 0.031 0.524 0.080 0.076
(5Hz) D (7 obj.) 13.94 0.273 0.616 0.261 0.061 0.184 0.061 0.276 0.083 0.062

Table 3.15: Different scan alignment strategies - Accuracy measured as relative and overall drift.

smooth as CA (KA provides trembling estimates which lead to high relative errors) and overall
precise as KA.

B) Comparisons with Other Methods

In this section we compare our approach (SFR) with the Polar Scan Matcher (PSM) [6], the
Canonical Scan Matcher (CSM) [5], the Normal Distributions Transform (NDT) [73] and the
Signed Distance Function-based SLAM (SDF) [74]. We consider here the complete version of
SFR, i.e. that based on symmetric range flow andmulti-scan alignment. For PSM, CSM and SDF
we use the original code published by the authors, while for NDTwe employ the implementation
available in the Point Cloud Library [58]2.

Simulation experiments: We provide a general quantitative evaluation of the different methods
in simulation, where ground truth is available. Firstly, we evaluate their performances in static
environments (Figure 3.15 A-C) with two scanning frequencies (5Hz and 2Hz). Secondly, we
evaluate the accuracy of all methods in the presence of moving objects (map D in Figure 3.15),
i.e. when assumption (3.89) is violated. Thirdly we include an additional test in an outdoor
environment. The latter case is unfavourable for our approach, which performs dense alignment
without explicit correspondences and therefore requires piece-wise differentiable scans to work.
The map of the Freiburg Building dataset [87] is used for this test, which is approximately
250× 250 meters wide and contains large empty areas and many scattered points.

Results are shown in Table 3.16. Our method clearly outperforms PSM, NDT and SDF for
both small (5Hz) and large (2Hz) motions, CSM being the only close competitor with good
relative errors on average and a moderate final drift. In general, PSM and SDF perform poorly
in all sequences, requiring higher scan frequencies than the ones tested (i.e less displacement
between scans) to obtain good estimates. This is specially noticeable for SDF, which often fails
to register new scans to its internal map/representation of the environment (even at 5Hz), with
consequent errors in the odometry estimation and map updating. NDT is the third best candidate
after SRF and CSM. It estimates translations fairly well but copes poorly with large rotations

2The original code should provide better results with a lower runtime, as supported by [73], but unfortunately it is not publicly available.
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Translational RMSE (cm/s) Rotational RMSE (deg/s) Overall drift (m)
Map SRF CSM PSM NDT SDF SRF CSM PSM NDT SDF SRF CSM PSM NDT SDF

A (5Hz) 0.208 0.826 11.991 2.868 7.802 0.017 0.156 1.632 1.095 1.122 0.035 0.426 3.985 2.868 8.762
B (5Hz) 0.374 0.958 2.039 3.572 23.17 0.028 0.073 0.732 1.298 3.644 0.131 0.430 4.064 0.800 27.73
C (5Hz) 0.166 0.468 11.03 2.793 10.75 0.016 0.074 0.920 0.756 2.278 0.021 0.202 5.907 1.951 2.739
A (2Hz) 0.192 2.311 12.72 10.91 12.91 0.012 0.320 3.852 6.454 3.661 0.046 2.466 16.76 4.521 14.27
B (2Hz) 0.409 4.804 12.70 14.76 22.41 0.480 1.556 5.282 7.709 7.449 1.078 1.308 5.013 3.224 14.84
C (2Hz) 0.169 2.258 13.97 11.23 20.73 0.016 0.123 3.802 4.493 6.704 0.127 1.079 6.368 7.100 7.749
D (3 obj.) 0.223 0.701 9.844 1.226 7.714 0.038 0.207 2.974 0.724 2.328 0.098 0.572 3.281 0.520 9.052
D (5 obj.) 0.360 0.914 3.474 1.457 6.012 0.050 0.151 0.665 1.447 2.853 0.495 1.142 2.469 1.240 2.569
D (7 obj.) 0.264 0.549 3.480 1.138 4.730 0.059 0.122 1.436 1.134 2.471 0.337 0.691 5.785 2.462 10.06
Outdoor 0.426 0.996 4.629 14.99 20.52 0.028 0.354 0.675 6.085 9.275 0.689 2.014 8.775 52.14 66.39

Table 3.16: General Comparison of Our Approach with Other Methods - Translational and Rotational Deviations
per Second, and Overall Drift.

and scans with many sparse points (see outdoor results). It exhibits reasonably good results in
the presence of moving objects, with error values similar to those for CSM. As can be seen from
Table 3.16, our approach still outperforms the other methods in the outdoor test with an RMSE
improvement of more than 50% relative to its closest competitor (CSM). Although the scans
were much sparser in this test than in the other experiments, the structure of some buildings was
often visible from the lidar (otherwise our method would not have been able to align the scans
and CSM would have provided the best results).

The average runtimes shown in Table 3.17 illustrate that our method is not only more accurate
but also much faster than the rest of the compared methods, which demonstrates its superiority
to current state-of-the-art scan matchers.

SRF CSM PSM NDT SDF
1.617 10.187 3.947 124.1 12.649

Table 3.17: Runtime (ms) of the Different Methods.

Comparisons with Real Data: In this sectionwe evaluate the differentmethodswith real datasets,
and present qualitative and quantitative results. Specifically, we utilize two of the datasets listed
in [89]: the Freiburg indoor building 079 and the MIT CSAIL building (introduced in [90]).
These datasets are conceived to test SLAM algorithms and cover long distances (423 and 380
meters), very often re-visiting the same place one or more times to test loop-closure strategies.
Moreover, consecutive scans are not very close to each other, which makes them particularly
challenging for methods based on pure incremental odometry. Given this complexity and the low
performance demonstrated by SDF in §3.G.9 (Table 3.16), we exclude it from this comparison.

One important drawback of these datasets is that no ground truth for the robot pose is provided.
Instead, they include a precise trajectory estimated with SLAM algorithms, which can be used
for quantitative evaluation in some applications. For the odometry estimation problem at hand,
only the Freiburg dataset provides a suitable estimated trajectory that can be used as ground
truth. In the case of the MIT CSAIL dataset, the laser/pose data is too decimated and therefore
insufficient to evaluate odometry. As a consequence, we present quantitative and qualitative
results for the Freiburg dataset, but only qualitative results for the MIT CSAIL dataset.
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Figure 3.16: Sets of Sub-maps built from the Freiburg and MIT CSAIL datasets. The scan measurements are shown
as blue point clouds and the trajectories are plotted in red.

Qualitative results are obtained by fusing the scan observations in a 2D map according to
the estimated trajectories provided by each method. Since the datasets are long and the same
places are often re-visited, we divide the sequences into a few sub-sequences and build the
corresponding sub-maps instead of just one large map per sequence. The resulting estimated
maps, together with the maps built from the ground truth, are depicted in Figure 3.16. It can
be seen that our approach achieves the best results in both datasets and for every sub-sequence.
For the MIT CSAIL dataset, it estimates an almost perfect trajectory for 2 of the 3 sub-maps
(bottom-left and right) using only odometry in a sequence which would normally require global
pose optimization and loop closure detection.

Quantitative results are obtained by measuring the RMS translational errors per segment
length, as described in [67]. We compute these errors for different segment lengths ranging from
1 to 100 meters, and show them in Figure 3.17 as a percentage of the segment length considered.
Errors for the shortest segment lengths are not very accurate because the ground truth, although
globally consistent, is not exact for local pose increments. Our algorithm has the lowest drift,
with RMS errors around 2%. The error associated with CSM ranges from 5% to 7.5%, while
the errors associated with PSM and NDT are always above 10% and 20% respectively. These
results are less precise than the ones obtained in simulations because the laser scanner employed
to record the datasets has a narrower field of view and a smaller size and also because the
observed environments contain a high ratio of scattered observations which complicate the scan
alignment.

3.G.10 Conclusion

This paper extends and improves the work presented in [72]. We have derived the range flow
constraint from a symmetric expression of geometric consistency and have incorporated a multi-
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Figure 3.17: Translational RMS errors per segment length computed for the Freiburg dataset, using path lengths
from 1 to 100 metres. The errors are shown as a percentage of the segment length under consideration, which
illustrates the drift to be expected if trajectories of the given length are to be estimated.

scan formulation that combines the advantages of consecutive scan alignment and keyscan-based
approaches. We have also described a procedure to model the average error of our algorithm for
different laser scanners and have used this model to define a keyscan-update criterion as a direct
function of the maximum desirable translation and rotation errors. We have presented a large
set of experiments used to evaluate our method with simulated and real data and to compare
it with several state-of-the-art algorithms in scan matching. Quantitative and qualitative results
demonstrate that our method is significantly more accurate and faster both in static and dynamic
environments.

However, results from the datasets show that the performance of our algorithm deteriorates
when the laser primarily sees scattered points in the environment. This is expected because our
method relies on range gradients and requires at least a piecewise-differentiable range function
to align the scans. For future work, we plan to combine our dense formulation with other sparse
techniques, adding an extra term to our cost function to also align interest points.
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4
Scene Flow Estimation

4.A Introduction

The term scene flow refers to the dense 3D motion field of a scene between two instants of time,
and can be regarded as a 3D extension of the well-known optical flow. In contrast to optical flow,
the scene flow estimation is a problem that has not often been addressed in the literature since
it demands a geometric knowledge of the environment. For this reason, the earliest works on
scene flow estimation utilized stereo systems. These methods had to estimate disparity before or
simultaneously to the scene flow, which noticeably increases the complexity of the problem. In
this context, most scene flow algorithms were extensions of optical flow approaches, where the
third component of the motion (shift in depth) was simply obtained as a by-product of the optical
flow and the disparity field. However, the arrival of the RGB-D cameras changed this trend. This
type of cameras makes it possible to separate scene flow from the disparity estimation problem,
which has promoted research in this field.

Scene flow finds a myriad of potential applications. It can be very useful in dynamic envi-
ronments as a tool to predict the future locations of moving objects. It can also be employed
to enhance human-computer interaction by adding information about the velocity of the points
of the scene. It is already an important component of many systems developed for tracking and
non-rigid 3D reconstruction [91, 92, 93]. Alternatively, it can be exploited to analyze human
motion, for both therapeutic and sport purposes. Lastly, it can also be a powerful tool for video
processing and compression, but the fact that most video sequences are recorded with single
RGB cameras prevents such application at present.

Nevertheless, scene flow expressed as a dense motion field may be hard to exploit because it
provides much more data than most applications are able to process (e.g. if computed for QVGA
images, it provides 76800 motion vectors for every aligned pair of images). Consequently, it is
necessary to develop algorithms that are able to process and simplify such stream of data in a
way that existing technologies can directly benefit from it. Moreover, most scene flow algorithms
share two limitations. First, they only work with stereo systems or RGB-D cameras and, hence,
scene flow cannot be exploited for standard RGB sequences (or at least, to our knowledge, there
does not exist any scene flow algorithm for RGB images). Second, it is computationally very
expensive, with runtimes that usually range between several seconds and a few minutes per
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frame. For these reasons scene flow is still rarely used in robotics or visual&augmented reality,
but recent advances suggest that this trend might change.

4.B Representations for Scene Flow

There are different ways to encode scene flow, each of which has distinct advantages and disad-
vantages. Next, we summarize the most common representations and describe their particular
characteristics. 1

1. Traditionally, scene flow has been expressed as the combination of optical flow u : Ω→ R2

and depth displacement w : Ω→ R. This is ideal for those methods that build upon existing
optical flow algorithms, and also for stereo-based scene flow where the problem is inherently
decoupled into estimating dense correspondences (optical flow) and depth. Furthermore,
it leads to a simple and concise data term ED(u,w) because photometric and geometric
consistency can be formulated directly as a function of u and w:

ED(u,w) =

∫
Ω

‖I2(x+ u(x))− I1(x)‖+µ ‖Z2(x+ u(x))− Z1(x)− w(x)‖dx , (4.1)

where µ is a weighting parameter. In general Z can be a depth image (from RGB-D cameras)
or a depth field calculated from disparity (from stereo pairs). It must be emphasized that the
data termED(u,w) shown in (4.1) is a common choice but not the only one: other alternatives
or variants of (4.1) have been proposed in the literature.
On the other hand, this representation provides information about correspondences (end-
points) but not about the trajectory that each 3D point describes between the instants at which
the two aligned frames were taken.

2. Alternatively, the motion of the observed points can be represented directly as a 3D displace-
ment fieldm : Ω→ R3. In this case the data term becomes more complex because it involves
the projection of the 3D motion to the image plane Ω:

ED(m) =

∫
Ω

∥∥I2

(
π
(
π−1(x, Z1(x)) +m(x)

))
− I1(x)

∥∥
+µ

∥∥Z2

(
π
(
π−1(x, Z1(x)) +m(x)

))
− Z1(x)−mz(x)

∥∥dx . (4.2)

As an advantage, regularization of the motion field can be directly applied on m. In the
case of scene flow, a regularization term ER is typically imposed to constrain the estimation
problem and smooth the motion field. To that end, such a term would often try to minimize
the gradients of the 3D motion vectors, thereby enforcing smoothness of the solution:

ER(m) =

∫
Ω

‖Jm(x)‖dx (4.3)

where Jm(x) refers to the Jacobian of the motion field with respect tox. This is not equivalent
to minimizing the gradients of the optical and range flows because a constant optical flow
1The notation employed in this section was introduced in §3.B and §3.C, please revisit them if you feel unfamiliar with it.
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𝒖

𝑤

𝒎 𝑇(𝝃)

Figure 4.1: Different representations of scene flow2. Left: Both optical flow + depth shift (u + w) and 3D
displacement vector (m) provide information only about the final location of each point, but not about its trajectory.
Right: Encoding scene flow as a rigid body motion makes it possible to recover the trajectory described by every
point during the time elapsed between the aligned frames.

(global solution for the regularization term) does not correspond to a constant 3D motion
field, and vice versa. In general:

ER(u,w) =

∫
Ω

‖Ju(x)‖+ µ ‖∇w(x)‖dx 6= ER(m) (4.4)

In order to minimize the gradients of the actual motion field using the optical flow-based
representation one must include the projection camera model in the regularization term,
which complicates the formulation.
Like the optical flow-based formulation, this representation provides information about the
final positions of the 3D points of the scene but not about their trajectories.

3. A more elaborate choice consists in overparameterizing the scene flow as a dense field of
rigid body motions ξ. This parameterization endows each pixel with 6 DoF (in contrast to the
3 DoF of the previous alternatives) and, consequently, requires more constraints to be solved.
However, this more complex formulation has some important advantages. First, regularization
is more meaningful because rigidity is a more realistic assumption than uniform motion or
uniform optical flow:

ER(ξ) =

∫
Ω

‖Jξ(x)‖dx 6= ER(m) 6= ER(u,w) . (4.5)

Second, estimating the underlying rigid motions of the objects of the scene is a powerful tool
that can be exploited for image segmentation. Third, regarding each point as part of a rigid
body permits us to compute its 3D trajectory between the two aligned frames (see Figure 4.1).

2The camera icon was made by Freepik from www.flaticon.com.
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4.C Contributions

We contribute several methods to estimate scene flow with RGB-D cameras. Next, we provide
a summary of the papers where these methods are described.

In §4.Dwe present a GPU-based real-time implementation that minimizes an energy function
with a primal-dual solver [8]. The data term imposes photometric and geometric consistency
between consecutive RGB-D images, and the regularization term enforces smoothness of the
motion field. Unlike many existing approaches, which impose regularization on the image plane,
we present an alternative strategy to regularize the motion field on the 3D surface of the observed
scene, which naturally handles discontinuities of the motion field at the object borders.

A different approach is proposed in §4.E. This paper takes inspiration from [9] and addresses
the joint problem of segmenting the scene into the different rigid bodies that compose it and
estimating their underlying rigid motions. As amain contribution, we propose a smooth labelling
strategy to model the non-rigid motions typically present along the transitions between rigid
parts (e.g. in the neck of a person). We incorporate an occlusion mask and include an outlier
label to handle those pixels with high residuals for all the motion candidates (those associated to
the segments). Results demonstrate that a smooth segmentation based on motion interpolation is
more precise than the standard binary alternative, and often leads to a lower number of segments.

Finally, in §4.F we tackle the complex problem of estimating both the camera motion and the
scene flow. Here the main difficulty lies in distinguishing static parts of the scene from those
which are moving. This step would be straightforward if the camera was still but it becomes
challenging when it also moves since all pixels are in apparent motion. We propose to divide
the scene into geometric clusters which are, in turn, labelled as static or moving. This strategy
also allows us to speed up the scene flow estimation process by two orders of magnitude (if
compared to approaches that compute it pixel-wise). Results show that the resulting algorithm
provides accurate visual odometry and scene flow with a runtime of 80 milliseconds, which is
unprecedented in the literature.
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A Primal-Dual Framework
for Real-Time Dense RGB-D Scene Flow

Mariano Jaimez, Mohamed Souiai, Javier Gonzalez-Jimenez and Daniel Cremers

Abstract
This paper presents the first method to compute dense scene flow in real time for RGB-D cameras. It is
based on a variational formulation where brightness constancy and geometric consistency are imposed.
Depth data provided by RGB-D cameras allows us to impose regularization of the motion field on
the 3D surface (or set of surfaces) of the observed scene instead of on the image plane, leading to
more geometrically consistent results. The minimization problem is efficiently solved by a primal-dual
algorithm which is implemented on a GPU, achieving a previously unseen temporal performance.
Several tests have been conducted to compare our approach with a state-of-the-art work (RGB-D flow)
where quantitative and qualitative results are evaluated. Moreover, an additional set of experiments
have been carried out to show the applicability of our work to estimate motion in real time. Results
demonstrate the accuracy of our approach, which outperforms the RGB-D flow, and which is able to
estimate heterogeneous and non-rigid motions at a high frame rate.

4.D.1 Introduction

Estimating the motion of different objects in a scene is a topic of great relevance in robotics.
From a general point of view, and without focusing on particular objects, scene flow is defined as
the dense or semi-dense non-rigid motion field of a scene observed at different instants of time.
In contrast to optical flow, which provides the projection of the scene motion onto the image
plane, scene flow estimates the actual 3Dmotion field and hence requires more prior information
than optical flow (2D). As a consequence, stereo or multi-view camera systems that allow for
the estimation of the scene structure have been commonly employed to compute scene flow.
However, the new affordable RGB-D cameras, which directly provide registered RGB and depth
images at a fairly high frame rate (30 Hz), are an advantageous setting for the implementation
of fast scene flow algorithms.

The potential applications of scene flow in the field of robotics are numerous: autonomous
navigation and manipulation in dynamic environments, pose estimation or SLAM refinement,
human-robot interaction or segmentation from motion are a few examples. Nonetheless, its
applicability is highly dependent on its temporal performance because the aforementioned tasks
normally need to be executed at a high frame rate. Most existing approaches do not fulfill this
requirement and present execution times ranging from several seconds to few hours to compute
the scene flow per frame, which in practice limits their usefulness.

In this paper we present the first dense real-time scene flow algorithm for RGB-D cameras.
Under a variational framework, a highly parallelizable primal-dual algorithm is proposed to
solve in real time the underlying optimization problem. The benefits of this algorithm compared
to direct solvers (e.g. SOR) or black box solvers are two-fold: the utilised total variation (TV)
regularizer can be minimized with exactitude due to the introduction of dual variables, not
needing to resort to differentiable approximations (Charbonnier penalty [94]), and a very fast
version of it can be implemented on modern GPUs by reason of its first-order nature. In
our variational formulation, both the optical flow and the range flow constraint equations are
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applied in a coarse-to-fine scheme to handle large displacements between consecutive frames.
Regularization is imposed on the 3D surface in order to smooth the flow field for close points in
the real space instead of for contiguous pixels in the image plane. Several experiments have been
carried out to evaluate the performance of our approach and compare it with the recent work of
Herbst et al. [95] (RGB-D flow). Overall, our approach achieves higher levels of accuracy in this
comparison while performs three orders of magnitude faster. Quantitative and qualitative results
show that our primal-dual scene flow is able to estimate heterogeneous and non-rigid motions
precisely on a variety of scenes.

Related Work

Scene flow has traditionally been computed with data coming from stereo or multiple-view
camera systems. The term scene flow was firstly coined by Vedula et al. [96] who proposed to
compute the Lucas-Kanade optical flow [97] first and apply the range flow constraint equation
at a later stage, obtaining a local solution which does not exploit the geometric data to estimate
the optical flow. A global variational approach was presented in [98] where both the optical
flow and depth flow are estimated simultaneously using quadratic regularization. To allow for
discontinuities in the motion field, Total Variation (TV) was adopted in [99] and [100], where
they each present a unified variational formulation to compute the disparity and the motion
field jointly. However, other authors claimed that decoupling this two sub-problems is indeed
advantageous and developed algorithms [101] that make themost of this decoupling to efficiently
solve the global problem, combining FPGA and GPU for disparity and scene flow estimation,
respectively, and leading to real-time performance. Moreover, some recent works with stereo
cameras [102, 13] propose to exploit the fact that most realistic scenarios are composed of
multiple rigid bodies, and impose local rigidity in their formulation which provides more
accurate results than standard TV regularization.

The advent of RGB-D cameras few years ago represented a revolution in the field of robotics
and computer vision, and much of recent research on scene flow focuses on the use of this kind of
cameras. One of the first scene flow algorithms for RGB-D cameras is presented in [103], where a
variational approach with quadratic data and regularization terms is proposed. Within a similar
variational framework, the work of Letouzey et al. [104] makes use of a weighted quadratic
regularizer and considers a set of sparse feature correspondences to handle large displacements.
The regularization weights are functions of the depth gradients, and are intended to increase
regularization between pixels with similar depth values (and vice versa). More recently, the
RGB-D flow presented in [95] achieves qualitatively good results by minimizing a functional
composed of the L1 norm of the optical and range flow constraint equations and a weighted TV
regularization, where the weighting function encompasses information about the depth, colour
and surface normals. The work presented in [105] achieves accurate results too by defining a
local/global formulation with adaptive TV regularization, which is a weighted TV regularizer
whose weights are similar to those presented in [104], and also resorts to interest points (SURF)
to deal with large motions.
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Apart from these variational approaches, there exist some Monte Carlo-based methods that
provide semi-dense or dense motion fields. Cech et al. [106] presented a seed-growing algorithm
to compute scene flow in a stereo setup, which represents a good trade-off between local and
global methods with respect to accuracy and runtime. Hadfield et al. [107] proposed a particle
filter to estimate the motion field from depth and intensity images coming from a RGB-D
camera, and extended this work in [108] to operate with any combination of photometric and
range sensors. Also for RGB-D images, SphereFlow [109] exploits the availability of depth data
by seeking correspondences not in the image plane but in spheres of the 3D space, which is
demonstrated to be advantageous to handle occlusion and large displacements.

Contribution

The main contribution of this paper is a robust scene flow algorithm for RGB-D cameras that
runs in real time. To this end, a primal-dual algorithm is applied for the first time to solve the
variational formulation of the scene flow problem. The particular choice of this algorithm is
crucial since it is an iterative solver which performs pixel-wise updates and can be efficiently
implemented on modern GPUs. Furthermore, a more natural regularization is theoretically
justified and imposed, substituting the standard TV by an adaptive TV which represents the line
integral of the flow field over the observed surface. Lastly, we take advantage of the geometric
data provided by the camera to formulate a more accurate approximation of the image gradients,
as well as to filter intermediate solutions in the coarse-to-fine scheme robustly.

The code is available online for public use. We also encourage the reader to watch the
demonstration video at:

http://mapir.isa.uma.es/mjaimez

4.D.2 Variational Formulation for Scene Flow

We consider the problem of estimating the dense 3Dmotion field of a scene between two instants
of time t and t+ 1 using colour and depth images provided by an RGB-D camera. This motion
field m : (Ω ∈ R2) → R3 is defined over the image domain Ω, is described with respect to
the camera reference frame and is expressed in meters. For simplicity’s sake, an alternative
representation ofm is commonly adopted, wherem is expressed in terms of the optical flow u, v

and the range flow w. For any pixel (x, y) with a nonzero depth value, the bijective relationship
Γ : R3 → R3 betweenm(x, y) and s = (u, v, w)T is given by:

m(x, y) = Γ (s(x, y)) =


Z
fx

0 X
Z

0 Z
fy

Y
Z

0 0 1


uv
w

 . (4.6)

Equation (4.6) can be obtained directly from the well-known pinhole model, where fx, fy are the
focal length values and X, Y, Z the spatial coordinates of the observed point. Thus, estimating
the optical and range flows is equivalent to estimating the 3D motion field, but the former leads
to a simplified implementation since optical and range flow constraint equations apply directly
on the image plane.
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In order to estimate the motion field we formulate a minimization problem over s (non-bold
refers to the whole function in Ω) where photometric and geometric consistency are imposed as
well as a regularity of the solution:

min
s
{ED(s) + ER(s)} . (4.7)

In this functional, the data term ED encodes a two-fold constraint per pixel (intensity and
depth matching between pairs of frames), which is insufficient to compute a unique solution.
Consequently, a regularization term ER is crucial because it does not only smooth the flow field
but also further constrains the solution space.

