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Abstract—This paper presents a dense method for estimating
planar motion with a laser scanner. Starting from a symmetric
representation of geometric consistency between scans, we derive
a precise range flow constraint and express the motion of the scan
observations as a function of the rigid motion of the scanner. In
contrast to existing techniques, which align the incoming scan
with either the previous one or the last selected keyscan, we
propose a combined and efficient formulation to jointly align
all these three scans at every iteration. This new formulation
preserves the advantages of keyscan-based strategies but is more
robust against suboptimal selection of keyscans and the presence
of moving objects.

An extensive evaluation of our method is presented with
simulated and real data in both static and dynamic environments.
Results show that our approach is one order of magnitude faster
and significantly more accurate than existing methods in all the
conducted experiments. With a runtime of about one millisecond,
it is suitable for those robotic applications that require planar
odometry with low computational cost. The code is available
online as a ROS package.

Index Terms—Scan matching, range sensing, visual odometry.

I. INTRODUCTION

MOTION estimation is one of the major challenges in
robotics and computer vision. Virtually every robot, be

it a drone, a humanoid or a manipulator, needs to accurately
keep track of its position to perform an autonomous task.
Although different technologies exist for estimating the motion
of a robot (e.g. GPS systems, inertial sensors or encoders),
visual odometry is arguably the most flexible and powerful
solution since it can work with different input data (photo-
metric/geometric) and can be adapted to almost any type of
robot.

Among the many robotic platforms used nowadays, a sig-
nificant percentage of them operate in structured environments
and move on a planar surface. Examples of those are:
• Service robots working in hospitals, museums, hotels or

airports [1].
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• Telepresence robots that operate in domestic environments
to monitor and assist old or disabled people [2], [3].

• Autonomous mobile robots employed in warehouses for
sorting and delivery of goods [4].

• Modern vacuum cleaners like the iRobot Roomba or the
Dyson 360 Eye.

To perceive their surroundings, these robots are often
equipped with one or more laser scanners that allow them
to survey the environment in a plane parallel to the floor.
The data provided by these sensors is suitable for this kind
of applications since it can be simultaneously exploited for
obstacle avoidance, odometry, localization and 2D mapping.

In this paper we address the problem of estimating pla-
nar motion with a radial laser scanner. Our proposal takes
inspiration from the latest research on dense and direct 3D
visual odometry [5]–[8] and expresses the odometry as an
energy minimization problem where the scans are aligned as
piecewise continuous functions without searching for explicit
correspondences. Despite the extensive body of literature in
the field and the remarkable results achieved thus far, we
demonstrate that this formulation provides more accurate
results than existing techniques. Moreover, these results are
achieved with a lower runtime (around 1 millisecond), which
renders our method suitable for those robotic systems or
applications that are computationally demanding and require
real-time operation.

Our approach, which we will refer to as Symmetric Range
Flow-based Odometry (SRF-Odometry), extends and improves
the algorithm presented in [9]. That algorithm is based on the
range flow constraint equation and formulates the motion of
every observed point as a function of the velocity of the sensor,
assuming that the environment is static. In this paper we build
upon the same idea, and introduce the following contributions:

• A new symmetric formulation of geometric consistency
between scans. To the best of our knowledge, this technique
has been applied for the estimation of optical flow but never
in the context of visual odometry.

• A new multi-scan formulation which combines the two stan-
dard techniques in visual odometry: alignment of consecu-
tive scans/images and alignment against keyscan/keyframe.

• A procedure for modeling the accuracy of our algorithm
as a function of the translation and rotation between the
registered scans. Based on this model, we propose a new cri-
terion for selecting keyscans by imposing thresholds on the
maximum acceptable/desirable translational and rotational
errors.
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• Faster and more accurate estimates than state-of-the-art
techniques, both in static environments or in the presence
of moving objects.
We present a thorough evaluation of our method with both

synthetic and real data. We analyze how each of its main
components contribute to its overall performance and test
several versions of it (e.g. two-scan vs multi-scan alignment
or robust optimization vs non-robust optimization). Further-
more, we compare our method with four state-of-the-art
techniques [10]–[13]. Besides analyzing the results presented
herein, we encourage the reader to watch the demonstration
video and to test the algorithm by themselves. Both the video
and the code, which is available as a ROS package, can be
found at:

http://mapir.isa.uma.es/work/SRF-Odometry

II. RELATED WORK

Over the last few decades, the scan matching problem has
been extensively studied in robotics and computer vision.
Although it can be regarded as a general problem, many of
the proposed techniques focus on specific applications like
localization [14] [15], SLAM [16] or odometry [17]. Since
our interest is in the latter, this section will primarily consider
those methods which have been particularly designed for (or
are commonly applied to) the estimation of planar motion from
a sequence of range scans.