Data term

Let I0, I1 be the intensity images and Z0, Z1 the depth images taken at instants t and t + 1

respectively. We choose a data term which encourages brightness constancy and geometric
consistency of the solution. The former is commonly adopted by existing optical flow and scene
flow approaches and encodes that a point should exhibit the same brightness in both intensity
images:

ρI(s, x, y) = I0(x, y)− I1(x+ u, y + v) = 0 . (4.8)

Constancy of the intensity gradients is not considered here because our approach runs at a high
frame rate, which implies that the brightness constancy assumption is quite accurate (if the
source of light remains unaltered). On the other hand, depth does not remain constant over time
but its change must be equal to the difference between the first depth image and the second image
warped with the optical flow:

ρZ(s, x, y) = w − Z1(x+ u, y + v) + Z0(x, y) = 0 . (4.9)

In contrast to many other approaches, which make use of the L2 norm or a differentiable
approximation (Charbonnier penalty) of the L1 norm, we minimize the exact L1 norm of (4.8),
(4.9):

ED(s) =

∫
Ω

|ρI(s, x, y)|+ µ(x, y)|ρZ(s, x, y)|dxdy , (4.10)

where µ(x, y) is a positive function that weights geometric consistency against brightness
constancy. The L1 norm has shown to be more robust against outliers than the L2 norm [110]
and the choice of the primal-dual algorithm to solve the minimization problem allows us to
minimize it exactly without resorting to any approximation (more details will be given in
§4.D.3).

The data term ED is nonlinear, which implies that the energy functional can have multiple
local minima. In order to get as close as possible to the global minimum, we use a coarse-to-fine
scheme [27]: an image pyramid is built and the solution is computed and upsampled from coarser
to finer levels, employing a linearized version of (4.8) and (4.9) at each level:

ρI(s) ≈ I0(x, y)− I1(x+ u∗, y + v∗)−∇I1(x+ u∗, y + v∗) · (u, v)T , (4.11)
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ρZ(s) ≈ w − Z1(x+ u∗, y + v∗)−∇Z1(x+ u∗, y + v∗) · (u, v)T + Z0(x, y) , (4.12)

with u∗, v∗ being the solution computed at the previous level. Equations (4.11), (4.12) are the
well-known optical flow and range flow constraints whose global minimum can be obtained at
each pyramid level.

Regularization term

The regularization term ER is introduced to overcome the aperture problem associated to the
optical and range flows [29], as well as to provide a smooth flow field. In this paper we present
a regularizer of the flow field which is based on the total variation but takes into consideration
the geometry of the scene, in contrast to standard TV which operates on the image domain Ω

and disregards the real-world distances between points. For the sake of clarity, a simplified 2D
case (shown in Figure 4.2) will be used to describe the proposed regularization and derive its
mathematical formulation. Let C : (l ∈ R) → R2 represent the observed surface of the scene
(which becomes a curve in 2D) and f : C → R be any component of the motion field of the
curve C with respect to the camera. The total variation of f in 2D is defined as:

TV (f) =

∫
Ω

∣∣∣∣∂f∂x
∣∣∣∣ dx . (4.13)

However, this regularization does not take into account that contiguous pixels may correspond
to distant points in space with different values of f . Thus, if geometric data is available, a more
natural regularization would smooth f among points which are close inC instead of in the image
segment:

TVg(f) =

∫
Ω

∣∣∣∣∂f∂l
∣∣∣∣ dx . (4.14)

In both cases we integrate over the image domain Ω because the curve C is not known, only its
projection onto Ω (i.e. depth values and colour information). The derivatives of f with respect
to l and x can be decomposed into the two independent directions of space X,Z:

∂f

∂l
=

∂f

∂X

∂X

∂l
+
∂f

∂Z

∂Z

∂l
, (4.15)

∂f

∂x
=

∂f

∂X

∂X

∂x
+
∂f

∂Z

∂Z

∂x
. (4.16)

In (4.15), the vector (∂X/∂l, ∂Z/∂l) is the tangent unitary vector to the curve C and can be
computed as a function of the gradients of the spatial coordinates X,Z over the image domain:

∇Cl =

(
∂X

∂l
,
∂Z

∂l

)
=

1√
∂X
∂x

2
+ ∂Z

∂x

2

(
∂X

∂x
,
∂Z

∂x

)
. (4.17)

Substituting (4.17) in (4.15), (4.16) we obtain a weighted TV that takes the geometry of the
scene into account:

TVg(f) =

∫
Ω

∣∣∣∣rx∂f∂x
∣∣∣∣ dx =

∫
Ω

1√
∂X
∂x

2
+ ∂Z

∂x

2

∣∣∣∣∂f∂x
∣∣∣∣ dx . (4.18)

100



4.D. A PRIMAL-DUAL FRAMEWORK FOR REAL-TIME DENSE RGB-D SCENE FLOW

C(l) = (X(l), Z(l))
X
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x

P

Figure 4.2: Two-dimensional representation (top view) of a camera observing a scene where the image plane Ω
becomes an image segment and the frontal 3D surface becomes a 2D curve C(l).

In contrast to the standard TV (4.13), the regularizer in (4.18) enforces smoothness between
close points (high rx) whereas it barely regularizes f for distant points (low rx). Such behavior
is very convenient since close points are likely to belong to the same object in the scene (hence
moving similarly) while distant points might be part of different objects with different motion
fields. Equation (4.18) can be easily generalized to the 3D world, leading to:

TVg(f) =

∫
Ω

∣∣∣∣(rx∂f∂x, ry ∂f∂y
)∣∣∣∣ dxdy , (4.19)

rx =
1√

∂X
∂x

2
+ ∂Z

∂x

2
, ry =

1√
∂Y
∂y

2
+ ∂Z

∂y

2
. (4.20)

Finally, the regularization term in our variational formulation imposes the above TV penalization
to the three components of the scene flow:

ER(s) =λI

∫
Ω

∣∣∣∣(rx∂u∂x, ry ∂u∂y
)∣∣∣∣+

∣∣∣∣(rx ∂v∂x, ry ∂v∂y
)∣∣∣∣ dxdy

+λD

∫
Ω

∣∣∣∣(rx∂w∂x , ry ∂w∂y
)∣∣∣∣ dxdy , (4.21)

where λI , λD weight these regularization terms within the overall optimization (4.7).

4.D.3 Primal-Dual Algorithm

As pointed out in §4.D.2, our energy formulation is based on a linearization of the data term
(4.11), (4.12). Additionally, since we utilize the convex TV regularizer in (4.21), this renders the
overall formulation (4.7) convex, which makes our algorithm amenable to convex solvers. As a
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non-smooth energy is to be minimized, we have chosen a first order solver [7, 8] for non-smooth
problems which tackles the primal-dual formulation of (4.7):

min
s

sup
{pu,pv ,pw}∈K

η∈Q

λI

∫
Ω

〈
pu(x, y),

(
rx
∂u

∂x
, ry

∂u

∂y

)T〉
dxdy

+λI

∫
Ω

〈
pv(x, y),

(
rx
∂v

∂x
, ry

∂v

∂y

)T〉
dxdy

+λD

∫
Ω

〈
pw(x, y),

(
rx
∂w

∂x
, ry

∂w

∂y

)T〉
dxdy

+

∫
Ω

|ρI(s, x, y)| + η(x, y) µ(x, y)ρZ(s, x, y) dxdy

(4.22)

where the dual variables pu, pv and pw associated to the regularizer and the dual variable η
associated to the data term are constrained by the following sets:

K :=

{
p : Ω→ R2

∣∣ ‖p(x, y)‖2 ≤ 1

}
(4.23)

Q :=

{
ν : Ω→ R

∣∣ |η(x, y)| ≤ 1

}
(4.24)

This iterative solver is suitable for the development of a real-time implementation of scene flow
because the primal and dual pixel-wise updates can efficiently be computed in parallel on a GPU.
Note that (4.22) is convex with respect to its primal variables and concave with respect to its dual
variables which makes it possible to compute a global optimum with the primal-dual algorithm.
Regarding the data term (4.10), we decided to just dualize the range flow |ρZ(s, x, y)| and
minimize the photometric term |ρI(s, x, y)| using the so-called proximal or shrinkage operator
(see [7, 8] for further information and details about the algorithm). In the primal-dual framework,
this alternative represents a good balance between fast converge and formulation complexity.
On the one hand, the addition of an extra dual variable associated with the term |ρI(s, x, y)|
would slow down convergence and hence the temporal performance of our method. On the other
hand, formulating the primal-dual problem without dual variables associated with |ρZ(s, x, y)|
and |ρI(s, x, y)| would give rise to a more involved and computationally demanding shrinkage
operator.

4.D.4 Implementation Details

In this section we describe some important aspects associated with the implementation of the
primal-dual scene flow. We will mainly focus on the computation of the image gradients, the
filter applied to the solutions of each pyramid level and the weighting parameters and functions.

Regarding the image gradients, most implementations of optical or scene flow choose a par-
ticular finite difference approximation (forward, backward or centered formulas) and apply it to
the whole image. Nevertheless, when this strategy is applied to compute the depth image gradi-
ents it gives rise to very high values at the edges/borders of objects, which are not representative

102



4.D. A PRIMAL-DUAL FRAMEWORK FOR REAL-TIME DENSE RGB-D SCENE FLOW

of the real gradients of the surface (or set of surfaces) observed by the camera. Consequently,
the estimated range flow w is prone to taking excessively high values at object borders owing
to the inaccurate approximation of gradients adopted. As a solution, we introduce an adaptive
approximation of image gradients which is consistent with the geometry of the observed scene.
It consists in a weighted forward-backward formula, where the weighting functions capture the
geometry derivatives in both directions (forward and backward):

∂I

∂x
≈
r+
x
∂+I
∂x

+ r−x
∂−I
∂x

r+
x + r−x

,
∂Z

∂x
≈
r+
x
∂+Z
∂x

+ r−x
∂−Z
∂x

r+
x + r−x

(4.25)

and similarly for ∂I/∂y and ∂Z/∂y. The operators ∂+ and ∂− represent right and left derivatives
and are approximated using the stencils [0 -1 1] and [-1 1 0] respectively, and the terms
r+
x , r

−
x , r

+
y , r

−
y are right and left approximations of the ones presented in (4.20). These expressions

downweight derivatives which contain borders or discontinuities (rx and ry very low) adopting
that approximation which is more likely to capture the real surface gradient properly. If they
are evaluated at pixels which do not lie on object borders then both terms will have practically
the same weight and (4.25) will be equivalent to standard centered approximations of the image
gradients.

Another important issue is the selection of an appropriate filtering strategy. It is commonly
known that the solution to the variational problem might contain spurious wrong estimates that
must be removed. These wrong motion vectors are particularly detrimental at the first levels of
the coarse-to-fine scheme since they are propagated throughout the pyramid altering significantly
the final flow estimate. Traditionally, a median filter is applied to the flow estimate at each level
to reject outliers. However, this filter presents an important drawback: it combines the motions
of different objects when it is applied at their borders. As an alternative, we opt for using a 3× 3

weighted median filter, similar to the one described in [111]. In this filter, pixels are weighted
in local histograms which are accumulated to obtain the median value. The weighting function
hmedian is defined as:

hmedian =
1

1 + kd(∆Z)2 + kdt
(
∂Z
∂t

)2 (4.26)

∆Z measures the depth difference between pixels, ∂Z/∂t represents the temporal derivative of
depth and kd, kdt are parameters. This weighting function allows us to apply a median filter that
does not mix the flow fields of different objects, and at the same time penalizes pixels with high
temporal derivatives, which are likely to contain outliers.

Last, further details are given about the parameters and weighting functions employed in our
variational formulation. The function µ(x, u) presented in (4.10) which weights the geometric
data term is defined as:

µ(x, y) =
µ0

1 + kµ

(
∂Z
∂x

2
+ ∂Z

∂y

2
+ ∂Z

∂t

2
) (4.27)

This definition reinforces geometric consistency in areas with low depth gradients and down-
weights it otherwise (high depth gradients are normally caused by jumps between objects, the
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presence of null depth measurements, occlusions, etc.). Furthermore, the parameters involved
in the calculation of the scene flow are empirically set to the following values:

λI = 0.04, λD = 0.35, kd = 5, kdt = 10, µ0 = 75, kµ = 1000 . (4.28)

4.D.5 Experiments

We have performed two sets of experiments to evaluate our approach quantitatively and quali-
tatively. Given the lack of a benchmark to test scene flow with RGB-D cameras, some authors
resort to the stereoMiddlebury datasets [112, 113] and use the depth groundtruth which, together
with the intensity images from different views, emulate a pair of RGB-D images. However, this
set of images does not exhibit the same characteristics as real RGB-D images: they are not
affected by realistic noise or quantization effects, nor contain large empty areas (null depth) that
are quite common in depth images. For these reasons, we have created a tool to test scene flow
algorithms by generating artificial RGB-D images from a previously captured RGB-D frame
and a predefined 3D motion field. Following this procedure, we will present quantitative and
qualitative results from this semi-real data. Moreover, qualitative results for real RGB-D streams
processed in real time will be shown. In all cases the resolution of the motion field is 240× 320
(QVGA).

Evaluation with semi-real data

In this subsection we compare our approach (named PD-flow) with a recent work [95] (RGB-D
flow) in terms of accuracy and temporal performance. To this purpose, we have developed a
procedure to evaluate the similarity between the estimated and real motion field that exists
between two RGB-D frames. This procedure is decomposed into the following steps:

1. Capture an RGB-D frame with the camera.

2. Create a 3D coloured mesh from the RGB-D image.

3. Generate an artificial motion field consistent with the geometry of the scene.

4. Apply this motion field to the vertices of the mesh.

5. Render new intensity and depth images from this deformed mesh.

As a result, a second RGB-D frame is created from a real RGB-D image and a known motion
field, which can be used as a groundtruth. The resulting intensity and depth images mainly differ
from real ones in one aspect: they do not contain any new information respect to the first RGB-D
frame. Thus, some pixels (mainly at the image borders) might not observe the deformed mesh,
and their intensity and depth values are set to zero. On the other side, the intensity values at
pixels with null depth measurements are neglected (set to zero) because they are not used to
build the 3D mesh (their 3D location is unknown) and they will not appear in the second frame.
In any case, this last factor is not very relevant since scene flow cannot be evaluated at pixels
with null depth measurements (the Γ transformation in (4.6) becomes singular).
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Figure 4.3: Colour representation of the optical and range flows for the "person standing" frames (first row), "robot
top" frames (second row) and "person desk" frames (third row) following the Middlebury colour scheme (for the
range flow we only consider the colours of the x axis). The flow field is shown in white for the areas with null depth
measurements.

RGB-D pair MAX-V NRMS-V NRMS-V NRMS-V AAE AAE AAE
(meters) PD-flow (TVg) PD-flow (TV) RGB-D flow PD-flow (TVg) PD-flow (TV) RGB-D flow

person standing 0.073 0.069 0.081 0.119 7.433 8.788 24.47
person desk 0.064 0.068 0.076 0.093 4.852 4.402 6.553
robot top 0.110 0.061 0.111 0.072 8.078 11.72 23.08
robot front 0.155 0.064 0.075 0.133 7.823 9.747 18.86
room 0.154 0.078 0.077 0.062 5.081 7.786 4.947
Average 0.111 0.068 0.084 0.096 6.653 8.489 15.58

Table 4.1: Quantitative evaluation of scene flow with five distinct RGB-D frame pairs.

Five pairs of RGB-D images have been chosen for the evaluation. These images have been
generated according to the aforementioned procedure using distinct motion fields withmaximum
displacements ranging from 7 to 15 centimeters. Besides, these images emcompass information
of realistic scenes with close and distant objects moving differently. As in similar works [108],
two error measurements are compared: the 3D average angle error (AAE) expressed in degrees
and the normalized root mean square error of the velocity magnitude (NRMS-V), where the
maximummagnitude of themotion field (MAX-V) is used for normalization. Quantitative results
are presented in Table 4.1, where two versions of the PD-flow with standard TV (4.13) and TVg

(4.18), along with the RGB-D flow, are evaluated. On the other hand, qualitative results are
displayed in Figure 4.3, which shows that the RGB-D pairs generated for this evaluation contain
varied and heterogeneous motion fields. In Figure 4.3 it can be noticed that RGB-D flow is
slightly more accurate than our approach computing the optical flow, whereas PD-flow provides
considerably better results for the range flow. Regarding the quantitative results, PD-flow with
regularization on the 3D surface outperforms the other approaches. Overall, PD-flow is 50%
more accurate than RGB-D flow estimating the norm of the motion field and more that 100%
more accurate obtaining its direction in space.

As far as temporal performance is concerned, average runtimes are measured for both me-
thods, including different CPU -GPU implementations of our work (Table 4.2). The test platform
used is a standard desktop PC running Ubuntu 14.04 with an AMD Phenom II X6 1035T CPU
at 2.6 GHz, equipped with an NVIDIA GTX 780 GPU with 3GB of memory. Table 4.2 shows
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RGB-D flow PD flow (CPU) PD flow (GPU)

119.1s 7.150s 0.042s

Table 4.2: Runtime comparison.

that even the CPU implementation of PD-flow is one order of magnitude faster than RGB-D
flow (it should be remarked that RGB-D flow uses GPU). With GPU acceleration, the execution
time of our primal-dual scene flow is 2800 times faster than the RGB-D flow, hence reaching
a maximum frame rate of 24 Hz. If 30 Hz are needed, the primal-dual solver can be stopped
before convergence, providing results which are only 16% less accurate than those presented in
Table 4.1.

Evaluation with real data in real time

In this subsection we show qualitative results of the scene flow working at a high frame rate
(24 - 30 Hz). We have created two alternative representations of the flow field to illustrate its
performance graphically. In the first case, scene flow was computed at 30 Hz (favoring speed)
while two people were playing with a basketball. This experiment comprises fast movements,
occlusions and heterogeneous and non-rigid motion fields associated to the different objects of
the scene. A temporal sequence of pictures is shown in Figure 4.4, where the colour goes from
grey/blue for still objects (null norm of the 3D velocity) to intense red for fast motions. It can be
observed that the motion field is coherent with the scene: the arms and the ball get different red
tones while the rest of the scene remains virtually still. Only the small regions at the background
that are occluded by the ball in subsequent frames show a wrong (reddish) flow. It can even be
noticed from the sequence that the maximum speed is reached at the moment of launching the
ball, and this speed slightly decreases when the ball ascends, which is in accordance with the
basic principle of energy conservation.

On the other hand, a distinct representation is displayed in Figure 4.5 to illustrate how the
scene flow at 24 Hz (favouring precision) reproduces the real movements of a person. Two 3D
point clouds are generated from consecutive depth images, being the first one shown in red and
the last one in turquoise, and a vector field represents in blue the magnitude and direction of
the estimated motion field. The three images in Figure 4.5 show how our primal-dual scene
flow is able to estimate non-homogeneous movements accurately (hand movements in the left
images are significantly different than the movement of the body). In contrast to most existing

Figure 4.4: Temporal sequence of two people throwing and receiving a basketball. The magnitude of the motion
field is represented by colours ranging from grey/blue (null velocity) to intense red (fast motion).
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Figure 4.5: 3D representation of the estimated motion field for non-rigid movements of a person. The initial and
final point clouds are shown in red and turquoise respectively, and the 3D flow is depicted with blue lines.

approaches, we do not need to handle very large displacements since our approach can be
executed at a high frame rate, and hence the changes between consecutive images are drastically
smaller for a given motion of the scene. For instance, at a frame rate of 24 Hz and considering
a maximum displacement of 15 centimeters between frames (see Table 4.1) movements faster
than 3 meters per second can be estimated properly.

4.D.6 Conclusions

A novel scene flow algorithm for RGB-D cameras has been presented. Within a variational
framework, geometric data from depth images is exploited to obtain more accurate results: TV
regularization is applied over the observed 3D surface and a geometry-dependent formula is
proposed to approximate the image gradients. In order to minimize our functional, a highly
parallelizable primal-dual solver is proposed and implemented on GPU to achieve real-time
performance. The runtime of our algorithm is between two and three orders of magnitude faster
than a previous work in scene flow for RGB-D cameras, which makes it suitable for robotic
applications that require real-time processing. Quantitative and qualitative results are presented
to demonstrate the robustness and accuracy of our approach. The code is available online under
an open-source license.
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Motion Cooperation:
Smooth Piecewise Rigid Scene Flow from RGB-D Images

Mariano Jaimez, Mohamed Souiai, Jörg Stückler,
Javier Gonzalez-Jimenez and Daniel Cremers

Abstract
We propose a novel joint registration and segmentation approach to estimate scene flow from RGB-D
images. Instead of assuming the scene to be composed of a number of independent rigidly-moving parts,
we use non-binary labels to capture non-rigid deformations at transitions between the rigid parts of the
scene. Thus, the velocity of any point can be computed as a linear combination (interpolation) of the
estimated rigid motions, which provides better results than traditional sharp piecewise segmentations.
Within a variational framework, the smooth segments of the scene and their corresponding rigid
velocities are alternately refined until convergence. A K-means-based segmentation is employed as an
initialization, and the number of regions is subsequently adapted during the optimization process to
capture any arbitrary number of independently moving objects. We evaluate our approach with both
synthetic and real RGB-D images that contain varied and large motions. The experiments show that
our method estimates the scene flow more accurately than the most recent works in the field, and at the
same time provides a meaningful segmentation of the scene based on 3D motion.

4.E.1 Introduction

Scene flow estimation has many applications such as human body pose tracking, articulated
object modelling for virtual/augmented reality or traffic scene understanding. In many scenarios,
the dynamic scene is composed of rigid parts: human or animal bodies, man-made articulated
objects, cars or other vehicles, etc. Many existing methods that work on scene flow do not
completely exploit this aspect, and estimate motion fields that are only locally rigid or not rigid
at all. Other methods do segment the scene to impose rigidity or strong regularization over
the regions (or segments). However, these segmentations are only used as tools to improve the
accuracy of the estimates, and do not really correspond to the independent motions of the scene
(e.g. [114] partitions the scene into depth layers, [13] divides the scene into piecewise planar
regions). Therefore, the segmentation-from-motion problem, which can be particularly useful
for scene understanding or human-machine interaction, is not truly addressed by these methods.

On the other hand, assuming purely rigid motions is a strong restriction that is barely fulfilled
in organic shapes. When a person moves, there are parts of their body moving rigidly (e.g. upper
and lower arms or legs) and others which are transitions between the rigid ones (e.g. the neck).
Besides, rigid motions within a fine-grained articulated structure may not be observable with
the limited resolution of a camera. For these reasons, a sharp segmentation will never be able to
estimate the motion of life beings or some other inanimate objects with exactitude.

In our method, we leverage the natural rigid-part decomposition by allowing for smooth
continuous transitions between the parts. We formulate the problem of retrieving a smooth seg-
mentation along with the motion estimates of the rigid parts, where each rigid part is assigned an
independent 6-DoF motion. To this end, we solve a non-convex optimization problem by means
of coordinate descent consisting of a motion estimation step (in the fashion of visual odometry)
and a subsequent variational multilabelling solver. By using a weighted quadratic regularizer
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Figure 4.6: The proposed method is based on a motion interpolation model, which allows the emergence of smooth
transitions between the segments where the motion is given by a convex combination of adjacent rigid motions
(e.g. in ξ̄).

over the discontinuity-preserving total variation (TV), we promote smooth transitions between
motion models rather than a harsh competition. For this reason, we refer to this approach as
motion cooperation as opposed to the traditional motion competition. We evaluate our motion
cooperation scene flow (MC-Flow) algorithm with synthetic and real RGB-D image pairs, and
compare it with state-of-the-art approaches. In all cases, our approach achieves a superior per-
formance both qualitatively and quantitatively. Furthermore, this evaluation demonstrates that
the combination of a convex relaxation labelling with quadratic regularizer is superior to a sharp
traditional segmentation because it naturally relaxes the overly constraining assumption of piece-
wise rigidity. Additionally, we show that our method retrieves meaningful soft segmentations
into rigid parts as depicted in Figure 4.6.

Related Work

Scene flow estimation has been traditionally investigated in the multi-view stereo setting within
the computer vision community. Vedula et al. [96] proposed one of the first methods based on
the optical and range flow constraints. This approach was later extended to regularize the flow
field using quadratic [98] and TV regularization [99, 100], the latter optiziming for disparity and
flow jointly. In [101], disparity and scene flow estimation were decoupled to achieve real-time
performancewith a stereo camera system. The approach in [102, 13] oversegments the image into
superpixels, assumes the superpixels to cover planar regions, and estimates a rigid-body motion
for each superpixel individually. In [13], the planar motion of a superpixel acts as a regularization
constraint on the scene flow of the individual pixels. Recently, with RGB-D cameras, the scene
flow estimation topic has received further attention due to the availability of depth images at
high frame rate. Herbst et al. [95] used the L1 norm on a data term derived from the optical and
range flow constraint equations and showed good qualitative results. Jaimez et al. [12] devised
the first real-time dense scene flow for RGB-D images. A more natural TV regularization for
the flow was proposed, where the regularization term minimizes the line integral of the scene
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flow gradients over the observed 3D surface. Quiroga et al. [115] overparametrize scene flow
and estimate a 6-DoF rigid-body motion at each pixel. They regularize the flow in this 6-DoF
parametrization such that their model favours locally rigid motions. Hornacek et al. [109] also
parametrize scene flow as a field of rigid motions, but propose to match corresponding points
within a spherical search range instead of using traditional planar patches.

On the other hand,motion segmentation has also been studied in computer vision research. An
early variational method for motion segmentation using optical flow constraints was proposed
by Cremers and Soatto [9] in their work on motion competition. The name stems from the
interpretation of the motion segments to compete for the boundaries through the best fit to
their individual motion model. Several extensions to this method have been proposed, e.g. using
non-parametric motions [116]. Unger et al. [117] explicitly model occlusions as an additional
label in the multilabel optimization and impose a map uniqueness constraint to avoid ambiguous
(non-bijective) data associations. All these methods are 2D and, hence, do not incorporate a
6-DoF motion model. Furthermore, they estimate a discrete segmentation.

3D-motion segmentation has only gained attention recently, mainly due to the current avail-
ability of GPUs and RGB-D cameras. Roussos et al. [118] propose a variational rigid-body
motion segmentation and reconstruction method for monocular video. Zhang et al. [119] also
pose 3D multi-body structure-from-motion in a variational framework. They require, however,
a plane fitting step to make the method robust. Closely related to our method is the approach by
Stückler and Behnke [120]. They jointly estimate motion and segmentation of rigid bodies in an
expectation-maximization framework in RGB-D video. Each motion segment is assigned one
rigid-body motion, but the approach does not interpolate between the motions of the segments.
Recently, Sun et al. [114] proposed a probabilistic approach which makes use of a depth-based
segmentation to estimate motion between RGB-D images. They regularize the estimation pro-
cess by retrieving a mean rigid-body motion in each layer. This approach also does not explicitly
model smooth transitions of motions between layers, but allows for small deviations of the
motion field from the layer’s mean motion.

Contributions

The MC-Flow algorithm is the first approach to perform joint soft-labelling and scene flow
estimation by dissecting the scene into differently moving regions and their underlying motion.
Our contributions are the following:

• Our algorithm estimates 3D motion based on a smooth piecewise rigidity assumption and
simultaneously finds a soft motion-based segmentation of the scene.

• By choosing a suitable regularizer we are able to interpolate between rigid motions in order
to recover non-rigidly moving parts and their underlying motion.

• An arbitrary (and previously unknown) number of rigid parts can be segmented automatically.

• MC-Flow outperforms state-of-the-art RGB-D scene flow algorithms qualitatively and quan-
titatively.

111



CHAPTER 4. SCENE FLOW ESTIMATION

4.E.2 Problem Formulation

In this work, we assume that the scene can be segmented into n unknown distinct motion labels,
each label standing for one rigid motion, as well as non-rigid parts which can be explained
by neighbouring rigid motion labels. An illustration of such a smooth segmentation can be
seen in Figure 4.6. As inputs, a pair of RGB-D frames (I1, Z1) and (I2, Z2) is given, where
I(.) : Ω → R and Z(.) : Ω → R stand for the intensity and depth images defined on the image
domain Ω ⊂ R2. The segments and the rigid motions associated with them are obtained by
minimizing a functional which depends on an implicit labelling function u : Ω → [0, 1]n, the
6-dimensional twist parametrizations ξi ∈ R6 of the rigid motions and the number n of rigidly
moving parts. The label assigment function u encodes the moving scene in the following way:

ui(x) =


1 if x ∈ Ωi,

0 if x /∈ Ωi,

(0, 1) x belongs partially to Ωi

. (4.29)

Here we denote the i-th segment by Ωi ⊂ Ω, which moves with a velocity ξi. Note that, in order
to permit fuzzy assignments, the label functions ui can take on values in the interval [0, 1], in
contrast to classical label assignment problems and their underlying binary representation.

The general problem of jointly solving for motion segmentation and motion estimation can
be stated as the following optimization problem:

Em(ξ, u, n) =

∫
Ω

G(ξ, I1, I2, Z1, Z2, u, n) dx+R(u, n)

s.t.
n∑
i=1

ui(x) = 1, ui(x) ≥ 0 ∀x ∈ Ω .
(4.30)

where non-bold ξ refers to the whole set of rigid velocities for i = 1, 2, . . . n. The function
G encodes geometric and photometric consistency between the RGB-D images according to a
linear combination of rigid-body motions:

G(ξ, I1, I2, Z1, Z2, u, n) = F
(
I1(x)− I2

(
W (x, ξ̄)

))
+αF

(∣∣T (ξ̄) π−1(x, Z1(x))
∣∣
z
− Z2

(
W (x, ξ̄)

))
,

(4.31)

with

ξ̄ =
n∑
i=1

ui(x) ξi , W (x, ξ) = π
(
T (ξ) π−1(x, Z1(x))

)
, (4.32)

and |•|z meaning the z-coordinate. The warping functionW (x, ξ) involves a projection π which
transforms the 3D coordinates of the observed points into pixel coordinates, and T (ξ) ∈ SE(3)
is the homogeneous transformation associated to the twist ξ. The function F in (4.31) is a
robust kernel that measures photometric / geometric consistency. In order to obtain a compact
labelling, we regularize the labels by imposing a smoothing term R(u, n) in (4.30). Note that
problem (4.30) is hard to minimize because the labels are non-linearly involved in the non-
convex data term G. To the best of our knowledge, except for performing complete search
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on u, which is unfeasible in our application, there is no direct way of tackling problem (4.30).
Consequently, we consider a simpler formulation where the labels are pulled out of the data term.
This significantly facilitates the optimization process because the label assignment function u is
now linearly involved with the data term:

Er(ξ, u, n) =

∫
Ω

n∑
i=1

uiD(ξi, I1, I2, Z1, Z2) dx+R(u, n)

s.t.

n∑
i=1

ui(x) = 1, ui(x) ≥ 0 ∀x ∈ Ω . (4.33)

The data fidelity term Di is now evaluated for every independent rigid motion:

D(ξi, I1, I2, Z1, Z2) = F (I1(x)− I2(W (x, ξi)))

+αF
(∣∣T (ξi) π

−1(x, Z1(x))
∣∣
z
− Z2(W (x, ξi))

)
. (4.34)

The optimization problems (4.30) and (4.33) would be equivalent if the labels u were binary.
The main difference between the two models is that in (4.30) the motions are interpolated and
subsequently used to evaluate the residuals with the exact velocities, whereas in (4.33) the
residuals are computed for each independent rigid motion and interpolated afterwards. With
binary labels there would not be interpolation between motions or residuals and, hence, both
models would turn out to be the same. In this work we aim to solve the motion interpolation
model (4.30) but, given its complexity, we resort to the simpler model (4.33) as an approximation
of (4.30) to optimize for the labels. For this reason, the regularization termR(u, n) plays a crucial
role to estimate accurate interpolated motions at the transitions between rigid bodies/parts.

Overall Optimization

Irrespective of which of the two models we chose, the data terms are nonlinear with respect
to the rigid motions. Therefore, the overall optimization problem is not convex and the global
minimum cannot be guaranteed to be found.

To tackle this joint problem, we propose a coordinate descent strategy that alternates between
estimating the motions for a fixed set of labels and then refining these labels for the recently
obtained velocities, as illustrated in Algorithm 3. The motions are computed in the fashion of a
visual odometry problem, but considering that the whole scene is not rigid but smooth-piecewise
rigid. The labels are solved using the approximate model (4.33) that is convex in u. Note that
we are implicitly optimizing for the label count n by adapting the number of labels within the
inner iterations, as will be described in §4.E.5. Next, we elaborate on how to solve the main two
subproblems in Algorithm 3.

Algorithm 3 Coordinate Descent Optimization
Initialize u0
for k = 0, 1, 2, ...

1: ξk+1 = arg minξ E(ξ, uk)

2: uk+1 = arg minuE(ξk+1, u)
3: Update n

end for
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4.E.3 Motion Estimation

Given a precomputed set of labels, at every iteration of Algorithm 3we need to estimate the rigid-
body motions associated to each label (step 1). This problem can be considered as an extension
of the well-known visual odometry (VO) problem. In this more general case, the whole scene
is not supposed to be moving rigidly; instead, we assume that there are n predominant rigid
motions that can be linearly combined to explain the motion of every point of the scene.

Our solution to estimate themotion of the segments builds upon two existingVOmethods: DI-
FODO [66] and the Robust Dense Visual Odometry [3]. This solution is obtained by minimizing
the photometric and geometric residuals, defined as

rI(x, ξ̄) = I1(x)− I2(W (x, ξ̄)) , (4.35)

rZ(x, ξ̄) =
∣∣T (ξ̄) π−1(x, Z1(x))

∣∣
z
− Z2(W (x, ξ̄)) . (4.36)

Note that the residuals are defined here according to the motion interpolation model (4.30). To
cope with large motions, the process of minimization is applied in a coarse-to-fine scheme where
the residuals are linearized at each level of the pyramid. In order to reduce the impact of outliers
and to provide an accurate motion estimate, a robust function of the residuals is minimized:

arg min
ξ

{∫
Ω

F (rI) + αF (rZ) dx

}
, (4.37)

F (r) =
c2

2
ln

(
1 +

(r
c

)2
)
. (4.38)

The function F (r) is equivalent to the CauchyM-estimator. Although we do not present compar-
isons in this regard, it was chosen because it provides considerably better results than other more
common choices like the L2 or L1 norms. The parameter α balances the two kinds of residuals
and c controls the relative weighting between high and low residuals. This minimization problem
is solved using Iteratively Reweighted Least Squares (IRLS), where the associated weighting
function is

w(r) =
1

1 +
(
r
c

)2 . (4.39)

With this strategy, we are able to solve the motion estimation problem accurately. The
minimization of both the photometric and the geometric residuals allows us to estimate the
motion of the segments even if they lack either texture or geometric distinctive features. This
aspect is crucial because the segments can be considerably small (compared to the whole scene)
and might not present sufficient photometric or geometric data to solve the 3D registration
problem using only one of these two input data.

4.E.4 Label Optimization

Once the motion ξk+1 at a given iteration k + 1 is obtained, we optimize the label assignment
function as the second step of the overall optimization problem (Algorithm 3). For a fixed set
of motions ξ, the functional E(ξk+1, u) is convex and can be solved using state-of-the-art first-
order solvers. In this work, the labelling function is optimized with the primal-dual algorithm
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developed by Pock et al. [121]. Detailed information about how to apply this algorithm to the
addressed problem is given in §4.E.9.

Two different regularizers are considered: total variation and quadratic regularization. Fur-
thermore, the geometrical data that RGB-D cameras provide are exploited to regularize the labels
according to the real 3D distances between points. Thus, regularizers are defined as a function
of a weighted gradient ∇r of the labels, whose weights (rx) are the inverse of the 3D distances
between the points:

∇r ui =

(
rx1

∂ui
∂x1

, rx2
∂ui
∂x2

)
. (4.40)

More details on the theory and the implementation of this regularization strategy can be found
in [12].

Total Variation Regularization

Total variation was made popular by the seminal work of Rudin et al. (ROF) [122] on image
denoising. This strategy is often advantageous because it permits the presence of discontinuities
in the regularized variable, and can also be used to measure the perimeter of a region if applied
on its indicator function. These factors made TVwidely used in general reconstruction problems
like image denoising [122], image deblurring [123] and image segmentation [124, 125]. In order
to incorporate TV regularization into our approach, we simply set:

R(u, n) = λ
n∑
i=1

∫
Ω

‖∇r ui(x)‖1 dx . (4.41)

Quadratic Regularization

As previously mentioned, TV regularization favours sharp label boundaries. However, in our
segmentation we would like to obtain a smooth interface between the regions (or at least between
contiguous regions). Hence, a suitable choice to encourage smooth label transitions is the so-
called Tikhonov or quadratic regularization:

R(u, n) = λ
n∑
i=1

∫
Ω

‖∇r ui(x)‖2
2 dx . (4.42)

Normally, quadratic regularization smoothes all the potential discontinuities in the solution,
which does not help to provide a precise segmentation of the scene. However, the geometric
weighting presented in (4.40) makes it possible to estimate discontinuities in the labels (for the
different depth layers) and soft transitions between rigid parts at the same time.

4.E.5 Initialization and Adaptive Number of Labels

This section describes the adopted strategy to refine the number of labels n so that they represent
the actual number of independent rigid motions in the scene. Since we are solving a non-convex
problem, it is crucial to start with an initial set of labels u0 that allows us to converge to the global
optimum in Algorithm 3. Instead of including the number of labels in the variational formulation
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a) Input image b) K-means initialization u0

Figure 4.7: We initialize our algorithm by performing K-means on the 3D coordinates of the image pixels.

(whichwould significantly increase the computational burden), we propose to initialize the labels
with a meaningful over-segmentation of the observed scene and iteratively remove those labels
that are redundant or not significant for the overall motion estimation. To this end, we create
an initial K-means segmentation based on the 3D coordinates of the points of the scene. The
initial number of labels is always set to 20 (the number of independent rigid motions in the
scene is assumed to be smaller than this quantity). An example of a K-means initialization is
shown in Figure 4.7. The refinement of the label count is performed, after a full inner iteration
of Algorithm 3, as follows:

• If labels i and j are associated to similar velocities, i.e., if ‖ξi − ξj‖ ≤ δ for some small
δ > 0, we merge both labels.

• If a label i contains too few pixels, i.e., if
∫

Ω
ui(x) < γ for some small γ > 0, we assign

these pixels to the outlier label and remove label i.

4.E.6 Occlusions and Outliers

In our formulation, we include an outlier label (un) to capture pixels with null depth mea-
surements and those other pixels that produce very high residuals for all the possible velocity
candidates ξi. To this end, a constant weight KD is assigned to this label which, according to
(4.33) means that Dn = KD in the whole image plane Ω. As previously mentioned, this outlier
label also plays an important role in the process of reducing the number of labels. When a
label is removed as a consequence of containing very few pixels, those few pixels need to be
assigned to another label. If they were assigned to a wrong label they could affect the subsequent
motion estimate and spoil the results. Conversely, if they are assigned to the outlier label, they
don’t participate in the motion estimation stage and are automatically assigned to the best label
afterwards in the label optimization stage.

On the other hand, we detect occlusions to avoid the evaluation of the dataterm (Di in (4.33))
for those pixels which are not visible in the second RGB-D frame. Occlusions are handled with a
binary mask O(x) instead of an extra label, in a way that occluded points can still be segmented
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and, therefore, their 3D motion is estimated too. This can be accomplished by virtue of the
regularization term, and allows us to provide a complete segmentation of the scene even if some
points or areas are occluded after the motion.

In order to detect occlusions, two factors are considered: the amount of pixels of the first
frame that are registered to each pixel of the second frame, and the temporal change in the
depth images. First, we compute a cumulative function C(x) : Ω → R that counts how many
pixels from the first frame are warped to the pixel x of the second frame (according to the
estimated motion). Without occlusions, this function is approximately equal to 1 (or maybe
inferior to one for new points appearing in the second frame), meaning that there is a one-to-one
(bijective) correspondence between the observed points at both images. On the contrary, if C(x)

is noticeably higher than one, there are some pixels in the first frame that are warped to the same
pixel x in the second frame, indicating the existence of occlusions. Consequently, we can define
a function OC(x) that finds the pixels candidates for occlusion by applying a warping with the
estimated motion and evaluating the cumulative function C:

OC(x) = C(W (x, ξ̄)) . (4.43)

On the other hand, unlike in the optical flow problem, geometric information is available and
can be exploited to reason whether a point is occluded or not. The simplest function that can be
used to detect occlusions is the temporal change in depth:

OZ(x) = Z1(x)− Z2(x) . (4.44)

Combining these two functionswe can detect most of the occluded areas in the scene by imposing
a threshold Ko:

O(x) =

{
1 if OC(x) +Kz OZ(x) > Ko

0 else
, (4.45)

where Kz is a parameter that weights OZ against OC . This strategy could be improved by
embedding these functions into a variational formulation and imposing regularization over
the occlusion mask. However, this has not been implemented in our work because it would
significantly increase the runtime of the algorithm.

4.E.7 Experiments

In this section, qualitative and quantitative results are presented to evaluate the accuracy of our
approach. These results are divided into two categories: scene segmentation and scene flow
estimation. However, the evaluation process is not straightforward given the lack of benchmarks
with either scene flow ground truth or segmentation from 3D motion. For this reason, we have
selected a set of synthetic and real RGB-D frame pairs that contain varied and challenging
motions. First, our approach is tested with some sequences from the Sintel dataset [126]. This
dataset contains scenes with heterogeneous and large motions, and provides optical flow ground
truth which can be used to measure the scene flow error. Second, the joint segmentation and
motion estimation is generated for several RGB-D image pairs that either have been utilized
in previous works in the literature (as in [115]) or have been taken with RGB-D cameras in
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Figure 4.8: Segmentation estimated by our approach for the eight sequences of the Sintel dataset considered. Colours
are independent for each result and do not depend on the associated rigid motion. Black represents the outlier label.
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Figure 4.9: Segmentation and the occlusion layer estimated by our approach for 6 image pairs taken with RGB-D
cameras. Colours are independent for each result and do not depend on the associated rigid motion. Black represents
the outlier label.

our lab. In all cases, two versions of our method are tested, corresponding to the two different
regularization strategies for the label optimization problem: total variation (TV) and quadratic
regularization (Quad). The resolution adopted for the images is QVGA (240 × 320) for those
taken with an RGB-D camera and 218 × 512 for the Sintel sequences. The maximum depth is
set to 5 meters in all cases. Tests have been performed with a total of fourteen image pairs: eight
from the Sintel dataset (named Sintel-1...8) and six real image pairs (named RI-1...6).

Scene Segmentation

In this subsection we present the motion segmentation that our method provides for all the
tested sequences. The occlusion layer is also displayed for some sequences together with the
segmentation although the occlusion is not a label itself (but a mask). Figure 4.8 shows the
results for the Sintel images. It can be observed that TV produces very sharp labels with very
few pixels interpolating between different motions. On the contrary, quadratic regularization
gives rise to a smooth segmentation where many pixels adopt an interpolated velocity between
two (or maybe more) rigid-body motions. The same behavior can be seen in Figure 4.9 where
the results for the real RGB-D images are presented. In general, it can be noticed that the number
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of labels to which the method converges is not the same for the two regularization strategies.
Normally, TV produces a higher number of labels because it is not able to interpolate motions
and tends to keep extra labels to compensate for it. Except for Sintel-4 (with TV) and RI-5, the
resulting segmentations represent quite accurately the different objects and rigid parts of the
scenes.

Scene Flow Evaluation

For all the sequences, the scene flow is evaluated quantitatively and compared with three state-of-
the-art methods: the Primal-Dual flow (PD-Flow) [12], the Semi-Rigid flow (SR-Flow) [115] and
the Layered flow (L-Flow) [114]. First, the photometric and geometric residuals are computed
by warping the intensity and depth images (respectively) according to the estimated flow. It
is important to note that occluded pixels will show very high residuals even if the motion is
accurately estimated for them, which considerably disturbs the error metrics (RMSE of the
residuals). To overcome this limitation and to provide more precise comparisons, we compute
the RMSE of the non-occluded pixels, which is a more reliable metric of the scene flow accuracy.
To this end, we assume that the occlusion layer computed by our approach is sufficiently accurate
and use it in all cases (neither PD-flow nor SR-flow detect occlusions). This does not represent
any bias toward our method because it is a common mask applied to all of them, and if some
occluded pixels have not been detected properly then they will affect the error metrics of all
the compared methods equally. Table 4.3 shows the results for all the frame pairs. It can be
observed that our method provides the most accurate estimates with both TV and quadratic
regularization. The differences between TV and Quad are essentially caused by the way they
produce transitions between the labels and the number of labels they converge to. As previously
analyzed, TV generates a sharp segmentation where the motion is barely interpolated, whereas
quadratic regularization provides smooth transitions between the labels that lead to larger areas
with interpolated motions. On the other hand, TV tends to converge to a higher number of labels,

Photometric residual - RMSE Geometric residual - RMSE
PD-Flow SR-Flow L-Flow MC-TV MC-Quad PD-Flow SR-Flow L-Flow MC-TV MC-Quad

Sintel-1 0.060 0.035 0.049 0.022 0.021 0.443 0.317 0.420 0.253 0.186
Sintel-2 0.057 0.068 0.063 0.026 0.025 0.086 0.090 0.108 0.056 0.053
Sintel-3 0.048 0.041 0.047 0.032 0.028 0.021 0.022 0.035 0.018 0.017
Sintel-4 0.091 0.069 0.109 0.063 0.044 0.378 0.347 0.607 0.155 0.190
Sintel-5 0.074 0.067 0.091 0.051 0.055 0.373 0.267 0.498 0.203 0.283
Sintel-6 0.120 0.118 0.127 0.055 0.055 0.224 0.190 0.253 0.114 0.096
Sintel-7 0.076 0.071 0.079 0.035 0.038 0.407 0.423 0.382 0.233 0.188
Sintel-8 0.063 0.026 0.045 0.028 0.027 0.083 0.069 0.086 0.038 0.037
RI-1 0.038 0.025 0.031 0.024 0.022 0.070 0.060 0.046 0.038 0.038
RI-2 0.032 0.028 0.035 0.021 0.020 0.286 0.259 0.294 0.114 0.102
RI-3 0.031 0.024 0.027 0.018 0.018 0.221 0.208 0.217 0.160 0.145
RI-4 0.015 0.012 0.011 0.008 0.008 0.025 0.024 0.025 0.025 0.025
RI-5 0.074 0.051 0.056 0.039 0.040 0.095 0.087 0.108 0.079 0.085
RI-6 0.077 0.050 0.070 0.049 0.047 0.036 0.038 0.037 0.041 0.040

Average 0.061 0.049 0.060 0.034 0.032 0.197 0.172 0.223 0.109 0.106

Table 4.3: Photometric and geometric residuals after warping the image pairs with the estimated scene flow.

119



CHAPTER 4. SCENE FLOW ESTIMATION

PD - Flow SR - Flow MC-Flow (TV) MC-Flow (Quad) 

Figure 4.10: Comparison of the 3D motion fields estimated for the RI-2 images. The initial frame is represented by
the red point cloud, the final frame by the turquoise point cloud and the scene flow by the blue lines. The above
comparison shows that our approach provides the most accurate estimate of the scene flow.

which helps to compensate for its inability to capture nonrigid motions. Overall, the best results
are obtained with quadratic regularization, although the differences are small.

For the sake of clarity, Figure 4.10 is included to illustrate the 3D motion field that the
compared methods estimate for the RI-2 pair. PD-Flow, which was conceived to work in real
time, is unable to estimate large motions and can only capture the motion of the body and the
upper arms. SR-Flow provides better results but is still unable to reproduce the real motion of
the hand and head. Only our approach estimates the whole motion field properly, specially with
quadratic regularization of the labels.

Moreover, for the Sintel image pairs, we project the scene flow onto the image plane to obtain
the optical flow and compare it with the ground truth provided by the Sintel dataset. In this case
we evaluate two error metrics: the average end-point error (EPE) and the average angular error
(AAE), as explained in [127]. Again, the results (Table 4.4) are computed for the non-occluded
pixels, which is a fairer comparison given that some methods do not manage occlusions and
hence provide bad estimates for the occluded areas. It can be seen that our approach with both
TV and quadratic regularization clearly outperforms the others, providing a motion estimate that
is between 2 and 5 times more accurate than those from the PD-Flow, SR-Flow and the L-Flow.

Regarding the computational performance, our method ranks second with a runtime of 30

seconds. For the experiments, we have utilized a standard desktop PC running Ubuntu 14.04
with an AMD Phenom II X6 1035T CPU at 2.6 GHz, equipped with an NVIDIA GTX 780 GPU
with 3GB of memory. The measured runtimes are:

• PD-Flow: 0.042 seconds (GPU).
• SR-Flow: 150 seconds (CPU).
• L-Flow: 8 minutes (CPU).
• MC-Flow: 30 seconds (label optimization on GPU and all the remaining steps on CPU).