In the context of 2D visual odometry, the majority of the
existing approaches are based on a dense formulation, i.e., they
use all the observations in the scans to align them. Sparse
formulations based on interest points like FLIRT [18] or
FALCO [19] have been employed for global pose optimization,
localization and loop closure, but are rarely used for odometry.

Traditionally, ICP [20] or a number of its variants have been
applied to solve the registration problem between consecutive
scans. The Iterative Dual Correspondence method (IDC) [21]
combines two different criteria to find correspondences be-
tween the scans: the standard closest-point rule and a new
closest-range rule which leads to faster convergence thanks
to a better estimation of rotations. Metric-based ICP (MB-
ICP) [22] includes a new weighted angular term in its dis-
tance metric to improve the search for correspondences under
rotation. In [22], MB-ICP obtains very accurate trajectory esti-
mates when the robot wheel odometry provides the algorithm
with an initial guess, but no information is provided about
how these results would change if no external inputs (wheel
odometry) were used. A different approach was proposed by
Censi [10], where a point-to-line metric was used instead of
the original point-to-point metric of ICP. Furthermore, the
author presented an implementation which was an order of
magnitude faster than existing ICP variants, while being more
precise and efficient than the previous point-to-segment work
in [23]. More recently, Generalized-ICP [24] improved the
performance of existing ICP versions by including the covari-
ance of both scans in the minimization problem (instead of
using only that of the reference scan). However, Generalized-
ICP has mainly been used for the registration of 3D point
clouds and its performance in aligning 2D range scans does

not seem to have been reported yet. In general, for this family
of methods, accuracy depends on each particular version and
implementation, yet they all share the same weakness: they
tend to be computationally expensive.

Alternatively, other methods were specifically designed to
solve the 2D scan matching problem:

• Gonzalez & Gutierrez [17] formulated the “velocity con-
straint equation”, an adaptation of the optical flow constraint
for range scans, and proposed estimating the lidar motion by
imposing this restriction for every observation in the scans.
However, their method was only tested on simple simulated
scenarios and provided modest results.

• Remarkable results were presented by Biber & Strasser in
[12]. Their method, named the Normal Distributions Trans-
form (NDT), models the probability of finding a point at a
certain position by using a collection of normal distributions
to generate a piecewise continuous representation of the 2D
plane. This model is created for the reference scan, and is
used to evaluate the second scan by projecting it according
to the estimated transformation. In this way, the NDT defines
and minimizes a cost function which does not include the
typical (and slow) search for correspondences. A similar
idea based on the Distance Transform was presented by
Fitzgibbon [25] to register 2D and 3D point sets and, more
recently, a Signed Distance Function-based formulation was
proposed by Fossel et al. [13] to solve the 2D SLAM
problem for laser scanners.

• Censi et al. [26] proposed a new method based on the
Hough Transform (HT) that permits the combining of the
advantages of dense and feature-based scan matching al-
gorithms. Their HT parameter space is the one associated
with lines, and therefore the best results are achieved when
the algorithm is tested in polygonal environments. Neither
comparisons with other methods nor information about its
runtime are provided.

• Diosi & Kleeman presented the Polar Scan Matching ap-
proach [27], where the translation and rotation between
two scans are alternately estimated until convergence. In
contrast to ICP, this method avoids the need to search for
correspondences by simply matching points with the same
bearing, resulting in better computational performance. This
approach was subsequently extended and further evaluated
in [11].

• The probabilistic method proposed by Olson [28] attempts
to find the rigid transformation that maximizes the proba-
bility of obtaining the latest scan given the previous one.
Additional information is used (control inputs or wheel
odometry) to improve the method convergence and two
different implementations, GPU and multi-resolution CPU,
are presented. A thorough evaluation of its computational
performance is included but, surprisingly, no results for the
method’s accuracy are presented.

More recently, other approaches have built upon the afore-
mentioned works. This is the case for [29] and [30], which
fuse laser odometry (Olson’s laser odometry [28] and point-
to-line ICP [10], respectively) with stereo vision to perform
autonomous navigation with UAVs. Furthermore, the work of
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Fig. 1. Left: Standard formulation of geometric consistency between two scans R1 and R2 for a given point observed initially at θ. Right: Symmetric
formulation of geometric consistency applied for the same point considered at the left scheme. The value of θ differs between the schemes because in the
symmetric formulation θ represents the average of the initial and the final angles at which the point is observed.

Pomerleau et al. [31] presents a fast implementation and a
thorough evaluation of some ICP variants using real-world 2D
and 3D data sets.