4.E.8 Conclusions

In this paper we have addressed the problem of joint segmentation and scene flow estimation
from RGB-D images. The overall optimization problem is solved by means of a coordinate
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Optical flow - EPE Optical flow - AAE
PD-Flow SR-Flow L-Flow MC-TV MC-Quad PD-Flow SR-Flow L-Flow MC-TV MC-Quad

Sintel-1 1.940 0.684 1.320 0.221 0.219 27.87 7.694 13.26 2.486 2.827
Sintel-2 2.299 2.100 2.851 0.367 0.324 23.63 16.02 35.50 4.826 4.950
Sintel-3 1.223 1.130 0.975 0.383 0.344 31.69 20.21 20.80 8.364 7.721
Sintel-4 17.04 21.68 15.26 10.23 3.436 73.57 90.56 43.09 22.13 9.694
Sintel-5 4.381 3.990 3.212 2.316 1.983 24.27 26.14 10.43 14.56 10.16
Sintel-6 6.045 7.739 7.67 1.168 1.498 12.10 18.99 27.52 3.845 5.194
Sintel-7 2.875 3.335 3.382 1.480 1.591 26.50 21.26 22.48 7.723 8.169
Sintel-8 1.674 0.456 1.012 0.228 0.228 22.45 4.713 8.003 3.762 3.757
Average 4.685 5.142 4.461 2.049 1.203 30.26 25.70 22.63 8.462 6.559

Table 4.4: Average end-point and angular errors of the optical flow computed by projecting the estimated scene
flow onto the image plane.

descent method which alternates between motion estimation and label optimization, while at
the same time adapts the number of labels to the real number of independent rigid motions of
the scene. Two different regularization strategies for the labels are employed, TV and quadratic,
leading to sharp and smooth segmentations, respectively. Our method has been tested with both
synthetic and real RGB-D image pairs, and the experiments show that joint segmentation and
motion estimation provides very accurate results that outperform state-of-the-art scene flow
algorithms on RGB-D frames. Comparisons between the two regularization strategies show that
quadratic regularization estimates motion more accurately than TV because it generates smooth
label transitions between rigid bodies, which models the scene motion more realistically. For
future work, we plan to extend this work to RGB-D video streams where temporal regularization
can be imposed.

4.E.9 Appendix: Primal-Dual Algorithm for the Label Optimization

As mentioned in §4.E.4, the labelling function u is optimized with the primal-dual algorithm
developed by Pock et al [121]. To this end, we consider the following generic problem:

min
u
{H(u) +Q(Ku)} (4.46)

where H and Q are given by:

H(u) =

∫
Ω

n∑
i=1

uiDi(ξi, I1, I2, Z1, Z2) dx+ δ(u) ,

Q(Ku) = R(u) .

The linear operator K denotes the spatial gradient applied on the labelling. This operator is
computed in the same fashion as in [12] where the authors incorporate geometric weights in
order to regularize the motion field on the 3D world coordinates instead of on the image plane.
The term δ(u) denotes the indicator function for the feasibility of u according to the constraint∑n

i=1 ui(x) = 1:

δ(u) =

{
0 if

∑n
i=1 ui(x) = 1,

∞ else.
(4.47)
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More specifically, the aforementioned algorithm tackles the problem

min
u

max
p
{〈p,Ku〉+H(u) +Q∗(p)} (4.48)

and performs the iterative steps illustrated in Algorithm 4 in order to solve (4.48). The dual
variable p : Ω→ Rn is an auxiliary variable and is maximized during the optimization process.
Function Q∗ denotes here the Fenchel conjugate function of Q. The operators (I + τ∂Q∗)−1

and (I + τ∂H)−1 are the so-called resolvents and can be considered as generalized projectors
[8]. Regarding the step sizes, we set them according to the diagonal preconditioning strategy
explained in [121].

Algorithm 4 Primal-Dual Algorithm for minimizing E(ξk+1, u)

for k = 0, 1, 2, ...
1: pk+1 = (I + τ∂Q∗)−1

(
pk + τK ūk

)
2: uk+1 = (I + τ∂H)−1(uk − σKT pk+1)
3: ūk+1 = uk+1 + θ (uk+1 − uk)

end for

Proximal Operator for Total Variation Regularization

In our algorithm we incorporated TV regularization and we set:

R(u) = λ ‖Ku(x)‖1 =
n∑
i=1

∫
Ω

‖Ks ui(x)‖2 . (4.49)

The operatorKs here represents the gradient operator for each of the label functionsui. Regarding
the computational cost of our method, applying TV has only impact on computing the resolvent
(I + τ∂Q∗)−1 in the primal-dual formulation (4.48) of our problem. This operation can be done
in closed-form as follows:

(I + τ∂Q∗)−1 (p(x)) = λ
pi(x)

max(‖pi(x)‖ , λ)
, ∀i ∈ {1, ..., n} . (4.50)

Proximal Operator for Quadratic Regularization

To obtain a smooth transitions between the labels, we have also tested quadratic regularization:

R(u) = λ ‖Ku(x)‖2
1 =

n∑
i=1

∫
Ω

‖Ks ui(x)‖2
2 . (4.51)

The implementation of a quadratic regularizer only affects the evaluation of the proximal operator
(I + τ∂Q∗)−1. Like for TV, it can be done in closed form:

(I + τ∂Q∗)−1 (p(x)) =
pi(x)

(λ+ τ)
, ∀i ∈ {1, ..., n} . (4.52)
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4.E. MOTION COOPERATION: SMOOTH PIECEWISE RIGID SCENE FLOW FROM RGB-D IMAGES

Implementation of the Differential Operator K

For simplicity, we assume that in the discrete case ui ∈ X with X = Rm×c (wherem and c are
the number of rows and columns, respectively), and pi ∈ X×X . The discrete linear operatorK
represents a geometrically weighted gradient that is applied pixel-wise over the image domainΩ.
Hence, identicalKs operators are applied over each individual labelling functions ui as follows:

Ksui = ∇r ui =

(
rx1

∂ui
∂x1

, rx2
∂ui
∂x2

)
(4.53)

where (x1, x2) represent the pixel coordinates and the weighting functions rx1 , rx2 encode the
inverse of the 3D distances between points observed by contiguous pixels (more details about
these geometric functions can be found in §4.D.2). On the other hand,KT represents theweighted
divergence operator (inverted in sign). Similarly toK, it is composed of identicalKT

s operators
applied pixel-wise to the individual dual variables pi:

KT
s pi = −∇∗r · pi = −rx1

∂p1
i

∂x1

− rx2
∂p2

i

∂x2

(4.54)

where (p1, p2) are the two components of the dual variables.
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Fast Odometry and Scene Flow from RGB-D Cameras
based on Geometric Clustering

Mariano Jaimez, Christian Kerl, Javier Gonzalez-Jimenez and Daniel Cremers

Abstract
In this paper we propose an efficient solution to jointly estimate the camera motion and a piecewise-
rigid scene flow from an RGB-D sequence. The key idea is to perform a two-fold segmentation of
the scene, dividing it into geometric clusters that are, in turn, classified as static or moving elements.
Representing the dynamic scene as a set of rigid clusters drastically accelerates the motion estimation,
while segmenting it into static and dynamic parts allows us to separate the camera motion (odometry)
from the rest ofmotions observed in the scene. The resultingmethod robustly and accurately determines
the motion of an RGB-D camera in dynamic environments with an average runtime of 80 milliseconds
on a multi-core CPU. The code is available for public use/test.

4.F.1 Introduction

The joint estimation of the motion of a camera and the motion of the objects it observes is a
problem of great interest with numerous applications in robotics, computer vision and beyond:
tracking andmapping in dynamic scenarios, manipulation of fast-moving objects, or autonomous
navigation are a few prominent examples. However, it is also a complex and computationally
demanding problem that has not been properly solved yet. On the one hand, great progress
have been made in visual odometry under the assumption of static or quasi-static environments
[3, 38, 66], but the performance of these methods deteriorates when the number of pixels
observing non-static parts becomes significant. On the other hand, scene flow (motion of the
scene objects) is often estimated as the non-rigid velocity field of the observed points with
respect to the camera relative position. This approach alone does not yield the camera motion
because all points in the scene are treated equally and, therefore, static and non-static regions
are indistinguishable when the camera moves. Moreover, the scene flow estimation tends to be
computationally expensive, and most existing approaches require between several seconds and
few minutes to align just a pair of images, which prevents them from being used in practice.

In this paper we present a new method to estimate both the motion of an RGB-D camera
and the scene flow. Our approach relies on a two-fold segmentation of the scene. First, the
scene is divided into geometric clusters by running K-Means on the 3D coordinates of the
observed points. These clusters are treated as rigid bodies and are mostly exploited for the
scene flow estimation, which greatly reduces its computational cost without sacrificing much
accuracy. Second, the scene is also segmented into static and moving parts. The static regions
(background) are used to derive the camera motion while the scene flow is estimated for the
moving parts. To increase robustness, we propagate the background segmentation through time
since static and moving parts of the scene are likely to be consistent along the image sequence.

We perform an extensive evaluation of our approach, comparing it with several state-of-
the-art methods in visual odometry and scene flow estimation. Results show that our approach
estimates the camera motion more accurately, in particular when the scene is highly dynamic,
and ranks second in the scene flow evaluation. Above all, its main advantage is its significantly
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lower runtime, of about 80 milliseconds running on multiple CPU cores at QVGA resolution
(several orders of magnitude faster than most scene flow algorithms). For this reason, it can be
applied online, a feature that existing approaches lack. The code, together with the demonstration
video, can be found here:

http://mapir.isa.uma.es/work/Joint-VO-SF

4.F.2 Related Work

Thus far, visual odometry and scene flow estimation are two highly related problems that are
usually addressed separately because of their intrinsic complexity. Though some joint solutions
have been reported, they typically lack precision and efficiency. Next, we review some of the
latest proposals for these problems.

Traditionally, visual odometry approaches have exploited sparse feature correspondences to
estimate the camera motion [33]. While they are resilient to large numbers of outliers, they
usually require optimization over multiple frames to achieve accurate camera localization. In
general, these methods cannot provide a dense scene flow, but there exist extensions to estimate
the motion of multiple rigid objects [128]. However, they require enough feature points to
sufficiently constrain the motion, which is not guaranteed for objects projected as small regions
on the image. With the advent of consumer RGB-D cameras, which provide dense depth maps
at comparably high resolution, dense direct methods gained popularity. Typical cost functions
penalize the intensity error [3, 48], inverse or direct depth error [129, 66], point-to-plane
error [51], or an alternative error in the feature space [130]. The main difference to sparse,
feature-based methods is that they do not require explicit correspondences, but rather compute
and update them implicitly during the optimization. To achieve robustness against unmodelled
effects, these approaches combine multiple cost functions and use robust penalties like Huber,
Tukey, or Cauchy [54, 3]. This strategy works well if most of the scene is static and only little
portions of the input images observe moving parts, but fails when the moving parts become
more significant.

Scene flow has traditionally been estimated with stereo systems [101], but this trend also
changed in 2010 with the appearance of affordable RGB-D cameras. Several variational ap-
proaches have been proposed [104, 95, 105] to compute scene flow from RGB-D image pairs,
using different norms (weighted L2 / L1) for the data and the regularization terms. Jaimez et
al. [12] presented a real-time implementation using a Primal-Dual solver, which provides good
estimates only for small motions. The semi-rigid scene flow proposed in [115] uses a 6-DoF
representation for the flow and also includes the camera motion into its formulation, which
makes it the best candidate for comparisons. However, only the accuracy of the scene flow was
evaluated in their paper. Sun et al. [114] presented a probabilistic approach which relies on a
depth-based segmentation of the scene. They regularize the estimation process by retrieving a
mean rigid-body motion for each layer, and allow for small deviations of the motion field from
the layer’s mean motion. A big downside is its high runtime: it requires several minutes to align
just a pair of images. The smooth piecewise-rigid flow proposed in [131] achieves very accurate
flow estimates by jointly segmenting the scene into its rigidly moving parts and computing their
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Figure 4.11: Schematic representation of the main components of our algorithm. The estimation process starts (left)
by reading a pair of RGB-D images. After the process finishes, the background segmentation b is propagated to the
next frame according to ξi and ξO to be used in the next iteration.

underlying motions. However, optimizing for the segments makes it also computationally very
expensive. Other approaches focus on the estimation of large motions. SphereFlow [109] also
parametrizes the motion field with 6 DoF, and proposes to match corresponding points within
a 3D spherical search range instead of using traditional planar patch comparisons. GraphFlow
[132] outperforms SphereFlow by looking for and registering sparse correspondences between
points in geometric edges, and densify the flow at a later optimization stage. None of these two
methods [109, 132] provide information about their runtime.

Recent works on non-rigid 3D reconstruction also estimate the camera motion and a deforma-
tion flow for the particular objects they reconstruct. DynamicFusion [91] estimates the camera
motion using KinectFusion [51], which is not prepared to handle moving objects. Afterwards,
they estimate a set of sparse volumetric rigid transformations to align the moving object to the
model, and interpolate between these transformations to obtain the dense warp-field. VolumeDe-
form [92] follows a similar sequence, estimating the camera motion by aligning sparse color
correspondences and computing the dense deformation field associated to the deformable object
at the finest resolution. They both achieve impressive results for moderate camera motions and
deformations, but unfortunately their code is not available. Fusion4D [133] addresses the same
problem using multiple static cameras, and therefore only a nonrigid motion field is estimated
(odometry is not necessary).

4.F.3 Overview of the Method

The proposed method to jointly estimate the camera and the scene motions from RGB-D
sequences comprises several sequential blocks, as illustrated in Figure 4.11. As inputs, a pair
of I-D frames (I1, Z1) and (I2, Z2) is given, where I(.) : Ω → R and Z(.) : Ω → R stand for
the intensity and depth images defined on the image domain Ω ⊂ R2. First, the frame (I1, Z1)

is segmented into N geometric clusters C = {Ci, i = 1, ..., N} by applying K-Means to the
3D coordinates of the scene points. Each cluster is considered to behave as a rigid body, which
greatly simplifies the scene flow estimation because the motion is estimated cluster-wise instead
of pixel-wise (reducing the number of unknowns by 3-4 orders of magnitude). The velocity
associated to the each cluster is represented by ξi ∈ se(3). Second, an initial guess for the
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odometry ξR ∈ se(3) is computed by minimizing the photometric and geometric residuals
within a robust penalty function. Thus, we obtain the predominant rigid motion of the scene
which, save in cases of very dynamic environments, corresponds to the camera motion itself.
Subsequently, this estimate is used to segment the scene into static parts (or background) and
moving objects. To this end, the I-D images are warped according to ξR and the average residuals
per cluster are computed. Only the clusters moving according to ξR will have low residuals, and
therefore will be segmented as background. Clusters with high residuals after the warping are
those whose motion does not coincide with ξR, and hence are tagged as moving objects. Instead
of using a binary segmentation, which would require to set a sharp threshold on the residuals,
we use a continuous representation and define bi ∈ [0, 1] as the probability of any cluster i to be
a moving object. For simplicity, we will use b to refer to the segmentations of all clusters. More
details about the background segmentation are given in §4.F.6.

Once the segmentation is known, it can be used to break the motion estimation process into
two separate steps. First, all the clusters that have been tagged as background are used to obtain a
more precise odometry ξO, now excluding the non-static parts. Second, a piecewise rigid scene
flow is estimated for the rest of the scene, assuming that each cluster behaves as a rigid body.
Lastly, the background segmentation is recomputed with the new refined odometry and warped
to the next frame, leading to BT : Ω→ [0, 1]. Since moving objects are likely to be moving for
more than one frame, and the same applies to still parts, we make use of BT in the next iteration
to obtain segmentations that are consistent through time.

4.F.4 Geometric Clustering

Our proposal to reduce the complexity of a per-pixel estimation of the motion field is to cluster
the scene points in sets that will be treated as rigid bodies. Other existing algorithms have
employed this strategy as well to obtain a faster (and often more precise) scene flow either
by using superpixels [134] or K-Means [114, 131]. We follow the idea presented in [131] and
compute K-Means clusters based on the 3D coordinates of the observed points. This strategy is
advantageous because:

• It has a physical ground, in the sense that close points in space are very likely to belong to the
same rigid body.

• It is a very convenient representation when working with image pyramids (coarse-to-fine).
Once the clusters are computed for a given image, they can be easily computed for the rest of
the pyramid by using the spatial coordinates of the k-means that have already been obtained.
This is efficient and also provides a consistent clustering throughout all the image levels.

• It is suitable to propagate information from one frame to the next because the cluster centers
can be mapped efficiently from (Z1, I1) to (Z2, I2) with ξO and ξi.

Two additional steps are performed after obtaining the clusters. First, we build a connectivity
graph G = {Gij, i = 1, ..., N, j = 1, ..., N} which indicates which clusters are contiguous in
space (Gij = 1) and which ones are separated (Gij = 0). This graph is exploited later on for
the background segmentation by fostering contiguous clusters to be segmented similarly (spatial
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regularization). Moreover, contiguous clusters are smoothed to avoid sharp motion transitions
along their boundaries, but this smoothing mostly affects the scene flow estimation and does not
play any role in the other modules of our algorithm.

Another important aspect is the number of clusters to consider. Too few leads to very large
scene regions which will likely include parts of the scene with different motions. On the other
hand, if many clusters are extracted, then they will not contain enough points for their motion to
be robustly estimated. We have empirically chosen to use 24 clusters per image, which leads to
middle-size clusters that can be homogeneously initialized on the image domain (6× 4). More
elaborate strategies could be adopted in the future, like using an adaptive number of cluster to
fuse redundant regions or to create new ones in areas with high residuals.

The main limitation of our approach is the assumption that each cluster behaves as a rigid
body. Since the only criterion to form the clusters is the spatial proximity of points, there can
always be clusters which actually contain points from different rigid bodies. For instance, if
a person stands close to a wall, there might be some clusters containing points from both the
person and the wall. In this case, the estimated motion for those clusters will be the predominant
motion between the two (person or wall). This limitation could be alleviated or even solved by
increasing the number of cluster and regularizing the motion between them, at the expense of a
significantly higher computational cost.

4.F.5 Robust Odometry

The odometry is computed by minimizing the photometric and geometric residuals between
consecutive RGB-D pairs. The geometric residuals rZ and the photometric residuals rI are
defined as

rkZ(ξ) = Z2(W (xk, ξ))−
∣∣T (ξ)π−1(xk, Z1(xk))

∣∣
z
, (4.55)

rkI (ξ) = I2(W (xk, ξ))− I1(xk) , (4.56)

where x represents a given pixel of the image (the superscript k is omitted from here on) and
|•|z denotes the z-coordinate of a 3D point. The function π : R3 → R2 projects 3D points
onto the image plane according to the pinhole model, and T (ξ) ∈ SE(3) is the homogeneous
transformation associated to ξ. The warping function is given by:

W (x, ξ) = π
(
T (ξ) π−1(x, Z1(x))

)
. (4.57)

We formulate a dense optimization problem to obtain the camera motion, and compute the
Cauchy M-estimator of the residuals:

ξR = arg min
ξ

{
M∑
k=1

[
F (wkRr

k
Z(ξ)) + F (αIw

k
Rr

k
I (ξ))

]}
, (4.58)

F (r) =
c2

2
log

(
1 +

(r
c

)2
)
, (4.59)

whereM is the number of pixels in Z1 with non-null depth. The Cauchy M-estimator represents
a good compromise between robustness and basin of convergence, since it is much more robust
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than L2 / L1 norms but never gets flat like the Tukey’s biweight function. The parameter αI
weights the photometric and the geometric terms. The parameter c marks the inflection point
of F , and can be tuned to make the estimation more or less robust against high residuals.
Furthermore, a pre-weighting (wR) is applied to help the solver converge to the true camera
motion:

wR(x) = Z1(x)(1−BT (x)) . (4.60)

The pre-weighting has a two-fold function. First, it downweights pixels of the clusters which
were previously segmented as moving objects (remember thatBT (x) encodes the probability of
pixel x to have been moving in the previous frame). Second, it gives more significance to distant
points which are more likely to observe static parts of the scene.

Since (4.58) is highly non-linear, the motion is solved within a coarse-to-fine scheme, lin-
earizing the residuals at every level of the image pyramid, as done in [3, 66]. At each level, the
solution of (4.58) is obtained via Iteratively Reweighted Least Squares.

4.F.6 Background Segmentation

In order to estimate both odometry and scene flow, we need to separate the static parts of the
scene from the moving ones. This would be straightforward if the camera was still, but when the
camera moves every region of the scene is in apparent motion and, hence, static and non-static
objects become hard to distinguish. To identify them, we propose to use the robust odometry ξR
(previously computed) to check which regions/clusters follow this pattern of motion and which
do not. This evaluation is not performed pixel-wise but cluster-wise, since we assume that all
pixels in a cluster have the same rigid body motion.

Initially, the RGB-D frames are warped according to ξR. After thewarping, clusters belonging
to the background will have low photometric and geometric residuals, whereas the residuals
associated to moving objects will still be high. In theory, this criterion should suffice to segment
the scene into static and non-static parts, but in practice the process is much more complicated
because residuals are not always a good metric to evaluate precise image alignment:

• Intensity and depth images are never registered perfectly. This means that some pixels of
the background (close to object boundaries) tend to get the color of the foreground and vice
versa. Thus, some clusters could be perfectly aligned and still bear high residuals due to this
misregistration of color and depth.

• Occluded pixels will always exhibit high residuals even if the images are perfectly aligned.

• Since the depth measurement error grows quadratically with depth, the geometric residuals
of distant clusters tend to be much higher than those of clusters close to the camera.

To cope with these issues, the background segmentation is divided into two steps. First, we
compute a robust metric of the residuals per cluster (δ). Second, we formulate a minimization
problem to obtain the segmentation of the clusters b based on their average residuals, their
geometry and their previous segmentations bT (bT is computed by averagingBT (x) per cluster).
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The robust average residuals are computed as:

δi =

∑Si−Oi

k=1 αIr
k
I + rkZ/Z̄i

Si −Oi

, (4.61)

where Si is the size of the i cluster, Oi is the number of occluded pixels in the cluster (which are
excluded from the computation of δi) and Z̄i is the average depth of the cluster. The occluded
pixels are considered to be those with geometric residuals below a certain threshold, that is, a
pixel x is occluded if

rZ(ξ, x) < −∆Zocc . (4.62)

Next, we formulate a minimization problem to obtain the background segmentation. The
energy to be minimized is composed of four terms:

E(b) = ED(b, δ) + ER(b) + ET (b, bT ) + EZ(b, Z̄) , (4.63)

where b is the only unknown (dependencies with δ, bT and Z̄ are shown for clarity). The
dataterm ED pushes the clusters to be segmented as background when their residuals are low,
and vice versa. To this end, we need to define a mapping between δ and b, and specify thresholds
for low and high residuals (δL and δH respectively). For the sake of simplicity, we employ the
following piece-wise linear function:

g(δi) =


0 δi < δL

(δi − δL)/(δH − δL) δL ≤ δi ≤ δH

1 δi > δH

, (4.64)

and define the dataterm ED as

ED(b, δ) =
N∑
i=1

wD(δi) (bi − g(δi))
2 , (4.65)

with

wD(δi) =

√(
2δi − (δH + δL)

δH − δL

)2

+ 1 . (4.66)

The function wD(δi) increases the weight of the dataterm when the residuals are far from the
area of uncertainty (δL < δi < δH), giving more strength to clusters which are clearly either part
of the background or a moving object.

The regularization termER tries to force neighbouring clusters to get a similar segmentation,
and is defined as

ER(b) = λR

N∑
i=1

N∑
j=i+1

Gij (bi − bj)2 . (4.67)

We have chosen to minimize a quadratic term in (4.67) because it helps to smooth occasional
wrong labellings of clusters with misleading residuals. We have also tried to minimize the
absolute value of the differences (total variation), which allows for sharp discontinuities between
connected clusters, but it did not provide better results.
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Temporal regularization (ET ) is also imposed, since both static and dynamic parts of the
scene are very likely to remain still and moving (respectively) through time:

ET (b, bT ) = λT

N∑
i=1

(bi − bTi )2 . (4.68)

Lastly, we include an extra term that introduces a bias towards the background (bi → 0) for
all the clusters which are far from the camera. This models the fact that, in indoor scenarios,
moving objects tend to be at the foreground while distant observations are likely to capture the
fix elements of the environment (walls, ceiling, floor, furniture, etc.).

EZ(b, Z̄) = λZ

N∑
i=1

max
(

0, eZ̄i − eZMin

)
b2
i . (4.69)

Since all the terms in E(b) are squares with respect to b, the optimization problem (4.63) is
convex and its solution can be obtained in closed form.Detailed information about the parameters
introduced here is given in §4.F.8.

4.F.7 Scene Flow Estimation and Odometry Refinement

Once the scene is segmented, we divide the motion estimation into two separate processes. All
the clusters segmented as background will be considered as a single rigid block and used to
re-estimate the odometry. On the other hand, the rigid body motions of the moving clusters ξi
will be computed independently. Knowing ξi, the scene flowm(x) associated to each point p(x)

of the cluster i is calculated as

m(x) = (T (ξi)− I)p(x) . (4.70)

Since b are continuous in the range [0, 1], we need to create a partition of that interval to separate
static and moving objects. Instead of imposing a simple binary threshold at 0.5, we consider the
following three regions:

• If bi < 1/3, the cluster i is assumed to be static and is only utilized for the odometry
estimation.

• If bi > 2/3, the cluster i is assumed to bemoving and is only utilized for scene flow estimation.

• If 1/3 < bi < 2/3, the state of the cluster i is uncertain and therefore it is utilized for both
the odometry and the scene flow estimation.

In this way, clusters that are not clearly segmented contribute the odometry estimation
(because they could be background), but we also compute their own independent motion.

The rigid motions of the moving clusters are obtained by minimizing the following energy:

ξi = arg min
ξ

{
Si∑
k=1

[
F (wkZr

k
Z(ξ)) + F (αIw

k
I r
k
I (ξ))

]}
. (4.71)
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The final odometry ξO is computed similarly by minimizing (4.71) for the background pixels.
These optimization problems are almost the same as the one described in §4.F.5; the only
difference is the pre-weighting strategy. Once the scene is segmented, we use pre-weights that
penalize occlusions and discontinuities, favouring smooth regions in the optimization process
to find a precise solution:

wZ =
1

KZ + (∇xZ1)2 + (Z1 − Z2)2
, (4.72)

wI =
1

KI + (∇xI1)2 + (I1 − I2)2
. (4.73)

The weights wZ and wI penalize pixels where either the spatial or the temporal gradients are
high. Althoughwe do not provide an explicit comparison in the paper, this pre-weighting strategy
provides better results than pure robust minimization without pre-weights, and also helps the
IRLS solver to converge in fewer iterations.

4.F.8 Implementation Details

In this section we describe important details of our algorithm which are not part of its theoretical
core but have an impact on its performance, and set the values of the parameters introduced
throughout the paper.

The Cauchy M-estimator includes the parameter c that controls how robustly the residuals
are minimized. In all cases, this parameter is set proportional to the average photometric and
geometric residuals (r̄), which are evaluated after each iteration of the IRLS solver:

c =


0.2 r̄ Robust odometry (§4.F.5)
r̄ Scene flow (§4.F.7)
2 r̄ Odometry refinement (§4.F.7)

. (4.74)

Another important aspect is the selection of the parameters δL and δH in the segmentation
stage. To obtain them, we compute the median of the robust residuals associated to the clusters
(δ̂). Since the clusters of moving objects will typically have residuals considerably higher than
δ̂, we set this value as a threshold. We have also observed that average residuals grow with the
motion of the camera and, therefore, we also make δL and δH to be dependent on the norm of
the camera motion:

δ̂t = min(tM ,max(tB, δ̂)) , (4.75)

δL = δ̂t + 10 ‖ξR‖2 , δH = 2δ̂t + 10 ‖ξR‖2 . (4.76)

The median residual δ̂ has to be truncated because clusters with residuals below a certain low
threshold (tB) are always assumed to belong to the background and those above a high threshold
(∼ 2 tM ) are assumed to be moving objects.

The rest of the parameters introduced in sections §4.F.5, §4.F.6 and §4.F.7 are set as follows:

• αI is set to 0.15 so that photometric and geometric residuals contribute equally.
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• The occlusion threshold (∆Zocc) is set to 0.2 meters, and the ZMin of the geometric prior in
the background segmentation is set to the mean depth of the scene divided by four.

• The weights of the different terms in the segmentation stage are set to λR = 0.5, λT = 1.5

and λZ = 0.15.

• The constants of the pre-weights in (4.72) and (4.73) are set to KI = 0.1 and KZ = 10−4.

These values are the ones used for all the experiments presented in the paper and, although
they have been obtained empirically, they provide good results for the indoor scenarios typically
found when using RGB-D cameras. However, these values are not optimal in general and would
need to be retuned if this method is applied with different sensors and/or configurations (e.g.
stereo system and outdoor).

4.F.9 Experiments

This section is divided into two main parts: evaluation of the odometry and evaluation of the
scene flow estimation. In all the experiments, we used registered RGB-D images at QVGA
resolution (240×320). The experiments has been run on a laptop with an Intel Core i7-4712
HQ CPU at 2.3 GHz and Ubuntu 14.04. Besides analyzing the results presented herein, we
encourage the reader to watch the demonstration video of our method (link above).

Odometry Evaluation

We test the accuracy of our algorithm with several sequences of the TUM dataset [49]. Some of
the selected sequences do not contain moving objects (Freiburg1), while others (Freiburg3) are
very challenging and present, at least for some time intervals, scenesmostly composed ofmoving
objects or where the percentage of pixels with null depth goes beyond 50%. For all the tested
sequences, we compare our method with DIFODO [66], DVO [3] and the semi-rigid scene flow
(SR-Flow) [115] (which is the only method, apart form ours, providing both odometry and scene
flow). The accuracy of each method is measured with the root mean square (RMS) translational
and rotational drifts per seconds, as proposed in [49]. Besides this quantitative evaluation, and
since only pixels with valid depth can be used to estimate the camera motion, we compute two
additional statistics per sequence: the average percentage of pixels with valid depth, and the
minimum percentage of pixel with valid depth among all the frames (i.e. the RGB-D image with
the highest number of null depth measurements).

Sequence Average % Min % Translational RMSE (cm/s) Rotational RMSE (deg/s)
valid depth valid depth DIFODO DVO Ours SR-Flow DIFODO DVO Ours SR-Flow

Fr1/desk 74.49% 60.07% 3.66 4.08 3.79 11.6 2.56 2.18 1.88 7.44
Fr1/desk2 74.52% 60.95% 5.28 6.45 5.33 12.7 3.31 3.55 2.51 9.96
Fr1/teddy 77.53% 64.73% 5.18 9.67 6.51 17.7 2.77 2.46 2.04 13.47

Fr3/walk static 54.59% 45.20% 45.4 31.2 11.1 23.7 10.2 4.56 1.83 5.42
Fr3/walk xyz 52.77% 17.67% 69.4 48.1 30.4 50.1 12.49 8.45 5.69 11.43

Fr3/walk halfsphere 58.59% 30.46% 70.0 41.2 34.1 46.5 19.21 7.22 6.77 13.8

Table 4.5: Odometry - Sequence statistics and translational/rotational deviations per second.
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A B C D E F

Figure 4.12: Segmentations obtained for some of the RGB-D frames in the tested sequences. Clusters segmented
as background are depicted in blue and moving objects in red. It can be noticed that different moving parts can be
segmented properly: (A) is segmented perfectly and (B) is not perfect but quite reasonable. (C) shows that, despite
the geometric prior (4.69), our method can also detect moving objects which are at the background, far from the
camera. (D) and (E) are examples of clusters wrongly segmented as moving parts. This sometimes occurs with
clusters that observe non-smooth surfaces with scattered points and depth discontinuities, but they do not have any
negative effect on the odometry estimation as long as there are enough clusters segmented as background. Finally,
(F) shows one of the mentioned cases where more than half of the image has null depth and, among the pixels with
valid depth, only half of them are observing static parts. In this case, our method fails to segment the scene properly
and hence also fails to estimate the camera motion.

Results are shown in Table 4.5. It can be noticed that, for the static scenes, DIFODO shows
the lowest translational drift and our approach has the lowest rotational error. The worst results
are provided by the SR-Flow, being on average between 2 and 4 times less accurate than the other
methods. As far as the dynamic sequences are concerned, the best results are always obtained
with our approach. However, the drift is quite high in all cases, a fact that can be explained by
analyzing the number of valid/used points in each sequence. While static sequences present, on
average, 75% of valid depth measurement, this number drops to 55% in the non-static sequences.
Moreover, within the non-static sequences, some RGB-D frames contain even less than 20% of
valid depth measurements which, together with the fact that some of them are observing moving
objects, renders the odometry problem extremely complicated. For the "Freiburg3/walk static"
sequence, the percentage of used pixels never goes below 45%, and therefore our approach can
still provide reasonable results. In the other two cases, the presence of RGB-D pairs with very
low percentages of valid depth leads to much higher RMS errors.

We also show some of the segmentations provided by our method (Figure 4.12) and, for the
static sequences, we compute the percentage of pixels wrongly segmented as background, and
also those considered as uncertain (Table 4.6). Results show that these percentages are quite low
for the three sequences considered.

Sequence Moving objects Uncertain
Freiburg1/desk 1.95% 3.73%
Freiburg1/desk2 2.53% 4.44%
Freiburg1/teddy 1.2 % 1.58%

Table 4.6: Percentage of pixelswrongly segmented as background or as uncertain regions in theFreiburg1 sequences.
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Figure 4.13: Selected images to evaluate scene flow, together with the segmentation provided by our method.
Clusters segmented as background are depicted in blue and moving objects in red. It can be seen that the moving
objects are segmented precisely in most of the images. The main exception is the "hand RGB-D pair", where the
hand was not segmented as a moving object but as a region with uncertainty (slightly purple in the picture) due to
its very small motion. Other inaccuracies can be observed in small parts of the backgrounds wrongly segmented as
moving objects.

Scene Flow Evaluation

In this section we compare our approach with three of the most recent works on scene flow
estimation: primal-dual scene flow (PD-Flow) [12], the semi-rigid scene flow (SR-Flow) [115]
and the smooth piecewise rigid flow (MC-Flow) presented in [131]. Given the lack of RGB-D
datasets with ground truth for the evaluation of scene flow, we have selected a set of RGB-D
pairs observing different objects with varied motions. Some of the tested images have been used
in previous works [115] [131], while others are new and will be published together with the
code. Half of these RGB-D pairs were recorded with a moving camera, while the camera stood
still in the other half. The accuracy of the different methods is assessed by warping the RGB-D
pairs according to the estimated scene flow and measuring the RMS residuals (geometric and
photometric) after alignment. The only inconvenient associated to this procedure is the fact
that occluded pixels always generate high residuals even if the images are perfectly aligned,
and therefore distort the error metric. To prevent this, for every method we discard pixels with
geometric residuals below a certain threshold, i.e., a pixel x is disregarded if rZ(x) < −∆Zocc
after warping. Thus, the resulting RMS residuals become a more faithful metric of precise image
alignment.

The testing images, together with the segmentations estimated by our approach, are shown
in Figure 4.13. It can be observed that the segmentations are precise but not perfect, mostly
because pixels are not segmented independently but in clusters, and clusters sometimes contain
points of different objects (e.g. in the "cleaning whiteboard" image, the hand with the eraser is
segmented as a moving object together with a small part of the whiteboard). Quantitative results
are presented in Table 4.7. MC-Flow provides the best results for almost every RGB-D pair,
followed by our method. This is to be expected because MC-Flow uses as strategy similar to
the one described here to estimate motion, but it also optimizes for the clusters in an alternating
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RGB-D pair Camera RMS photometric residuals RMS geometric residuals
moving PD-Flow SR-Flow Ours MC-Flow PD-Flow SR-Flow Ours MC-Flow

Two People walking No 0.0368 0.0309 0.0284 0.0251 0.0511 0.0468 0.036 0.0336
Person standing No 0.0532 0.0494 0.0303 0.0256 0.1385 0.1282 0.0829 0.0814

Robot No 0.0518 0.0357 0.0251 0.023 0.0733 0.0688 0.0643 0.0601
Hand No 0.0135 0.0077 0.0066 0.0065 0.0179 0.0171 0.0182 0.0182
Tree No 0.0661 0.0335 0.0303 0.0258 0.0143 0.0259 0.0242 0.0196

Two People moving Yes 0.0387 0.0301 0.0245 0.0241 0.1355 0.096 0.0928 0.0654
Cleaning Whiteboard Yes 0.034 0.0233 0.0214 0.0185 0.0666 0.0561 0.0377 0.0315

Opening door Yes 0.0231 0.0214 0.0204 0.0153 0.1681 0.1317 0.1014 0.0551
Person sitting Yes 0.0753 0.0558 0.0452 0.0428 0.0576 0.0601 0.0576 0.0599

Table 4.7: Scene flow - RMS photometric and geometric residuals.

scheme. Consequently, its results are more precise but its computational burden is much higher.
The average runtimes of the compared methods are:

• PD-Flow: 40 milliseconds on GPU or 2 seconds on CPU.

• SR-Flow: 105 seconds on a single CPU core.

• MC-Flow: 20 seconds running on CPU and GPU.

• Our approach: 80 milliseconds on multiple CPU cores.

In summary, our approach provides the second best scene flow estimates after MC-Flow (resid-
uals are 12% higher on average), and it is 50% and 21% more accurate than PD-Flow and
SR-Flow, respectively. Moreover, it is 250 times faster than MC-Flow and 1300 times faster than
SR-Flow (only PD-Flow on GPU is faster than our method).

4.F.10 Conclusions

In this paper we have presented a method to estimate both odometry and scene flow with RGB-D
cameras. Results demonstrate that our method performs similarly or better than other state-
of-the-art approaches, which normally focus either on odometry or on scene flow, but do not
estimate both. The only method which also addresses the joint estimation problem (SR-Flow
[115]) is significantly less accurate with the camera motion and 20% less accurate with scene
flow, as well as more than 1000 times slower. Themain strength of our approach is that it provides
accurate results with a very low runtime (80 milliseconds). To the best of our knowledge, this
is the first method providing precise odometry and scene flow at a frame rate (>10Hz) that is
sufficiently high to work in real-world scenarios.

Nevertheless, some aspects can still be improved. The K-Means clustering sometimes mix
different objects in the same cluster, which leads to inaccurate scene flow estimates. As a
solution, we will consider ways to exploit color (superpixels) or orientation in the segmentation
process to obtain clusters that are more meaningful and still fast to compute. On the other hand,
the temporal propagation of the background segmentation could be improved by introducing
probabilistic/weightedmodels that are more consistent through longer periods of time. Lastly, we
want to optimize the implementation of our algorithm so that it reaches real-time performance.
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5
3D Reconstruction and Tracking with Subdivision Surfaces

5.A Introduction to 3D Reconstruction

In computer vision, 3D reconstruction consists in estimating the shape of a given object from one
or multiple images in which the object is visible. Depending on the sensor and the configuration
used for the reconstruction, the resulting model will have the exact dimensions of the real
object (depth or RGB-D cameras [135, 136], laser scanners [137], calibrated RGB cameras
[138]) or will keep its proportions with a random or previously-fixed size (monocular RGB
cameras [139]). It is worth noting that, when the entity to be modelled is not an object but
the environment, the process is referred to as mapping. These two commonly-separated topics
are, in essence, the same. The main difference lies on the fact that the size and topology of the
environment to be mapped are unknown (and probably quite large), whereas those of the object
to be reconstructed might be delimited beforehand. For this reason, mapping algorithms must
be able to accommodate new incoming data while the sensor explores the environment. On the
other hand, reconstruction techniques should be able to segment individual objects and might
require higher precision to incorporate fine-grained details.

3D models of objects are useful for many applications. In virtual reality, they allow to insert
instances of real objects in virtual scenarios. Even more interesting, if models of people are
available they can be used to create Skype-like virtual meetings where each person is represented
by an avatar that bears their own true appearance. The same idea has been applied in the gaming
industry (see Figure 5.1). In augmented reality, 3D modelling can be used to generate a model
of a real object and place it at a given location of the environment, as shown in Figure 5.1.
As a different example, 3D reconstruction algorithms can be exploited for reverse engineering,
to obtain the dimensions of a product or some components of it. Likewise, it can be used to
generate miniatures of people as described in [140].

5.B Introduction to Tracking

Tracking is the process of detecting the location and/or pose of an object throughout a sequence
of images. Many algorithms aim at finding the object on an image and placing a bounding box
around it. However, we focus on a more complex concept of tracking, where a previously tailored
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Figure 5.1: Illustrative examples of real applications of 3D modelling1. Left: Willen Dafoe in the Playstation game
"Beyond: Two Souls". Middle: Hololens users check how a blue couch fits in their living room. Right: Miniature
figures of former PhD students of the computer vision group at TUM.

model of the object is continuously aligned with the incoming data to know the exact object
pose during the whole sequence. That model is typically represented by a 3D mesh composed of
triangles or quads, although other alternatives based on smooth spline-like surfaces are recently
gaining importance.

Trackingfinds numerous applications in computer vision and computer graphics. For instance,
body and hand tracking are currently used for human-computer interface and gaming [141, 142].
Face capture and tracking can be employed to animate the facial expressions of an input video,
process known as face reenactment [143]. From a medical point of view, body tracking can help
to diagnose injuries, correct wrong postures and assist during rehabilitation [144]. It could also
be exploited by the fashion industry for virtual clothing to promote online sales.

5.C Contributions

Images used for 3D reconstruction or tracking normally observe not only the object to be mod-
elled or tracked but also parts of the environment where this object is present. As a consequence,
their pixels must be segmented into two different categories: those from which the object to
reconstruct is visible (often called foreground) and those which observe other objects of the
scene (often referred to as background). The foreground pixels contain information that the 3D
model must fit, be it colour, position, orientation, etc. The background pixels also impose the re-
striction that the model should not be visible from them. Our work focuses on this second type of
constraints that try to keep the model within the visual hull of the object. To that end, we present
a new background term which formulates ray casting as a differentiable energy function. More
precisely, this term addresses a min-max problem by first solving ray casting for the background
pixels and then deforming the model so that the rays of the background pixels do not intersect
it. Aside from that, we describe a complete framework for 3D reconstruction and tracking with
subdivision surfaces, and show that the proposed background term can be easily combined
with different data terms into an overall optimization problem. Lastly, the experimental section
demonstrates that our proposal has several advantages over the distance transform-based term
which is commonly employed in the literature.

1Pictures from https://blog.es.playstation.com (left), www.matrixinception.com (middle) and [140] (right).
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An Efficient Background Term for 3D Reconstruction and
Tracking with Smooth Surface Models

Mariano Jaimez, Thomas J. Cashman, Andrew Fitzgibbon,
Javier Gonzalez-Jimenez and Daniel Cremers

Abstract
We present a novel strategy to shrink and constrain a 3D model, represented as a smooth spline-
like surface, within the visual hull of an object observed from one or multiple views. This new
"background" or "silhouette" term combines the efficiency of previous approaches based on an image-
plane distance transform with the accuracy of formulations based on raycasting or ray potentials. The
overall formulation is solved by alternating an inner nonlinear minimization (raycasting) with a joint
optimization of the surface geometry, the camera poses and the data correspondences. Experiments on
3D reconstruction and object tracking show that the new formulation corrects several deficiencies of
existing approaches, for instance when modelling non-convex shapes. Moreover, our proposal is more
robust against defects in the object segmentation and inherently handles the presence of uncertainty in
the measurements (e.g. null depth values in images provided by RGB-D cameras).

5.D.1 Introduction

An important problem in computer vision is the recovery of 3D models from one or more
images, whether RGB or depth. Examples include human body tracking [145], single-view
reconstruction [146], or the acquisition of deformable object class models [147]. A dominant
paradigm is to express the problem as energy minimization: find the 3D model parameters
(including model shape, camera positions, etc.) which best explain the given data.

Formulations of such problems as energy minimization typically involve two key data terms:
a term encouraging foreground measurements within the object to be explained by the model,
and a background or "empty space" term, requiring that the model does not project in front of
data samples known to be outside the object. Typically the foreground terms are easily written
as variants of a closest-point or closest-intensity objective, which are readily optimized using
ICP [39] or lifting algorithms [148, 147]. In contrast, the background terms involve an expensive
raycasting or rendering operation, or are approximated by projecting a finite subset of points on
the model surface into a distance transform.

This paper’s contribution is to illustrate the failings of distance-transform-based background
terms, and to introduce a new formulation with the accuracy of raycasting but which admits
efficient optimization using smooth-function optimizers such as Levenberg-Marquardt. The key
innovation is to write raycasting as an optimization problem in its own right, and to solve the
min-of-max optimization that results from combining raycasting with the foreground term.

We will demonstrate the advantages of such a formulation in two very common scenarios
in computer vision: 3D reconstruction and non-rigid tracking. In both cases the object to be
reconstructed or tracked will be modeled with a subdivision surface, and the input data will
consist of one or multiple depth images with unknown camera positions.
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Figure 5.2: Modelling an arch from a single depth image and a challenging initial control mesh topology. Even with
depth data, the model spills over into the background region (NB). We show how existing background terms based
on the distance transform (DT) fail to capture the concavity, while our new methods based on shrinking kernels
(SK1 and SK2) succeed.

5.D.2 Related Work

Given the considerable body of related literature, we focus on only a few key examples of the
existing approaches.

One class of methods is volumetric or voxel-based. For example, the single-view reconstruc-
tion work of Töppe et al. [149], which imposes the hard constraint that object voxels must project
into foreground regions, and expresses the reconstruction problem as energy minimization with
one parameter per voxel. Recent work [150, 151] allows significant improvements in optimiza-
tion, but the large state space limits model resolution, and as noted by Oswald et al. [146], the
absence of a thresholding theorem means that the relaxation method employed for solution may
not yield the optimal Boolean labelling. KinectFusion [51] avoids an optimization over the entire
volume by estimating camera position using robust ICP, followed by deterministic carving of a
3D signed distance function, but copes poorly with missing data.

This paper focuses on mesh-based methods, such as used by Prasad et al. [152] for single-
view reconstruction, or Vicente and Agapito [153] in deforming a template 3D mesh to match
a given image silhouette. The latter paper used a distance transform penalty for the background
term, as did Ganapathi et al. [145] in solving the problem of human body tracking. As shown
below, the distance transform term has several limitations.

We consider a smooth surface representation based on subdivision surfaces. This spline-like
representation has recently been used for 3D morphable model construction [147], hand shape
estimation [154] and hand tracking [142]. Subdivision surfaces have also been used to fit 3D
point clouds or regular meshes [155, 156, 157, 158, 159], but our guiding example problems
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differ in that either the camera positions, or the mesh/object topology, or both, are unknown.
Moreover, in real applications a significant percentage of the object to reconstruct or track might
be missing due to lack of sufficient views and errors in the measurement process (null pixels in
depth images provided by RGB-D cameras). Under these circumstances, the use of an effective
and efficient background term becomes crucial.

5.D.3 Definitions and Notation

To illustrate the advantages of our proposal, we address two distinct problems: (A) generating
a 3D reconstruction of an object from multiple views and (B) tracking a non-rigid object from
an image sequence. In both cases, our input data comprise a set of N depth images {Zi}Ni=1 of a
target object. A depth image is a collection of 3D points Zi = [pij]

M
j=1 associated with 2D pixel

coordinates xij through the projection function π : R3 7→ R2, i.e. xij = π(pij). For each data
point pij we also estimate a unit normal nij of the target object with ‖nij‖ = 1. Each image i
has an unknown camera pose parametrized using the twist ξi ∈ R6, inducing a rotation matrix
R(ξi) ∈ SO(3) ⊂ R3×3 and a translation vector t(ξi) ∈ R3. The function π is also overloaded
to project world-coordinate points s by passing the pose of the camera to which points are
projected, so π(s, ξi) = π

(
R(ξi) s+ t(ξi)

)
.

The pixel indices are segmented into three disjoint regions Di, Bi and Ci to specify whether
each pixel observes the target object, the background, or provides no valid depth respectively.
For example, j ∈ Di means that 3D point pij is a foreground measurement, and j ∈ Ci means
that pixel xij has an invalid 3D point. As we shall never access pij for invalid pixels, we need
not define it in this case.

To model the object we use a Catmull-Clark subdivision surface, the shape of which is
defined by a control mesh comprising P control vertices {Xp}Pp=1 ⊂ R3 that are referenced as
the corners of F quadrilateral faces {Qf}Ff=1 ⊂ {1..P}4. The subdivision surface is a mapping
s : Ω 7→ R3, where the parametric domain Ω of the surface is the union�×{1..F} of F copies
of the unit square � := [ 0, 1 ] × [ 0, 1 ] ⊂ R2: one copy for each face in the control mesh. The
topology of the surface, and hence Ω, is held fixed throughout the optimization, and so the shape
of the surface is determined purely by the control vertices X = {Xp}Pp=1. We therefore write
the surface as s(u|X) where u is the tuple u = (ux, uy, f) ∈ Ω. The unit surface normal is
written similarly as s⊥(u|X).

5.D.4 Optimization Problem

We present a unified framework to address either the 3D reconstruction or the non-rigid tracking
of an object. It is based on two main constraints:

• The model must fit the geometric data (pij and nij) computed from the depth images {Zi}
for those pixels j ∈ Di where the object is present.

• The model should not be observable from pixels xij which are known to observe the back-
ground (i.e. j ∈ Bi), since in these locations we know the target object to be absent.
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The remaining pixels, referenced by Ci, should not place any restriction on the model since their
true depth is unknown, and we therefore have no evidence for either presence or absence of the
target object.

Data Term

The first energy term measures the error in position and orientation between pixel j ∈ Di and a
to-be-estimated corresponding model point u ∈ Ω:

Ep
ij(X, ξi,u) = ‖pij −R(ξi) s(u|X)− t(ξi)‖2

T , (5.1)

En
ij(X, ξi,u) =

∥∥nij −R(ξi) s
⊥(u|X)

∥∥2

T
, (5.2)

where ‖•‖T represents a truncated Euclidean norm. We combine (5.1) and (5.2) into a data term
defined as the weighted combination

Êd(X, ξ) =
N∑
i=1

∑
j∈Di

min
u

(
λpE

p
ij(X, ξi,u) + λnE

n
ij(X, ξi,u)

)
. (5.3)

This energy allows us to fit the model to the data by lifting [148, 147, 154] the latent model-data
correspondences U = {udij} for each i = 1 . . . N and j ∈ Di to give the energy

Ed(X, ξ,U) =
N∑
i=1

∑
j∈Di

λpE
p
ij(X, ξi,u

d
ij) + λnE

n
ij(X, ξi,u

d
ij) , (5.4)

with Êd(X, ξ) ≤ Ed(X, ξ,U) for all U. We can therefore minimize (5.3) and fit the observed
data by finding

arg min
X,ξ,U

{
Ed(X, ξ,U)

}
. (5.5)

Background Term

Unfortunately, solving (5.5) often gives poor results, because there is nothing to penalize the
model spilling over the observed object silhouette (see Figure 5.2 panel "NB" or the teddy bear’s
legs in Figure 5.5). It is therefore necessary to define an additional energy term that forces the
model to remain within the visual hull of the object, as observed by the depth images.