III. RANGE FLOW CONSTRAINT FOR VISUAL ODOMETRY

In this section we derive a simple and linear constraint for
the motion of the sensor by imposing geometric consistency
between two consecutive scans. This constraint builds upon
two main assumptions: the environment is static and the
translation and rotation of the sensor are sufficiently small.

Let r, θ be the polar coordinates of a point with respect to
the laser scanner and R1, R2 : Ω → R+ be two radial scans
taken at consecutive instants of time t1 and t2, respectively. For
simplicity, we assume that Ω is a continuous domain within
the field of view (FV ) of the laser and is given directly in
angular coordinates, i.e., Ω := [−FV /2, FV /2]. During the
time interval [t1, t2], the apparent motion ∆r,∆θ of any point
of the environment with respect to the laser scanner must be
consistent with the observations of the scans:

∆r = R2(θ + ∆θ)−R1(θ) . (1)

This constraint is illustrated in Fig. 1 and is generally valid
except in the case of occlusions. Often, this expression is
linearized to obtain the so-called “range flow constraint” [9],
[32]:

∆r = R2(θ) +
dR2

dθ

∣∣∣∣
θ

∆θ −R1(θ) +O(∆θ2) , (2)

O(∆θ2) =
1

2

d2R2

dθ2
∆θ2 +O(∆θ3), (3)

which is a geometric version of the well-known optical flow
constraint if the second and higher order terms are neglected.
This linearization (2) is also a particular 2D case of the general
dynamic model presented in [33] for a laser rangefinder.

We propose using a slightly modified version of (2), where
the motion is equidistributed between the two scans:

∆r = R2(θ + ∆θ/2)−R1(θ −∆θ/2) . (4)

This alternative representation (Fig. 1) has already been used
in computer vision to estimate an inherently symmetric optical
flow [34]. For us, the major advantage of this formulation is
that its linearization is more precise than (2):

∆r = R2(θ)−R1(θ)+

(
dR2

dθ

∣∣∣∣
θ

+
dR1

dθ

∣∣∣∣
θ

)
∆θ

2
+O

(
∆θ2

4

)
,

(5)

O

(
∆θ2

4

)
=

∆θ2

8

(
d2R2

dθ2

∣∣∣∣
θ

− d2R1

dθ2

∣∣∣∣
θ

)
+O

(
∆θ3

8

)
.

(6)
As can be seen, this symmetric formulation requires more
information than the standard range flow constraint (it requires
the gradients of both scans) but it has a smaller linearization
error for any given ∆θ.

Next we need to express the motion in Cartesian coordi-
nates. The transformation from polar to Cartesian coordinates
(x, y) is exact and linear if applied to instant velocities:

ṙ = ẋ cos θ + ẏ sin θ , (7)

r θ̇ = ẏ cos θ − ẋ sin θ . (8)

To formulate (7) and (8) in terms of increments, they must be
integrated between t1 and t2. By assuming that the displace-
ments are small, we can approximate those integrals by the
following linear terms:

∆r =

t2∫
t1

ẋ cos θ + ẏ sin θ dt ≈ ∆x cos θ + ∆y sin θ , (9)

∆θ =

t2∫
t1

ẏ cos θ − ẋ sin θ

r
dt ≈ ∆y cos θ −∆x sin θ

r̄
, (10)

with r̄ = (R1(θ) +R2(θ))/2 being the best constant approx-
imation of r between t1 and t2.

On the other hand, we need to impose the constraint that
the relative motion between the environment and the sensor is
only caused by the motion of the sensor itself (the environment
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is static). This motion is encoded by the velocity vector ξs =
(ξsx, ξ

s
y, ξ

s
ω), an element of the Lie algebra associated with 2D

rigid transformations (i.e. ξs ∈ se(2)). The motion of every
point of the environment can thus be expressed as a function
of ξs according to the kinematics of a rigid body:(

∆x
∆y

)
=

t2∫
t1

(
ẋ
ẏ

)
dt ≈

(
−ξsx + ȳ ξsω
−ξsy − x̄ ξsω

)
, (11)

where the average coordinates are computed as(
x̄
ȳ

)
=
R1(θ) +R2(θ)

2

(
cos θ
sin θ

)
. (12)

Finally, plugging (9), (10) and (11) into the range flow (5)
and discarding the higher order terms, we end up with a linear
constraint for the motion of the sensor:(

cos θ +
R̄θ sin θ

r

)
ξsx +

(
sin θ − R̄θ cos θ

r̄

)
ξsy

+
(
x̄ sin θ − ȳ cos θ − R̄θ

)
ξsω +R2(θ)−R1(θ) = 0 , (13)

where
R̄θ =

1

2

(
dR2

dθ

∣∣∣∣
θ

+
dR1

dθ

∣∣∣∣
θ

)
(14)

is the average derivative of the two consecutive scans. There-
fore, the motion of the sensor ξs can be obtained by matching
consecutive scans (which should be differentiable or piece-
wise differentiable) without searching for and aligning explicit
correspondences.