Our goal is to have a background term that penalizes instances of the model that project into
pixels j ∈ Bi where the object is known to be absent. Essentially this is a sum of terms of the
form "if any point anywhere on the model projects to pixel xij , pay a penalty":

N∑
i=1

∑
j∈Bi

{
1 if ∃u ∈ Ω with π(s(u|X), ξi) = xij

0 otherwise
(5.6)

which can be re-cast as a minimization
N∑
i=1

∑
j∈Bi

1 if min
u∈Ω
‖π(s(u|X), ξi)− xij‖ = 0

0 otherwise
(5.7)
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and then written in terms of the finite delta function ⊥(r):
N∑
i=1

∑
j∈Bi

⊥
(
min
u
‖π(s(u|X), ξi)− xij‖

)
, (5.8)

⊥(r) =

{
1 if r = 0

0 otherwise
. (5.9)

This transformation expresses raycasting as an optimization problem, but not an easy one: first,
the L0-like function has a zero-sized basin of convergence, and second, we cannot use the lifting
trick. We rectify the first deficiency by using a more tractable proxy. A natural proxy to use for
bounded terms is the L1 proxy, but here this introduces complex bound constraints, meaning
that the advantages conferred by a convex proxy are lost. We can choose as an alternative the
complement of almost any flattening robust kernel, with the following desirable properties. It
should be continuous and differentiable to allow the use of smooth-surface optimizers, which
have been shown to provide significant improvements in convergence for the data term [142]. It
also improves the efficiency of our solver (see §5.D.6) if the proxy is convex almost everywhere
and flat (i.e. has a local maximum) at its peak. A suitable choice is the kernel used in the
graduated non-convexity algorithm of Blake and Zisserman [160], which we name the shrinking
kernel (SK) to describe its effect on parts of the model that spill over the background:

Λ(r) =


(
1− ε

τ

) (
1− r2

ετ

)
r < ε(

1− r
τ

)2
ε ≤ r ≤ τ

0 r > τ

(5.10)

with ε� τ as depicted in Figure 5.3. Other alternatives like a quartic polynomial could be used
instead; we chose the shrinking kernel because it is the simplest one that fulfills our conditions.

We thus define our background energy by replacing ⊥ with Λ in (5.8):

Êb(X, ξ) = λb

N∑
i=1

∑
j∈Bi

Λ

(
min
u
‖π(s(u|X), ξi)− xij‖

)
. (5.11)
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Figure 5.3: Left: Plot of the shrinking kernel Λ(r) with respect to the reprojection error r.Right: 3D representation
of the shrinking kernel centered at a particular background pixel xij .
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We can also now easily correct the second deficiency in (5.8): access to lifting. By noting that
Λ is monotonic, we obtain Λ(minx f(x)) = maxx Λ(f(x)) so

Êb(X, ξ) = λb

N∑
i=1

∑
j∈Bi

max
u

Λ

(
‖π(s(u|X), ξi)− xij‖

)
, (5.12)

which can be subject to lifting as above (5.4), by defining latent variables Ub = {ubij} for each
i = 1 . . . N and j ∈ Bi:

Eb(X, ξ,Ub) = λb

N∑
i=1

∑
j∈Bi

Λ
(
‖π(s(ubij|X), ξi)− xij‖

)
(5.13)

with Êb(X, ξ) ≥ Eb(X, ξ,Ub) for all Ub.

Fixed vs adaptive τ

The value of τ in (5.10) significantly changes the effect of the background term (5.13) on
the overall optimization. A high value of τ increases the number of pixels pushing the model
inwards (r ≤ τ ) and leads to a smoother energy which is easier to optimize. However, a high τ
also implies that the background term competes with the data term at the object boundaries and
prevents themodel from fitting the data in these areas. Conversely, a low value for τ implies fewer
pixels pushing inward and a sharper energy but also less competition between the background
and the foreground terms. To overcome these limitations, we employ an adaptive τi(x) which
depends on the pixel x and the image i. Thus, τ will be low for pixels close to the silhouette and
will be higher otherwise. The function which measures the minimum distance from any pixel
to the object silhouette is the distance transform DTi(x) : R2 7→ R. Therefore, the adaptive
width of the shrinking kernel is given by τi(x) = min(DTi(x), τmax) for a given image i. A
maximum width τmax must be set because the shrinking kernel is intended to work close to the
model boundaries and would be ineffective and inefficient if τ took arbitrarily high values.

This strategy takes advantage of the distance transform by using information about proximity
to the silhouette to avoid pushing the model beyond it, but it flattens appropriately far from the
silhouette, unlike the distance transform, whose gradients are often wrong or misleading (see
§5.D.7 and Figure 5.4).

5.D.5 Regularization

The data and background terms (5.4) and (5.13) guarantee that the model fits the data and
keeps within the convex hull of the object. However, the solution found using these terms
alone can include creases and sharp edges that make the 3D model unappealing. The mesh can
also degenerate throughout the optimization process, leading to ill-posed configurations that
eventually cause the 3D reconstruction or the tracking system to fail. For these reasons, we
introduce two regularization terms that encode a smoothness prior on the object we are trying
to reconstruct. Moreover, for the tracking problem, we include other two extra terms to keep the
subdivision surface as rigid as possible while tracking the target object.

147



CHAPTER 5. 3D RECONSTRUCTION AND TRACKING WITH SUBDIVISION SURFACES

To keep the surface smooth we penalize the gradient of the surface normals, a proxy for
surface curvature. We approximate this using a discrete sum by homogeneously sampling the
subdivision surface over its parametric domain � × {1..F} to obtain F sets of K samples per
face, denoted σfk. Then the surface smoothness regularizer is

Es(X) = λs

F∑
f=1

K∑
k=1

∥∥∇uxs
⊥(σfk|X)

∥∥2

‖∇uxs(σfk|X)‖2 +

∥∥∇uys
⊥(σfk|X)

∥∥2∥∥∇uys(σfk|X)
∥∥2 , (5.14)

where we use forward finite differences to approximate the gradients∇s⊥(u) ∈ R3 and∇s(u) ∈
R3.

In addition, we want control vertices to be spread as evenly as possible over the model, so
we must avoid the control mesh from stretching and distorting arbitrarily. We enforce this by
adding a simplified and discrete version of the membrane energy. If ef,k denotes the kth edge of
the quadrilateral face f , this second regularization term is defined as

Eh(X) = λr

F∑
f=1

4∑
k=1

‖ef,k(X)‖2 . (5.15)

Eh penalizes long edges and indirectly favours isometry.
When the goal is to track a non-rigid object, we assume that a mesh with the shape of the

object is given. This mesh moves and deforms over time to fit the new incoming data but,
at the same, it must keep its original proportions. To enforce such behaviour, we include the
as-rigid-as-possible regularizer (ARAP) [161]:

Ea(X, ζ) = λa

P∑
v=1

∑
k∈Nv

∥∥R(ζv)(X
o
v −Xo

k )− (Xv −Xk)
∥∥2 (5.16)

where Xo gives the initial locations of the control vertices of the mesh employed for tracking,
and Nv contains the neighbours for vertex v. For each control vertex, the relative rotation of
the mesh with respect to its original configuration is represented by the matrix R(ζv) ∈ SO(3).
These rotations are regularized so that the deformation of the mesh is locally smooth:

Er(ζ) = λr

P∑
v=1

∑
k∈Nv

‖ζv − ζk‖2 (5.17)

The sum of these terms is written

ER(X) = Es(X) + Eh(X) + min
ζ
{Ea(X, ζ) + Er(ζ)} , (5.18)

and the rotations ζ are lifted into the overall problem.

5.D.6 Solver

We combine the data and background terms with regularizers ER(X) to build the overall
optimization problem:

min
X,U,ξ

{
Ed(X, ξ,U) + max

Ub

{
Eb(X, ξ,Ub)

}
+ ER(X)

}
. (5.19)
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This energy is highly non-linear, non-convex and combines minimization and maximization pro-
cesses that appear challenging to solve jointly. The problem contains some standard components:
the combination of minimization and maximization recalls the concave-convex procedure [162]
and DC programming [163]. However the natural decompositions of our problem (i.e. the ob-
jectives of the min and max as written) are not concave so these techniques do not directly
apply.

Our solver is divided into two stages: an inner maximization and an outer minimization. The
inner maximization finds the background correspondences Ub (raycasting) that are needed for
every iteration of the outer minimization problem. In turn, the outer minimization will be solved
iteratively by generating updates for the control vertices X , the foreground correspondences U
and the camera poses ξ, guaranteeing that each iteration decreases the overall energy.

Inner Raycasting Maximization

The first task is to find the correspondences for the background term, that is

Ůb = arg max
Ub

{
Eb(X, ξ,Ub)

}
. (5.20)

The correspondences within the vector Ub are independent from each other, which means
that (5.20) can be solved with independent optimizations over Ω for each pixel. These remain
nonlinear optimizations, but we can make use of Levenberg-Marquardt. Although Eb is non-
quadratic, monotonicity of Λ means that arg maxu Λ(f(u)) = arg minu f(u)2 for a smooth
function f : Ω 7→ R2. Note that this transformation applies only because the optimizations are
independent per pixel: it is not the case that arg maxu Λ(f1(u)) + Λ(f2(u)) = arg minu f

2
1 (u) +

f 2
2 (u) in the general case when f1 and f2 both depend on all of u. To improve efficiency, the
background correspondences stop being updated if their projection error is higher than a given
threshold υ > τ , thereby discarding all those pixels of the background which are too far from
the model to provide any help.

In order to update these correspondences within the optimizer, correspondences may need to
transition between different faces of the control mesh. As Catmull-Clark subdivision surfaces
are nearly-everwhere C2 continuous, these transitions do not harm the differentiability of our
energy terms, and the correspondence updates can be handled using the strategy described
in [147, 154]. Transitions of the foreground correspondences U in the outer minimization are
handled similarly.

Outer Minimization

Now we need to solve
min
X,U,ξ

{f(X,U, ξ) + g(X, ξ)} (5.21)

with

f(X,U, ξ) = Ed (X, ξ,U) + ER(X), (5.22)

g(X, ξ) = Eb
(
X, ξ, Ůb(X, ξ)

)
. (5.23)
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The Levenberg-Marquardt algorithm does not appear to be applicable here because not every
term is expressed in the form of sum of squares and, moreover, the background term Eb is not
convex. However, wewill show that thanks to the particular choice (5.10) adopted to approximate
the raycasting function (5.6), the Levenberg-Marquardt algorithm can be applied and it leads to
an efficient optimization strategy. First of all, the shrinking kernel is flat at its maximum, which
makes the Jacobian computation much easier, as the multiplicands of the difficult terms ∂Ůb(X,ξ)

∂X

are zero:
∂g(X, ξ)

∂X
=
∂Eb(X, ξ, Ůb)

∂X
+���

��
���:

0
∂Eb(X, ξ, Ůb)

∂Ub
· ∂Ů

b(X, ξ)

∂X
, (5.24)

∂g(X, ξ)

∂ξ
=
∂Eb(X, ξ, Ůb)

∂ξ
+���

���
��:0

∂Eb(X, ξ, Ůb)

∂Ub
· ∂Ů

b(X, ξ)

∂ξ
. (5.25)

For the sake of clarity, the Jacobians have been written as scalar partial derivatives. Secondly,
the shrinking kernel is defined with ε � τ (see Figure 5.3) and, hence, it is convex and can
be expressed as a sum of squares almost everywhere (apart from a small area surrounding its
peak). Therefore, we use all those pixels with correspondences lying in the convex area and with
non-null gradient (ε ≤ r ≤ τ ), and omit those which are just at the maximum or very close to it.
In practice, this does not have any detrimental effect over the minimization process because this
approximation discards only pixels which have a ray intersecting with the model or very close to
it. Rays that intersect with the model (r = 0) contribute no gradient as previously shown; only
a tiny fraction of the pixels discarded will have a ray which does not intersect and yet still lies
in the concave area (0 < r ≤ ε).

Every iteration of the Levenberg-Marquardt algorithm involves the construction of a sparse
and large linear systemwhich is solved by applying a Cholesky LDLT decomposition. Moreover,
to overcome/avoid local minima due to wrong correspondence associations, we periodically
perform a global search by uniformly sampling the subdivision surface and checking for each
pixel j ∈ Di (foreground) whether any of these samples reduces its energyEd

ij . A similar search
is also performed for the background correspondences.

Coarse-to-Fine

Subdivision surfaces provide a refinement relation R that densifies the control mesh without
modifying the surface. That means that for every parametric coordinate u in the original mesh,
there always exist another û in the refined mesh that leads to the same spatial coordinate:

s(u|X) = s(û|RX) ∀u ∈ Ω. (5.26)

This refinement can be iterated to define a series of control meshes X l = R lX , all of which
represent the same limit surface. Here l denotes a given level within the coarse-to-fine scheme.
This means we can optimize a coarse model for the control vertices X = X0, then apply R

to obtain a new set of model freedoms X1 without changing E in (5.19). We then optimize
X = X1 using (5.19) to obtain optimal control vertices at level 1, and iterate this procedure
until we find a solution at the target control mesh density. Thus, the optimizer is able to fit a
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detailed model with many control vertices by using the coarse model to find the energy well for
a good local minimum.

5.D.7 Experiments

We conducted a series of experiments to compare our approach with the popular distance trans-
form (DT)method for enforcing silhouette consistency [145, 153]. To perform these comparisons
we implemented an alternative background term Eb

DT by sampling the subdivision surface uni-
formly at L fixed locations {σl}Ll=1 in Ω, and projecting the samples into the distance transforms
of each of the N depth images:

Eb
DT(X, ξ) = λDT

N∑
i=1

L∑
l=1

DT2
i

(
π(s(σl|X), ξi)

)
. (5.27)

We present five distinct experiments to compare our background term with the standard DT-
based term (5.27). These experiments are intended to investigate the behaviour of our proposal
in common computer vision scenarios, not to demonstrate state-of-the-art algorithms for 3D
reconstruction or tracking. The first three experiments address the 3D reconstruction problem
from single or multiple views respectively. In the remaining tests we track a non-rigid object (a
person) through a sequence of depth images. Moreover, we analyze the computational cost of
the different tested methods.

For a better visualization of the results presented here, we encourage the reader to watch the
demonstration video.

Experiment Initialization and Segmentation

For each experiment, each of the N images captured by the depth camera already provides the
set of invalid depth pixels Ci. We have implemented three different approaches to segment the
remaining pixels into the regions corresponding to object (Di) and background (Bi):

• Segmentation by plane removal. The object is placed on a flat surface and the camera must
mostly observe the object and the plane it is lying on. Bi is defined by proximity to a plane
fitted to the flat surface and Di by the remainder.

• Segmentation by background subtraction. The camera pose is fixed and several images of
the object are taken. By capturing a single image of the background without the target object
present, we can define Di using those pixels that change between the former images and the
background image.

• Segmentation by depth thresholding. Di is simply defined to be those pixels within a depth
range previously set, and Bi to be the remainder.

Moreover, our algorithm requires an initial guess for the camera poses, which does not need to
be very accurate and we assume is provided by the user.
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Modeling an Arch

Our first experiment is a synthetic test where the data to fit consists of a single depth image
generated as the front view of a smooth arch. To initialize the mesh, we compute the bounding
box of the data and applyR twice to generate a mesh with enough degrees of freedom to deform
and adapt to the data. Its corresponding initial surface is roughly an ellipsoid, which is quite
far from the arch that we aim to reconstruct (see Figure 5.2). In the experiment, we compare
four different strategies for the background term: DT (5.27), SK (5.13) with fixed τ (SK1), SK
(5.13) with adaptive τ (SK2) and without background term (NB). The weights associated to the
different background terms (λb and λDT) are tuned so that all the background energies have the
same initial value.

The final solutions are depicted in Figure 5.2. We observe that the distance transform is
unable to shrink the model properly while the two versions of our approach do it almost
perfectly. The DT’s poor behaviour has two causes. First, our formulation of Eb

DT implements
a discrete sampling over the model instead of integrating each DTi over all of Ω. However, the
second reason for the failure is that the gradients of the DT function (shown in Figure 5.4)
are mostly horizontal between the two pillars of the arch. This gives no reason for the model
to shrink vertically. Instead, it stretches horizontally in both directions to move the sampled
model positions {σl} out of the penalized image region while leaving model surface stretched
in-between. On the other hand, the shrinking kernel always pushes the surface in the opposite
direction to the surface normals at the model silhouette. The only pixels where the shrinking
kernel has non-zero gradient are those whose ray does not intersect the model but comes close
to it (ε ≤ d ≤ τ ). Thus, the SK background term projects the 3D model onto the image plane
and pushes the surface inward on those parts of the model’s silhouette that project out of the
real silhouette (see Figure 5.4).

The number of iterations (see demonstration video) required is significantly reduced by SK2

over SK1, being in both cases higher than it is with DT. Interestingly, SK2 also finds a better
optimum for the data term that NB is directly optimizing, by helping the model to distribute its
freedoms more usefully. Although SK1 is also able to create the gap between the columns of the
arch, its energy after convergence is higher because the data and the background terms compete
at the object boundaries.

Incorrect Segmentations

Another problem associated with the DT background term is the fact that an incorrect segmen-
tation, even if there is just a single misclassified pixel, can lead to a very different distance
transform which might be detrimental for the 3D reconstruction. A perfect segmentation is hard
to obtain in many practical cases, so robustness to segmentation errors is important. In this
section we compare basic 3D reconstructions obtained with no background term (NB), with DT
and with SK (adaptive τ ) when the segmentation of the object is imperfect.

We test on a multi-view 3D reconstruction problem withN = 4 depth images of a teddy bear
taken from different camera angles. We segment the depth images using background subtraction
as explained in the supplementary material. Since the measurement error grows quadratically
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Distance
Transform

Shrinking
Kernel

Figure 5.4: Evolution of the surface throughout the optimization process. The images demonstrate how each
background term pushes the surfaces: DT creates gradients for every sample of the surface projecting out of the
silhouette whereas SK pushes only on its contour.

with depth, we use a comparison threshold between the background and the input images {Zi}Ni=1

that also grows quadratically with depth, in an attempt to avoid many false positive detections
at distant areas. However, the resulting segmentation is still imperfect and every image contains
scattered pixels or small distant regions which are mistakenly tagged as object. While it would
be possible to post-process the segmentations further for better results, we leave them in this
unprocessed state as our intention is to test the robustness of each method to segmentation errors.

We compare the basin of convergence for the reconstruction in each case, by starting with
three different initial control meshes. These meshes are cubes placed at the centroid of the data
points with edges set to 0.4, 0.5 and 0.6 meters respectively. The control meshes generate roughly
spherical surfaces with diameters denoted by φ1, φ2 and φ3 in Figure 5.5. In this experiment we
give high weights λb and λDT to the background terms to test whether the algorithm is able to
shrink the model to the convex hull. The optimization is run in a coarse-to-fine scheme with 4
levels, each one running a maximum of 25 iterations of LM to solve (5.21).

Quantitative and qualitative results are presented in Figure 5.5, which shows that the data
term alone is able to shrink the model partially in the first two cases but completely fails for
the largest initialization. It also fails to create the expected gap between the teddy’s legs. On the
other hand, DT produces a good result for s1 but fails dramatically for s2 and s3 because the DT
gradients far from the target object are sometimes directed towards pixels that are incorrectly
segmented as data. In fact, they even force the model to protrude and deform in undesirable
ways, worsening the solution compared to that without the background term. Finally, SK is able
to shrink the model into the convex hull in all cases and successfully separates the teddy bear’s
legs. The final energies associated to the background terms are also shown in Figure 5.5.
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NB
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𝜙1

𝜙2

𝜙3

𝜙1 𝜙2 𝜙3

𝐸𝐷𝑇
𝑏 𝐸𝑆𝐾

𝑏
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Figure 5.5: Top left: Illustration of the object to model together with the outline of the initial spheres used in the
3 sets of tests. Bottom left: Final energy terms after the optimization. Right: 3D reconstructions obtained without
background term, with DT and with SK for the 3 different initializations φ1, φ2 and φ3. SK is less dependent on
initialization, and is better on the gap between the legs.

Robustness to Wrong Initial Camera Poses

For this experiment we have recorded a continuous RGB-D sequence by moving a handheld
camera around a teddy bear. In order to get accurate camera poses we have run a voxel-based
SLAM method which combines [164] and [165]. The purpose of this experiment is to test the
basin of convergence of the different approaches (here SK, DTall and DTsafe) when the camera
poses are not initialized correctly. To that end, we will consider the pose estimates provided
by [164] as ground truth and will generate perturbed initial camera poses by adding Gaussian
noise to them (the ground truth poses are actually not error-free but they are precise enough for
the evaluation). We decimate the sequence and retain only four depth images to address the 3D
reconstruction problem. To be able to measure the deviations with respect to the original camera
poses, we fix the first camera and only perturb and optimize for the other three.

The image resolution employed is 60 × 80, and the optimization runs until convergence
within a coarse-to-fine scheme. The initial control mesh is obtained as the bounding box of
the data, and is refined once (applying R) before starting the optimization process. For this
experiment we employ three coarse-to-fine levels although we run the optimization for the first
level twice: first with strong regularization to avoid the mesh to deform too much while the
camera poses are far from their true positions, and second with a normal weighting to allow the
surface to fit data. Since the teddy bear was lying on a table when the sequence was recorded,
the segmentations can be obtained by plane removal.
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Figure 5.6: Error in the estimation of the camera positions as a function of the initial average perturbations. For
simplicity, only the translational component of ξi is considered for both the perturbations and the measured errors.

We run a total of 50 tests for each method; results are shown in Figure 5.6. SK provides the
lowest error on average since it is able to recover the camera poses and shrink the model without
penalizing the data term. On the other hand, DTall is always able to bring the cameras to their
right configuration but it goes too far by pushing the model inwards when it projects on Ci (null
depth), leading to higher average pose errors. Last, DTsafe shows an erratic behaviour, being
sometimes able to bring the cameras to their right poses and sometimes failing dramatically due
to the wrong DT gradients.

Tracking under poor illumination conditions

Now we compare the two different background terms focusing on the regions {Ci} that can
be segmented as neither object nor as background. These regions are common artefacts of the
capture mechanisms used by depth cameras, but the same problem could arise with RGB images
if there are areas which cannot be segmented properly and remain uncertain.

The goal of the experiment is to track the body of a person who moves in front of an RGB-D
camera. To better illustrate the differences between the compared methods, the sequence of
images has been recorded outdoors where the depth measurements have a lower quality due
to the sun’s radiation. The testing sequence consists of 20 images subsampled from a longer
sequence of 60 to increase the displacement between consecutive frames. Images are segmented
by thresholding depth since the person is always closer to the camera than the background points.
The compared background terms are configured so that they have similar weights during the
optimization process. For the experiment we assume that an initial mesh (Xo in (5.16)) with the
shape of a person is provided. Coarse-to-fine is not used here, i.e., the size and topology of this
mesh does not change during the experiment.
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DTsafe DTall

SegmentationRGB (not used)

Figure 5.7: Differences between DTall and DTsafe for one of the frames used for tracking. Top left: RGB image
included for clarity but not used in the algorithm. Top right: Segmented image. The foreground pixels are shown
in green, background in gray and null depth in black. Bottom: DTall and DTsafe starting from zero (green) and
truncated at 50 (red) for a better visualization.

Under the presence of invalid or uncertain measurements, we need to decide between two
options to compute the distance transform. The first is to compute the distance transform for
both background and invalid pixels, setting to zero only those pixels that are segmented as object
(DTi(xij) = 0 iff j ∈ Di). We refer to this strategy as DTall. The main disadvantage of DTall is
that it shrinks the model beyond the real silhouette of the object, because the object is likely to
be visible from some of those pixels tagged as invalid (j ∈ Ci). The second option, denoted here
as DTsafe, sets to zero both the pixels observing the object and the invalid depth measurements,
in an attempt to create a distance transform that only penalizes pixels that are known to observe
the background (DTi(xij) = 0 iff j /∈ Bi). This alternative strategy is less restrictive and gives
the model more freedom to adapt to the data properly, but it also has a drawback: the invalid area
surrounding the object may have arbitrary size and contour, which can lead to gradients ∇Eb

DT
with directions that are harmful to the model (see Figure 5.7). In contrast, the shrinking kernel
penalizes only background pixels (so it does not overconstrain the final solution) without being
affected by the null depth measurements.

Qualitative results are shown in Figure 5.8. It can be observed that, in the absence of a
background term, themodel fits the data but sometimes protrudes out of the silhouette.Moreover,
it allows for wrong correspondences between the model and the data, as occurs sometimes for
the head (middle column) which tries to fit some of the arm points. DTall provides the worst
results because it tries to push the model out of the areas with null depth, and almost half of
the pixels observing the person have null depth. DTsafe performs better but still leads to some
artefacts as the gradients of the distance transform are not always directed towards the target.
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NB

Segmentation

DTsafe

DTall
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Figure 5.8:Top row: Some of the depth images used for tracking. Black represents null depth, pixels in gray observe
the background and those in green the object. Rows 2-5: Results after convergence for the selected images and the
different tested approaches.

Finally, SK achieves the best results, keeping the surface within the silhouette during the whole
sequence without leading to artefacts or protusion of the surface.

The same experiment has been carried out indoors under good illumination conditions. In
that case, the number of pixels with null depth is much lower and both DT and SK provide
equally good results.

Tracking distant data

Lastly, we evaluate the performance of the compared methods when the distance between the
data to fit and the mesh increases. To that end we have recorded an RGB-D sequence of a person
moving his arms, in this case indoor and with good visibility conditions. Instead of tracking
consecutive images as in the previous experiment, the initial mesh is aligned with the data of
each image independently to evaluate how the different background terms help the model to
converge to the right pose. Apart from that aspect, the procedure is similar to the one described
above: an initial mesh is provided and the optimization problem is solved directly for this mesh
without resorting to coarse-to-fine.

Six different images with a resolution of 120× 160 are considered for the experiment. Results
are shown in Figure 5.9. It can be noticed that NBworks well for the first three images where data
is closer to the initial mesh, but fails to push the arms forward for the last images and wrongly
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Figure 5.9: Results after running the optimization problem to align a given initial mesh of a person with geometric
data associated to different postures. The first tested images (left columns) observe a person whose posture is close
to the initial mesh while the person’s posture in the the last ones (right columns) is considerably different from that
of the initial mesh.

deforms the main body to fit points which actually correspond to the left arm. DTall provides the
best results since in this case the segmentations are almost perfect and the number of pixels with
null depth around the person is quite low. Hence, the DT gradients help the model to converge
to the right solution very quickly. On the other hand, DTsafe provides results which are even
worse than those of NB because some image borders have null depth and therefore attract the
arms towards them. In this particular example the testing images could be processed to correct
this deficiency but this is not possible in general (see the experiment in §5.D.7) and therefore
we keep the original images to illustrate the drawbacks of this approach. Finally, SK provides
accurate results but for the fifth image. This is a very challenging experiment for SK because it
pushes the model inwards along its silhouette which, in this case, mostly leads to compressing
the person’s arms. Only the fingertips provide helpful gradients to bring the arms towards the
main body. Despite this fact, SK outperforms NB and only fails for the fifth image where a small
number of points of the almost-hidden arm causes the model to deform in an undesirable way
(and the optimization to fall into a bad local minimum).

Computational Performance

The temporal performance of the different methods is also evaluated. We have chosen to analyse
the runtimes of the tracking experiments where coarse-to-fine is not used. In this case a mesh
with 1128 vertices is deformed to fit the data contained in depth images with QQVGA resolution
(120 × 160). The time taken by a complete iteration of the Levenberg-Marquardt algorithm
is measured for the three cases considered: fitting without background term (NB), with the
DT-based background term and with our approach (SK). All the experiments have been run on
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a single core of an Intel Xeon E5630 CPU at 2.53 GHz (code compiled for 32 bits and running
on Windows 10).

As expected, the fastest method is NB whose iterations take on average 1.46 seconds. When
the background terms are included, the average runtime of the LM iterations increases up to
1.62 seconds (DT) and 2.91 seconds (SK). As expected, our proposal is the computationally
heaviest alternative because it includes an inner maximization process (raycasting) within the
overall optimization.

5.D.8 Conclusions

This paper describes a novel background term that forces a 3D model to shrink within the visual
hull of an object observed from one or multiple views. To demonstrate its superior performance
over the popular distance transform-based formulation, we introduced a unified framework to
address the problems of 3D reconstruction or non-rigid tracking with smooth surface models.
Results demonstrate that our proposal enforces silhouette consistency more effectively than
the distance transform. Specifically, it works better with real data that often include noise and
uncertainty and which cannot always be segmented perfectly. This proposal could therefore be
extended to RGB-based reconstruction and tracking systems.

Future work includes finding a better solver for this concave-convex optimization problem,
which would optimize all variables jointly, and adapting the topology of the mesh during
optimization.
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6
Reactive Navigation

6.A Introduction

Autonomous navigation is becoming a key aspect/technology for modern society. The develop-
ment of machines, vehicles or robots, that can travel autonomously without the need of human
intervention is compelling formultiple reasons. From the point of view ofmanufacturing, endow-
ing robots with such capability would increase efficiency and flexibility, while probably reducing
costs at the same time. Regarding the transport system, autonomous vehicles will represent a
paradigm shift. They will improve our quality of life, freeing us from driving and parking,
and will reduce the number of traffic accidents (which are mostly caused by human mistakes
and negligence). Mobile robots currently allow us to explore and monitor remote places that
humans cannot reach: other planets, oceanic trenches, caves, warfare scenarios, etc [35, 166].
Furthermore, mastering autonomous navigation is leading to the emergence of new products and
services that were not conceivable before. There already exist robots that can clean the floor of
our house [21] or mow the lawn autonomously [167]. There are also projects of robots working
in museums or airports as assistants to visitors [68]. These are just a few examples (out of many)
of how relevant autonomous navigation is becoming nowadays.

Autonomous navigation encompasses two distinct capabilities. First, it involves motion plan-
ning, which consists in finding a route from a departing point to a given destination. To do so,
this process requires previous knowledge of the environment, some sort of map. Moreover, it is
not only important to find a feasible route but to find the best one (either fastest, safest, etc.),
since there are normally many possible ways to go from one location to another. Second, the
vehicle or robot should be able to react to the obstacles it encounters during its journey (typically
people or other vehicles which are in constant motion and therefore do not appear in maps).
Thus, reactive navigation receives data from different sensors and modifies the original plan in
real time to avoid collisions. Any advanced algorithm of autonomous navigation is composed
of these two blocks, following the so-called hybrid architecture [168].

Autonomous navigation can be implemented for different types of robots, and would have
different requirements to fulfill in each case. Underwater vehicles might take marine currents
into account to increase their range and speed, and drones will need to incorporate more complex
3D reactive strategies to guarantee safe operation [169, 170]. Besides, it is also important to con-
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sider the mechanical constraints of the robot, and whether these are holonomic or nonholonomic.
Holonomic constraints are those that only involve position variables, while nonholonomic con-
straints involve velocities. For example, planar motion is a simple holonomic constraint while the
motion of wheeled vehicles is nonholonomic since the wheels cannot move laterally (assuming
there is no slippage).

6.B Contributions

In our work we focus on terrestrial mobile robots, and particularly on those moving on flat
surfaces, i.e. with planar motion. In §6.C we present a 3D extension of the reactive navigation
algorithm described in [10]. We propose to model the shape of a robot as a set of prisms sorted
in height, and group the detected 3D obstacles in the corresponding height bands/levels. Thus,
the 3D reactive navigation problem is solved by combining several 2D reactive navigators into a
unique space of search where all potential collisions between the robot and the 3D obstacles are
taken into account. Both holonomic and nonholonomic constraints are considered by defining
path or trajectory families that implicitly fulfill these constraints (as described in [10]). The
resulting algorithm is tested with different robotic platforms in various environments. Results
demonstrate its effectiveness to drive the robot following a sequence of random destinations in
dynamic (and sometimes tight) environments. The autonomous navigation tasks were completed
without human intervention in most tests, and the incidents observed where mainly due to
unnoticed obstacles or slippage of the wheels, which causes the robot to move in an undesirable
way.
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CHAPTER 6. REACTIVE NAVIGATION

Efficient Reactive Navigation
with Exact Collision Determination for 3D Robot Shapes

Mariano Jaimez, Jose-Luis Blanco and Javier Gonzalez-Jimenez

Abstract
This paper presents a reactive navigator for wheeled robots moving on a flat surface which takes both
the actual 3D shape of the robot and the 3D surrounding obstacles into account. The robot volume
is modelled by a number of prisms consecutive in height, and the detected obstacles, which can be
provided by different kinds of range sensor, are segmented into these height bands. Then, the reactive
navigation problem is tackled by a number of concurrent 2D navigators, one for each prism, which are
consistently and efficiently combined to yield an overall solution. Our proposal for each 2D navigator
is based on the concept of the "Parameterized Trajectory Generator" which models the robot shape
as a polygon and embeds its kinematic constraints into different motion models. Extensive testing
has been conducted in office-like and domestic environments, covering a total distance of 18.5 km, to
demonstrate the reliability and effectiveness of the proposedmethod.Moreover, additional experiments
are performed to highlight the advantages of a 3D-aware reactive navigator. The code is available under
an open-source licence.

6.C.1 Introduction

Reactive navigation is a crucial component of almost any mobile robot. It is one of two halves
which, together with the path-planner, make up a navigation system according to the commonly
used hybrid architecture [171]. Within this scheme, a reactive navigator works at the low-level
layer to guarantee safe and agile motions based on real-time sensor data.

Traditionally, due to the lack of affordable 3D sensors and the limited computational resources
available, reactive navigators have relied on two strong assumptions:

• The world is considered to be two-dimensional. Since robots usually move on a flat surface,
this implies that the third dimension (height) is ignored.

• The robot shape is simplified by a polygon or circle projected onto the 2D world.

These two simplifications force the reactive algorithm to adopt the worst-case scenario, that is,
to work with the most restrictive section of the robot and the nearest obstacle detected in each
direction. This limitation can complicate or even impede many robotic platforms from carrying
out their tasks. In the most general case, the 2D reduction overconstrains the robot motion,
marking as unfeasible some paths through which the robot could actually navigate. This effect
arises when the robot does not have a constant vertical section, and it is particularly detrimental
for robotic platforms equipped with a manipulator. In this specific case, any purely 2D approach
would not allow the robot to place any object on any horizontal surface (e.g. a table) because
the robotic arm and the surface would be superimposed on a 2D projection and would represent
a collision for the 2D navigator. With the recent emergence of depth cameras and the current
computational resources on board robots, these assumptions are no longer justified.

In this work we address the problem of planar navigation in indoor environments with a
reactive navigation system which considers both the 3D shape of the robot and the 3D geometry
of the environment (Figure 6.1). The proposed reactive navigator is based on the concept of
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Figure 6.1: 3D obstacles are sorted in height bands according to the 3D shape of the robot.

"Parameterized Trajectory Generator" or PTG [10], a robust and effective 2D reactive navigator
that models the robot shape as a polygon and embeds its kinematic constraints into different
motion models. The contribution of this paper consists of extending such work to overcome the
limitation of modelling the robot in 2D:

• The robot volume is nowmodelled as a number of prisms consecutive in height. Collisions are
evaluated considering those exact prisms, including predicted robot orientations according
to a number of path families, unlike many existing approaches which take the conservative
circular-robot approximation and only consider circular paths.

• 3Dobstacles coming froman arbitrary number of range sensors can feed the reactive navigator.

• The new 3D information is merged consistently and efficiently to yield an overall solution.

This generalization, called 3D-PTG navigator, has been extensively tested in varied and chal-
lenging scenarios. Two different robots, Giraff (Figures 6.4 and 6.5) and Rhodon (Figures 6.5
and Figure 6.12), equipped with radial laser scanners and RGB-D cameras, have been employed
for the experiments. Overall, more than 20 hours of navigation are analysed, during which the
robots covered a distance of 18.5 km in both office-like and house-like scenarios.

This paper is divided into eight sections. Section 6.C.2 describes the state of the art in reactive
navigation. A brief summary of the 2D-PTG navigator is presented in §6.C.3. Its generalization
to the 3D world is described in §6.C.4, and all the algorithm steps are explained in §6.C.5.
Implementation details are given in §6.C.6 and the experiments are presented and analysed in
§6.C.7. Results are divided into four subsections: two of them are intended to demonstrate the
robustness of our approach, while the other two show the advantages of a 3D navigator as against
the classic 2D approach. Finally, conclusions are discussed in §6.C.8.

The code has been added to MRPT [32] and is available under an open-source licence. Two
demonstration videos of our approach, together with the code, can be found here:

http://mapir.isa.uma.es/mjaimez
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6.C.2 Related Work

The first example of reactive navigation was probably that of the tortoises of Walter [172].
From then on, reactive navigation has been well studied, and some authors like Brooks [168]
have defined it as the lowest hierarchical layer of a robotic motion control. The first successful
methods, such as VFF [173], VFH [174] and VO [175], enabled robots to advance toward a
given target while avoiding the obstacles encountered along their path, but they ignored both the
robot shape and its kinematic constraints. Afterwards, reactive algorithms started to overcome
these simplifications, solving the navigation problem in a velocity space where kinematic and
dynamic constraints can be easily considered (typically, speed and acceleration limits). Within
this category, Simmons [176] proposed to compute the optimal motion command in a curvature-
velocity space where translational and rotational velocities are represented independently. In
a similar way, the "Dynamic Window Approach" (DWA) [177], which was arguably the most
successful strategy of this kind,minimizes an energy function to obtain the bestmotion command
regarding the reachable obstacles and velocities within a short time interval. DWA is still in use
today as a local planner in the popular Robot Operative System (ROS) [57] "navigation stack".
These two approaches [176, 177] impose the feasible trajectory to be composed of circular arcs
Thus, non-holonomic restrictions are also regarded although, on the other hand, both the robot
and the obstacles are still supposed to be circular. This circular shape assumption is also made
in the extension of the Velocity Obstacle method [178].

Later improved solutions incorporated the robot shape into the reactive navigator. Minguez
and Montano [78] defined the Ego-Kinematic Transformation (EKT): a mathematical procedure
to transform the 3D configuration space into a new 2D space which implicitly contains the robot
shape and its non-holonomic constraints. In this reduced space, the robot is a free-flying point
and any holonomic obstacle-avoidance method can be used to compute the solution. However,
this approach still has a shortcoming: only circular paths are considered. This methodology was
extended by Blanco et al. [10] with the generalization of path models through a novel approach
called “Parameterized Trajectory Generator” (PTG). With this tool, several customized path
models can be used in the reactive navigator and, at each iteration, the best one is selected
according to some specific criteria, such as the collision-free distance for the selected movement,
the minimum distance from the path to the target, etc. It must be noted that the robot becoming
a free-flying point in this space comes at the cost of having a different set of obstacles in the
transformed space, even for real stationary obstacles. However, as will be seen experimentally,
this obstacle transformation can be made extremely efficient by means of precomputed look-up
tables.

In this context, reactive navigators were effective enough, but they still had to assume that
the world was 2D. Nonetheless, the improvement and availability of 3D range sensor during
the last few years have made it possible to realistically tackle the problem of navigating in 3D
environments. Most of the new approaches are based on processing 3D point clouds and use the
resulting information to execute a 2D navigator. For example, the solution proposed by Surmann
et al. [179] consists in scanning the environment with a tilting laser and extracting semantic
information (planes) which is projected onto the floor plane and utilized by a 2D navigator. Holz
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et al. [180] also use a tilting laser to generate 3D point clouds, which are processed to obtain
the "2D Obstacle Map" and "2D Structure Map". The former contains the minimum distance in
each scan direction (i.e., closest obstacles) and is exploited by the reactive navigator, while the
2D Structure Map contains the maximum distance in each scan direction (i.e., furthest obstacles)
which is likely to correspond to the environmental bounds and is used for robot localization.
In contrast, Marder-Eppstein et al. [181] proposed to store the 3D data in a voxel grid: a 3D
occupancy grid whose cells are marked as occupied, free or unknown. The robot navigation is
controlled by two modules: the "global planner" and the "local planner". The "global planner"
creates a high-level plan for the robot to reach the goal location and the "local planner" is a
reactive navigator based on the aforementioned DWA [177]. No information is given about how
the 3D voxel grid is interpreted by the 2D reactive navigator. Finally, the work recently proposed
by Gonzalez-Jimenez et al. [182] addresses the problem of adding the 3D information provided
by an RGB-D camera to a reactive navigator which was designed to work with radial laser
scanners. To this end, they propose to adapt the Kinect depth image into a virtual 2D scan which,
in turn, encapsulates the 3D world information.

From a different point of view, 3D navigation is also studied for legged robots and humanoids
[183, 184, 185]. In these cases, point clouds are always analyzed to extract semantic information,
which is more convenient for the gait of this type of robot. In general, a 3D representation of
the world has proved to be advantageous in many other aspects of the robot navigation, e.g. in
localization [186].

6.C.3 Reactive Navigation based on PTGs

For the sake of completeness, this section summarizes the PTG-based reactive navigator upon
which our proposal is built (more details can be found in [10]). The PTG-based reactive navigator
is based on a mathematical transformation that reduces the dimensionality of the Configuration
Space (C-Space) [187] from 3D (x, y, φ) to 2D, incorporating in the transformation the geo-
metrical and kinematical constraints of the robot. The robot thus becomes a free-flying point
over this 2D manifold embedded in C-Space, and the collision avoidance problem is easier and

Figure 6.2: Mathematical transformations from the Workspace (2D) to the C-Space (3D) and then to the TP-Space
(2D). Individual trajectories (αa and αb) form curves in the C-Space and are segments for a particular referenced
angle in the TP-Space.
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Figure 6.3: In this example three different path models are considered, leading to three different TP-Spaces. In both
the Workspace and the TP-Spaces the target is marked as a green circle, while the obstacles are displayed in red.
The best candidate for each TP-Space is shown with a blue arrow, and the best of all (PTG3) is selected to provide
the angular and linear robot velocities.

faster to solve. This dimensional reduction is accomplished by restricting the robot motion to
one of a set of parametric path models which are compliant with the robot kinematics (e.g.
circular paths, as shown in Figure 6.2). The set of all possible robot poses according to any path
model constitutes a 2D manifold, referred to as sampling surface (S), embedded in the general
C-Space. The basic idea behind PTG-based navigation is to map those manifolds by means of
2D Trajectory Parameter Spaces, or TP-Spaces. The mathematical transformation between the
TP-Space and the C-Space is formulated by a Parameterized Trajectory Generator or PTG, a
smooth mapping of TP-Space points into C-Space poses according to a certain path model.
TP-Spaces are expressed in polar coordinates, where the angle α corresponds to an individual
path from the family and the radius d indicates the normalized distance travelled along that
path (Figure 6.2). The region of interest in a TP-Space is the circle of unit radius, that is, the
subspace A × D ⊂ R2, where A =

{
α
∣∣α ∈ [−π, π]

}
and D =

{
d
∣∣ d ∈ [0, 1]

}
. Therefore,

kinematically compliant paths become straight lines in TP-Space and the robot motion can be
guided with simple holonomic methods like VFF [173] or ND [188], disregarding the robot
shape and non-holonomic constraints.

Since several path models are included in the reactive system, several TP-Spaces are built.
The mathematical transformation between the C-Space and the TP-Spaces is done by the inverse
PTG function, defined as:

PTG−1 : S ⊂ R3 → A×D ⊂ R2

{(x, y), φ} → (α, d) .
(6.1)

Equation (6.1) transforms both obstacle points and the target from the C-Space to the corre-
sponding TP-Space, using path models such as those shown in Figure 6.3. In the resulting
TP-Spaces, the robot becomes a free-flying point because its shape and its kinematic constraints
are embedded into the mathematical transformation and, therefore, any holonomic method can
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be applied to get the best path α̂i in the i-th TP-Space. All the α̂i are subsequently evaluated and
compared following some heuristic criteria which take into account the collision-free distance
for the selected movement, the minimum distance from the path to the target, whether the robot
will be heading to the target or not, etc. The result of this process will be the most suitable
movement α̂ given the obstacles, the target and the path models being used. Finally, the speed
commands associated with α̂ are calculated and sent to the robot. This sequence is repeated
at a given frequency, typically higher than 20 Hz, such that the robot can move smoothly. In
summary, the PTG-based reactive navigator has two inputs –the target relative pose and sensor
data– and generates one output: the velocity command for the robot. The sequence of steps to
compute the velocity commands is as follows:

1. For each path model, using its corresponding PTG, transform the obstacles and the target
to the associated TP-Space.

2. For each path model, apply a holonomic reactive method to get the best path α̂i in the
TP-Space.

3. Select the best path α̂ among the candidates α̂i obtained from the different TP-Spaces.

4. Compute the linear and angular velocities and send them to the robot motor unit.

6.C.4 PTG-based Reactive Navigation in a 3D World

The main limitation of a 2D navigator, such as the one described above or any of those reviewed
in §6.C.2, is that both the robot and the world are assumed to be 2D. More specifically, the robot

Obstacles 
(tables)

Front view Top view

2D approach

3D approach

Conflicts

d2

d1

d1

d2

Figure 6.4: Example of how the 2D approach limits the reactive navigator performance.
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Figure 6.5: Example of 3D geometric models of the Giraff robot (right) and Rhodon (left).

section is considered to be constant and the detected obstacles are projected onto the floor plane,
even if they are provided as 3D data by RGB-D cameras or lidars. This happens to be a valid
simplification under the assumption that the robot has roughly the same horizontal profile all
the way from bottom to top. However, many wheeled robots have a non-constant section (please
visit http://robots.ros.org to find many examples like PR2, Gostai Jazz, Amigo, etc.), in
which case the 2D solution is suboptimal for two reasons: it takes the biggest section of the robot
and also the closest obstacles regardless of their height position in space. Figure 6.4 illustrates
this limitation with an obstacle configuration for which a 2D reactive navigator would fail even
though the robot has enough space to pass through. This kind of situation is quite common in
cluttered environments and demands the addition of the third dimension (height) to the reactive
navigator in order to successfully handle it. For that purpose, we model the robot geometry
through a set of prisms circumscribing the robot volume, as shown in Figure 6.5. Besides
defining the 3D shape of the robot, it is also necessary to include the height coordinates of the
obstacles or, more specifically, to sort them into height bands according to the height sections
used to model the robot (Figure 6.1). Therefore, we decompose the 3D reactive navigator into
N 2D navigators, being N the number of height sections that model the robot geometry. Each
2D navigator comprises an individual robot section and the obstacles in its corresponding height
band. In order to obtain an overall solution for the robot, we combine the results for all the 2D
navigators, as will be described later.

At this point, it is necessary to give a brief explanation of how obstacles are transformed
into TP-Obstacles and what they represent (Figure 6.6). In the Workspace, obstacles are always
considered to be points. Focusing on a single obstacle (or point), and given its coordinates, the
robot shape and its location, we can calculate all the poses (x, y, α) in the C-Space which imply a
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Figure 6.6: A pair of obstacles in the Workspace are transformed to the C-Space and, according to a path family, to
the associated TP-Space.

collision between the robot and the obstacle. This set of poses forms a volume called C-Obstacle.
In addition, it is useful to recall that in C-Space every path model is a sampling surface. Thus,
TP-Obstacles are obtained by transforming the 3D intersection between C-Obstacles and the
sampling surface to the TP-Space.

Formally, let σ ∈ R2 be a real obstacle in the Workspace, C-Obstacle(σ) its representation in
C-Space and P a 3D point in C-Space. TP-Obstacles are defined as:

TP-Obstacle(σ) =
{

(α, d)
∣∣ (α, d) = PTG−1(P ),∀P ∈ C-Obstacle(σ) ∩ S

}
. (6.2)

Nevertheless, only the closest obstacle for each path α is relevant here as it marks the maximum
distance the robot can travel along that path, always from the origin, without collision. The set
of closest obstacles in TP-Space is called TP-NavLimit. If there is no obstacle along the path α,
its TP-NavLimit is set to 1 (the maximum distance in the normalized TP-Space), that is:

TP-NavLimit(α) = min {1, dm} , (6.3)

where dm is the minimum distance of the pairs (α, d) ∈ TP-Obstacles.
Returning to the 3D reactive navigator, the same process is followed for theN height sections

of the robot to obtain a TP-Space with N sets of TP-NavLimits, each indicating the maximum
distance that the robot at that height section can travel along a given path model. Hence, the
most restrictive TP-NavLimits are used to build the TP-Space for each α (Figure 6.7), that is:

TP-NavLimit(α) = min
n
{TP-NavLimitn(α)} , n ∈ {1, ..., N} . (6.4)

We want to remark that calculating the minimum of all TP-NavLimits is not equivalent to
projecting the most restrictive 3D obstacles onto the floor. Given that the TP-NavLimit of each
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TP-NavLimits in PTG1 TP-NavLimits in PTG2 Combination of TP-NavLimits 

Figure 6.7: Example of combination of TP-NavLimits for a robot with two height sections. PTG1 is related to the
first height section (blue) and PTG2 to the second one (red). The resulting TP-NavLimits (black) are calculated as
the minimum of the TP-NavLimits associated with each individual PTG.

individual robot section contains information about how far this part of the robot could travel
in the 3D world according to some path models, the minimum of them shows how the whole
robot could navigate in the same 3D world, since it encompasses the motion restrictions of every
part of it. Thus, all these restrictions correspond to poses of the robot that would actually imply
collisions with the environment, whereas the typical 2D obstacle projection is prone to creating
motion constraints that do not correspond to any potential collision in the real world, hence
overconstraining the robot motion.

6.C.5 The 3D Reactive Navigation Framework

In this section we describe the overall operation of the reactive navigator. It consists of a number
of steps which are executed periodically at a given frequency (Figure 6.8). The inputs to the
reactive system are the obstacles and the relative location of the target. Different kinds of sensors
providing 3D obstacle points can be used simultaneously, typically laser scanners and RGB-D
cameras. As previously mentioned, these 3D obstacle points are sorted according to the different
height sections employed to model the robot volume.

Before applying the PTG transformations, a module called Short-TermMemory (STM) stores
the position of close obstacles that might eventually become unseen by the robot sensors if they
enter into their blind zone. This is particularly relevant for RGB-D cameras which have a narrow
field of view and cannot detect obstacles at short distances. The STM module is implemented
by N local occupancy grids centred at the robot pose onto which the 3D points within each
slice in height are projected. The appropriate grid and cell sizes depend on the sensors used,
the accuracy of the localization estimate, how cluttered the environment is, etc. The outputs of
the STM block are sets of virtual obstacles whose coordinates are generated from those of the
occupancy grid cells. These virtual obstacles are merged with the real ones coming from sensors
and passed to the TP-Obstacle builder. Detailed information about the occupancy grids, their
working principle and how they are implemented can be found in [182].

All the obstacles, real and virtual, are converted into TP-Obstacles for a number of pathmodels
and also for each height level. This results in K × N sets of TP-Obstacles and, subsequently,
in K × N sets of TP-NavLimits. Then, the N sets of TP-NavLimits corresponding to each
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Figure 6.8: Scheme of the 3D reactive navigator withK different path models and N height sections.

path model are combined, as explained in §6.C.4, yieldingK TP-Spaces representing the robot
navigability for each path model. Concurrently, the relative target location is also transformed
to these TP-Spaces, where any holonomic method can be run (e.g. VFF [173] or ND [78]), to
get the most suitable path α̂i for each path model i. The best path candidate α̂ among all is then
the one that maximizes an objective function that trades off several navigational criteria:

α̂ = arg min
α

∑
i

wifi(α̂
i) (6.5)

with wi being weighting coefficients and fi factors which measure:

• f1: The collision-free distance of each candidate (in TP-Space).

• f2: The angular distance in the TP-Space between the target and the candidate.

• f3: The minimum distance between the target and the path candidate.

• f4: How different the new (tentative) and the previous speed commands would be (to soften
the robot motion).

Finally, the linear and angular velocities are derived from α̂ and sent to the robot motion control
unit.

6.C.6 Experimental Setup and Implementation Details

The 3D reactive navigator has been intensively tested for months in several scenarios to demon-
strate its proper functioning. The Giraff and Rhodon mobile robots (Figure 6.5) have been
utilized for the experiments, as their heterogeneous profiles are appropriate to test the 3D reac-
tive navigator’s performance. In particular, the Giraff robot has been deployed and utilized for
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more than a year in several real apartments in Spain as part of the EU project GiraffPlus [189]
using the proposed method to reactively navigate between nodes of a pre-established roadmap.

Giraff is a differential wheeled robot and has been equipped with a Hokuyo URG-04LX-
UG01 laser and a PrimeSense Carmine 1.09 RGB-D camera, both facing forwards. Rhodon is
a heavier differential wheeled robot equipped with two laser scanners (one Sick LMS200 and
one Hokuyo UTM 30-LX, facing forwards and backwards respectively), and one Kinect camera
placed at the top of the robot and tilted downwards with an angle of 50 degrees. 3D points
provided by all the range sensors are expressed with respect to the robot coordinate system
and then merged before feeding the reactive navigator. In this preprocessing stage, the fused
point cloud is downsampled, retaining only the most restrictive points at each height band. The
frequency at which sensor data are read is adjustable; in our experiments it ranges from 10 Hz
for the Hokuyo URG-04LX-UG01 (its maximum) to 30 Hz for the remaining sensors. Due to the
lack of 3D sensory information at their back (Rhodon does contain a Hokuyo facing backwards
but it is only used for localization), the robots are not allowed to move backwards during the
experiments.

Configuration of the 3D Reactive Algorithm

First, we need to define the height sections that model the robot geometry (Figure 6.5). In these
experiments we have modelled the Giraff robot with four consecutive prisms and Rhodon with
five prisms (see §6.C.4 for further details). Second, path models and their characteristics have to
be specified; in our case three different path models are considered (Figure 6.9): circular arcs,
trajectories with asymptotical heading and trajectories with a minimal turning radius (see [10]
for more details about their mathematical definition).

Furthermore, the holonomic method can be chosen from two options: VFF [173] or ND [78],
and their associated parameters can be customized too. We opted for the ND method because,
in general, it outperforms the VFF. Finally, the reactive loop frequency is set to 20 Hz, which is
fast enough to react to incoming sensor data without overloading the processor.

Circular arcs Asymptotical heading Minimal turning radius

Figure 6.9: Set of path models considered in the experiments by the reactive navigator.
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Speed Regulation and Recovery Behaviour

Linear and angular velocity commands sent to the robot come from the PTG associated with the
selected path, but they can be modulated or rescaled without violating the kinematic constraints
of that path.

As a general rule, the robot should move carefully when it is surrounded by obstacles, but
this is not always granted by the PTGs. For this reason, the speed commands are adjusted taking
into account the proximity of obstacles, with the frontal obstacles having a greater influence than
those at the sides. This speed regulation, which allows us to increase the average robot speed
while keeping the navigation safe, can be adjusted depending on the robot dynamics and the
desired balance between robot agility and conservativeness.

On the other hand, a basic recovery behaviour is implemented in case the robot gets stuck.
Knowing that backward movements are not permitted, the reactive navigator assumes that the
robot is trapped when both forward movements and rotations are impeded. In such situations,
the robot starts to move backward slowly until it finds a feasible movement from the reactive
navigator. If it is unable to find a way out after a few seconds, it stops (to avoid possible
backward collisions) and keeps waiting until the environment changes or the user takes control
of the situation.

6.C.7 Experiments

A wide variety of experiments have been conducted. The first two sets are intended to study
the performance of the 3D navigator under circumstances that are habitual in many robotic
applications: navigation in an office-like environment and navigation at home. To validate our
proposal, the other two sets of experiments include some specific and demanding situations that
cannot be addressedwithout 3Dknowledge of theworld. In all the experiments, localization relies
on wheel odometry and laser scanners, which feed a particle filter implementation of localization
based on a metric map of the environment [60]. Those geometric maps were previously built for
each environment by means of a simple ICP-based incremental registration of laser scans.

Computational Burden

In order to check the computational resources that the reactive navigator demands, we have
tested how long one complete iteration of the reactive module takes on the Giraff robot, whose
processor is an Intel i3 – 2310M 2.10 GHz with 4.0 GB of RAM. Considering four height
sections and three different path models, the reactive iteration takes 4.8 milliseconds on a single
CPU core, which implies a computational load inferior to 100 milliseconds per second for the 20
Hz implemented frequency. This leaves more than 90% of the CPU to the other robotic modules
(localization, sensing, interface, etc.) which have to share the same computational resources.

We can compare this runtime with that of the 2D reactive navigator, i.e., considering only one
height section to model the robot. In this case the reactive iteration takes 3.4 milliseconds, which
implies that the 3D version is about 40% slower than the 2D for this particular configuration. As
can be noticed, the runtime is sublinear with the number of height sections because, within one

175



CHAPTER 6. REACTIVE NAVIGATION

(B)

Figure 6.10: A) Some snapshots of the Giraff robot navigating in an office-like environment (first row) together
with a virtual representation of the robot and the obstacles detected by the sensors on board (second row). B) The
trajectory described by the robot during one of the missions.

complete iteration of the 3D reactive approach, there are only a few steps that are executed for
each height section of the robot model (see Figure 6.8).

Navigating in an Office-Like Environment

The Giraff robot has navigated autonomously around our lab floor for more than a year, mainly
in an area which includes a long corridor, our two-room lab and the two contiguous labs. This
environment presents a wide variety of static and dynamic obstacles that the robot has to detect
and dodge (Figure 6.10). Apart from the geometric map for localization, the robot is provided
with a topological map from which navigational targets are generated randomly.

Table 6.1 shows the results of some of these navigational missions where navigational
data were monitored to evaluate the reactive navigation performance. Overall, the robot has
travelled 13.5 km with an average speed of 0.32 m/s and a top speed of 0.7 m/s. The incidents
that took place during these sessions were classified into two categories. The first one, called
minor incidents, refers to smooth contacts or grazes that the robot itself can manage and solve
autonomously without human intervention. The second category comprises those cases where
the robot gets stuck and cannot resolve the situation by itself, needing human intervention. The
incidents recorded are explained according to their nature:

• Minor incidents are due to wheel slippage and the relatively high response time of the whole
system. Wheel slippage depends on the robot mechanics and the surface it is moving on, and
causes the robot to move in an uncontrolled way. On the other hand, we have checked that the
elapsed time from the moment an obstacle is detected until the time the robot starts to react
to it is slightly higher than 0.5 seconds. This latency is the sum of a number of small response
times, inertias, and communication delays between modules of the robotic architecture.

• Human intervention is mainly needed when the robot gets stuck due to unnoticed obstacles,
most of them being small pieces or part of objects lying on the floor.

Figure 6.10 gives an idea of how the robot has been wandering during the experiments. The
point map shown was built with a laser scanner and, hence, white areas may contain obstacles
invisible to the laser scanner (tables, chairs or other objects) but not to the RGB-D camera. This
explains why in the trajectory plot there are apparently free areas that the robot did not visit.
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Duration (s) Distance Average Minor Human
travelled (m) speed (m/s) incidents intervention

5330 1771 0.332 0 0
1352 399 0.295 0 0
597 184 0.308 1 0
564 179 0.317 0 0
1500 479 0.319 1 0
1737 535 0.308 0 0
4749 1435 0.302 1 1
3974 1206 0.303 1 1
3764 1207 0.321 1 0
1614 537 0.333 2 0
5450 1811 0.332 4 0
4975 1587 0.319 5 1
1840 601 0.327 3 0
5228 1571 0.300 1 1

Overall Results
11.85 h 13.5 km 0.316 20 4

Table 6.1: Results of the experiments in an office-like environment.

Navigating in a flat

As mentioned, the Giraff robot has been deployed for more than a year in several flats in Málaga
(Spain) as part of the objectives of the EU project GiraffPlus [189]. The flat selected for the
experiments has four rooms and presents a narrow navigable space with a reduced margin for
manoeuvre (Figure 6.11). As a consequence, the Giraff maximum speed was lowered to 0.4 m/s
in this case. The followed procedure is similar to that explained in the previous section: both
metric and topological maps were built and provided to the robot which used them to navigate
autonomously. Results are listed in Table 6.2. We can observe that the average speed has
decreased, which is not only a consequence of the maximum speed reduction, but is also caused
by the many situations in which the robot performs a pure rotation to turn round, contributing
zero to the average velocity (see Figure 6.11 B). The incidents that took place during these tests
are explained following similar criteria to those mentioned in the analysis of the previous set of
experiments:

• Minor incidents are mainly due to the high response time of the robot working loop, which
becomes more relevant when moving in tight spaces.

• Only one human intervention was necessary because there were not many objects lying on
the floor.

Navigation with an outstretched robotic arm

During this experiment, Rhodon is commanded to perform a task that would be unfeasible using
a 2D navigator. This task consists in visiting different desks with a robotic arm in a stretched
position, emulating the process of collecting and delivering objects autonomously, but omitting
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(B)

(B)

Figure 6.11:A) Some snapshots of theGiraff robot navigating in a flat (first row) togetherwith a virtual representation
of the robot and the obstacles detected by the sensors on board (second row). B) The trajectory described by the
robot during one of the missions.

Duration (s) Distance Average Minor Human
travelled (m) speed (m/s) incidents intervention

3003 448 0.149 2 0
4331 644 0.149 2 0
3845 571 0.149 1 1
4241 671 0.158 0 0
4263 654 0.153 1 0
4321 716 0.166 1 0
4384 731 0.167 3 0
3207 574 0.179 1 0

Overall Results
8.78 h 5.01 km 0.159 11 1

Table 6.2: Results of the experiments in an four-room flat.

the manipulation phase as it is outside the scope of this work. This is an illustrative example of
a robotic application that necessarily requires 3D knowledge of the environment and the robot.
As PTG-based navigation does not support changeable robot shapes, the arm is maintained at
the same position during the whole navigation so that the same five prisms model the robot
shape properly throughout this test (if the arm moved, its corresponding height section could be
modelled according to the range of motion of the manipulator). We specify a blind pixel region
for Kinect and neglect all the points observed at that region of the depth images since, given the
camera pose on the robot (see Figure 6.5), the robotic arm is necessarily observed by the Kinect
and would be considered as an obstacle otherwise. Taking the weight (∼50 kg) and height (1.8
m) of Rhodon into account, its maximum linear and angular speeds have been set to 0.4 m/s
and 45 deg/s respectively. During the experiment, the robot has travelled 160 m around our lab
visiting a total of seven different desks several times at random (Figure 6.12).

Aside from accomplishing its task, the 3D reactive navigator has shown an improved be-
haviour with respect to the 2D version since the robot was able, for example, to turn round
when surrounded by chairs, tables or boxes while the arm was moving above them. No incidents
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(B)

Figure 6.12: A) Schematic map of the lab and the desks that Rhodon visited during the experiment. B) Snapshots
of Rhodon reaching its destinations or turning round surrounded by obstacles (first row) together with a virtual
representation of the robot and the obstacles detected by the sensors on board (second row).

occurred during this test. In Figure 6.12 we can observe the final pose of the robot when it
reached some of its destinations and how the robotic arm lay above the corresponding desks.

Testing the limits of the reactive navigator

A more extreme test to challenge the functioning of the 3D reactive navigator consists in
commanding the robot to go through a contour which has the same profile as the robot itself.
For this purpose we cut out a piece of fabric and placed it at the door frame (Figure 6.13). The
experiment was carried out placing the robot about 5 meters away from the door at different
positions and giving it a target outside of the lab. Sometimes we put an additional piece of
fabric crossing the contour so as to check that the robot realized it could not go across it. The
maximum velocity was set to 0.3 m/s and the short-term memory (STM) was not used (please
see the demonstration video at the link attached in the introductory section).

We repeated this run 20 times and the robot always passed through the silhouette if the
blocking piece of fabric was not present and always stopped otherwise. Quite frequently (about
50% of the time), however, the robot slightly touched the cloth as the field of view of the
RGB-D camera is not wide enough to sense the whole clearance when the robot gets close to
the door (Figure 6.13). We also made some trials activating the STM, but we found that using it
had a counterproductive effect. As the localization module has a precision of few centimeters,
virtual obstacles are inserted in the map carrying such positioning errors, which on occasion
prevents the robot from seeing the clearance or cause undesired jittery behaviour in the reactive
navigator. In this case, the errors in localization are higher than the spatial margins to pass
through the clearance and, hence, the STM becomes useless. Nevertheless, the STM would be
a good solution as long as the robot pose was estimated more precisely.
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Figure 6.13: Real images (up) and representations of the robot, the detected obstacles and the map (down) showing
how the robot goes through the contour.

6.C.8 Conclusions

We have presented a 3D reactive navigator that can be adapted to almost any robot moving
on a flat surface. We achieve high levels of versatility and manoeuvrability, as only very weak
assumptions have been made to formulate this 3D approach, namely:

• The robot can be properly modelled in three dimensions as a set of prisms.

• Measurements coming from different kinds of sensor can be directly merged and read by the
reactive navigator, provided they are expressed as 3D points sets.

The robot is allowed to move according to several kinematically compliant path models. Two
robots with heterogeneous height sections were chosen to test the reactive navigator in different
environments. A fair number of experiments were conducted and the results support its proper
functioning, although it may be conditioned by some factors. First, the robot mechanics has
been shown to play an important role and can spoil the reactive navigator performance if the
robot is not able to reproduce the motion commands quickly and accurately enough. Second,
the coverage of the surroundings by the robot sensorial system is also a key factor that clearly
delimits the quality of the reactive navigator. The number, type and placement of sensors needed
for the robot to comprehensively sample its surroundings are aspects that require a great deal
of attention. In this respect, we believe that active perception could be an effective solution
to improve obstacle detection without demanding many sensorial resources. Although it has
not been contemplated here, active perception represents a potential improvement and will be
studied in future works.
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Conclusions

In this thesis we have addressed distinct problems that lie at the interface between robotics and
computer vision. As a common denominator, the proposedmethods have exploited the geometric
data provided by range sensors for motion estimation, reconstruction, tracking and navigation.

Range sensors have demonstrated to be a powerful alternative to traditional solutions based
on monocular or stereo cameras. Knowing the geometry of the environment is often mandatory
for many vision-related tasks and, as a consequence, range sensors present a genuine advantage
over passive sensory systems. While the former directly provide such data, the latter entail depth
estimation as a preliminar step, consuming valuable computational resources in the process.
Moreover, range sensors are able to work under poor illumination conditions or even in complete
darkness, where RGB cameras render useless. On the other hand, range sensors can only detect
objects below a certain distance threshold and are prone to being affected by the solar radiation,
which sometimes prevents their use for outdoor applications.

Next, we present individual summaries of the proposed methods, highlighting their pros and
cons as well as possible lines of future work.

1. Regarding visual odometry, we have demonstrated that the camera motion can be estimated
fast and precisely from depth images. The main drawback of the proposed method is its
lack of robustness to moving objects, but this limitation could be overcome by minimizing
the geometric residuals within a robust penalty function (as we have proposed in posterior
works) or by extending the existing formulation to perform multi-frame alignment. From the
point of view of its application, this method could be utilized to estimate the motion of those
virtual&augmented reality devices equipped with depth cameras (e.g. Hololens) or, more
generally, as the front-end of SLAM systems.

2. Likewise, inspired by the most recent advances in 3D visual odometry, we have developed
a direct method based on dense scan alignment for planar odometry. Results show that
our method outperforms the most popular techniques on scan-matching while having a
lower runtime. Our approach requires scans to be at least piecewise differentiable, which
prevents its use in outdoor environments composed of trees, plants and other scattered
objects. Nevertheless, this limitation is not that relevant because motion in outdoor scenarios
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is seldom planar and, hence, odometry based on 2D laser scanners is not really an option.
Given its characteristics, this method is suitable for service or telepresence robots operating
in office buildings, museums, hotels, homes, etc.

3. We have presented the first real-time algorithm for scene flow estimation with RGB-D cam-
eras. We have made the code public so that all those robots or systems equipped with RGB-D
cameras (and NVIDIAGPUs) can exploit it for different purposes. The main limitation of this
method is that it works only for small displacements between the incoming frames. However,
this is not a serious restriction in practice because it runs in real time and the image pairs
to be aligned are very close/similar (save in the presence of very fast object). In order to
widen the range of potential applications, this algorithm should be combined with additional
post-processing strategies to simplify and refine the extensive information contained in the
estimated motion field.

4. A completely different approach for scene flow estimation is described in §4.E. This method
achieves very accurate results by jointly segmenting the rigid bodies that form the scene and
their underlying rigid body motions. We demonstrate that a smooth motion-based segmen-
tation is beneficial if compared to the standard binary approach when the scene contains
non-rigid parts like people, animals, toys or other flexible objects. As a drawback, it is com-
putationally very expensive (20 to 30 seconds running on GPU), which prevents its direct
application in real-world scenarios. Given that scene flow is computed from rigid transforma-
tions, this method can be used to render "virtual images" for temporal interpolation between
the aligned frames. Applying this process to an entire RGB-D sequence would result in a
"slow motion" version of the original video.

5. We have tackled an uninvestigated problem: the joint estimation of odometry and scene flow.
Our solution relies on a two-fold segmentation of the scene, dividing it into rigid geometric
clusters that are, in turn, classified as static or moving elements. Identifying the static parts
of the scene is paramount to compute a robust odometry, while the geometric clustering is
essential to reduce the computational complexity of the problem. By virtue of this piecewise
rigid formulation, our method achieves a runtime of about 80 milliseconds running on CPU,
which is some orders of magnitude faster than most existing scene flow algorithms. Despite
the promising results, there is still room for improvement since the method fails to distinguish
static from moving parts when the former represent a small percentage of the scene (< 50%).
Possible solutions to this problem would involve multi-frame alignment or a more elaborate
strategy for temporal regularization. This method would be useful for virtually any mobile
system that requires some degree of autonomy and operates in a dynamic environment (since
it works with RGB-D cameras, it would be constrained to indoor use).

6. We have also presented a new background term to enforce silhouette consistencywithin 3D re-
construction and tracking systems. This term overcomes important limitations of the popular
formulation based on the distance transform, but it comes at the expense of a higher computa-
tional cost. We embed this term into an overall optimization framework to fit geometric data
(obtained from sets of depth images) with subdivision surfaces. Results show the advantages
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of this new background term, but the overall framework described for 3D reconstruction and
tracking is not mature enough to compete with state-of-the-art algorithms. Concerning the
reconstruction stage, one significant difficulty is the lack of an initial topology. In our work,
the fitting process always starts with a sphere placed at the centroid of the geometric data,
which is subsequently deformed and refined in a coarse-to-fine scheme. The topology of the
control mesh is never modified (just refined) during the optimization, fact that renders the
reconstruction process extremely complicated. A tentative solution consists in formulating a
continuous-discrete optimization strategy which alternates between data fitting and topology
rearrangement. This and other alternatives should be explored to improve the quality of the
reconstructions.

7. We have generalized an existing reactive navigation algorithm [10] for robots moving on a
flat surface. In contrast to most existing approaches, our algorithm takes the 3D shape of the
robot into account, as well as the real distribution of obstacles detected by different range
sensors. It has been tested with various robotic platforms operating in different environments,
allowing robots inMAPIR to cover hundreds of kilometers autonomously. Themain limitation
of this approach is that it assumes the robot shape is fixed, which is not true for mobile
platforms equipped with a manipulator. Therefore, a natural extension of this approach should
incorporate the possibility to model changing 3D shapes.

Outlook

We can contend that, nowadays, both autonomous navigation and odometry are solved problems
if the environment is static. As Prof. Dieter Fox pointed out in his talk "The 100-100 tracking
challenge"1, the nextmilestone is achieving the same level of accuracy and robustness in changing
environments where robots are surrounded by people or other robots in permanent motion. As
a consequence, scene flow, either by itself or combined with segmentation or odometry, will
become a more frequent and relevant research topic in robotics and computer vision.

Despite the significant progress made in the last years, including the works presented here,
there are still two main problems to solve:

• Scene flow is computationally too expensive. The fact that some algorithms (like the PD-Flow
[12] proposed in this thesis) run in real time does not imply that this problem is solved. Those
algorithms are fast because they run on powerful GPUs or other dedicated hardware like
FPGAs. Most phones, tablets, virtual reality devices or consumer robots cannot afford to be
equipped with such hardware, and even if they were, they could not overload it just for scene
flow estimation because there are tens of other processes they must run. Therefore, we must
findmore intelligent strategies to compute scene flow. A positive step forward is the clustering
strategy proposed here and in other works like [13]. Estimating motions per cluster greatly
reduces the number of unknowns (by two or three orders of magnitude) and often improves
accuracy. The next significant improvement might come from studying how to compute the
motion of each individual cluster more efficiently.
1International Conference on Robotics and Automation (ICRA), Stockholm (Sweden), 2016.
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• It is not known how to estimate scene flowwithmonocular RGB cameras. This is a tremendous
limitation since this kind of cameras are cheap, require low power and are equipped in many
consumer products. The critical problem is that depth estimation with monocular cameras is
performed assuming that disparity between images is explained by the camera motion. When
objects move, this hypothesis is violated and there is no obvious way to estimate their 3D
position (up to scale) in space. Solutions to this problem must involve the detection of parts
of the scene that are not static (high residuals after warping according to the camera motion)
and the joint estimation of the position and motion of those elements.

From a technological point of view, in the last decade we have witnessed a spectacular
development of range sensors accompanied by a noticeable drop of their prices. In this thesis
we have mainly worked with two types of sensors: depth (or RGB-D) cameras and 2D laser
scanners. Consciously, and maybe mistakenly, we have disregarded 3D laser scanners. The main
reason justifying that decision is that, because of their high prices, our research group does not
own such sensor. Admittedly there are datasets with 3D lidar scans and simulators that could be
used to generate synthetic data. Yet, during all these years we have focused on working with real
sensors, which allowed us to test our algorithms under real conditions, and this was not possible
for 3D lidars. Nonetheless, a paradigm shift seems to be near in time because a fewmanufacturers
have announced the future release of solid-state 3D lidars at considerably lower prices than their
mirror-based counterparts. This innovation is encouraged by the imminent arrival of autonomous
cars and the fact that they rely to a great extent on this kind of sensors to work. As occurred with
the advent of Kinect in 2010, robotics might benefit from a technological breakthrough that was
not originally conceived for such purpose (although, anyway, an autonomous car is nothing but
a mobile robot).
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