As previously stated, this derivation is valid under the
assumption of small motions, i.e. those for which the lin-
earization (5) holds. Although there is no sharp transition
between “small” and “large” motions, we generally consider
that the motion is small if ∆θ is always less than or equal
to the local neighbourhood used to approximate the range
gradients R̄θ. Commonly, these gradients are approximated
with a centred formula using the values of the following and
previous observations and, therefore, the angular increment ∆θ
should be less than or equal to the angle between contiguous
observations in the scan.

IV. OPTIMIZATION PROBLEM

Theoretically, three independent constraints would suffice
to obtain the lidar motion but in practice this is unfeasible
because (13) tends to be inexact due to the noise of the
measurements, the errors made by the linear approximation
(5) or the presence of moving objects (non-static environment).
Therefore, we use a dense formulation in which all the scan
observations contribute to the motion estimate.

The geometric residual ρ(ξ, θ) is defined as the evaluation
of the range flow constraint (13) for a given motion ξ at a
given angle θ:

ρ(ξ, θ) = R2(θ)−R1(θ) +
(
x̄ sin θ − ȳ cos θ − R̄θ

)
ξω

+

(
cos θ +

R̄θ sin θ

r̄

)
ξx +

(
sin θ − R̄θ cos θ

r̄

)
ξy. (15)

Since not every arbitrary angle θ can be evaluated, rather
only those sampled by the laser scanner, we simplify notation

𝜌

𝐹(𝜌)

𝑐−𝑐

Fig. 2. Robust penalty function employed to minimize the geometric residuals.

and use ρn(ξ) to refer to the residual associated with the
n-th observation of the scans. To obtain an accurate motion
estimate, all the geometric residuals are minimized within a
robust cost function:

ξM = arg min
ξ

N∑
n=1

F
(
ρn(ξ)

)
, (16)

F (ρ) =

{
ρ2

2

(
1− ρ2

2c2

)
|ρ| ≤ c

c2

4 |ρ| > c
, (17)

N being the number of points in the scan. The function F (ρ)
is a smooth version of a truncated parabola (Fig. 2), and c is an
adjustable parameter. F (ρ) is continuous and differentiable ev-
erywhere, and becomes flat for residuals higher than c, which
represents an effective and automatic way to downweight (or
even discard) outliers. The parameter c is computed as a ratio
of the median absolute deviation (MAD) of the residuals (see
Section VIII-C).

A. Pre-Weighting Strategy

There are some factors that can render (13) inaccurate,
mainly the unfulfillment of the rigidity hypothesis (11) and
deviations from the linear approximation made in (5). Al-
though the robust function F (ρ) can alleviate their effect on
the overall motion estimate, it does not eliminate it completely.
The presence of moving objects is hard to detect before solving
the system and we therefore rely on the robust function F (ρ)
to downweight them during the minimization process. On the
other hand, deviations from the linear approximation adopted
in (5) can be detected beforehand, which helps to accelerate
convergence in (16) and also leads to more accurate results.
For this purpose, we propose a pre-weighting strategy to down-
weight the residuals of those observations where the range
function (4) is highly nonlinear or even non-differentiable.
We call it “pre-weighting” because it is applied before the
minimization problem (16) is solved.

In order to quantify the error associated with the lineariza-
tion of (5), we evaluate the second order terms (6) of the Taylor
series. Moreover, it is important to identify those regions of
the scans where the range function is not only nonlinear but
also non-differentiable. These regions are mainly the edges of
the various observed objects, and are typically characterized
by very high values of the first order derivatives, both the
angular R̄θ and the temporal Rt = R2 − R1. To penalize
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Fig. 3. Left: Schematic representation of our three-scan formulation, with the last scan Ri shown in green, the previous one Rj in blue and the keyscan
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k
and Rj are aligned with Ri. Notice that the warping for Rw

k was performed by keeping the most distant points of Rk after projection, which are likely to
represent the structure of the environment and will also provide additional information when compared to Rj .

these two effects, nonlinearities and discontinuities, we define
the following pre-weighting function:

w =
1

σ2
s +KD

(
R̄2
θ +R2

t

)
+K2DR̄2

θθ

, (18)

where R̄θθ is the averaged second-order derivative of R1 and
R2. The parameters KD,K2D quantify the relative importance
of first and second order derivatives. Furthermore, we add an
additional term σ2

s to model the noise of the measurements. In
this paper we employ a simple constant value for σs, but more
elaborate and precise noise models could be used instead.

In summary, to estimate the sensor motion we initially
compute a pre-weighted set of residuals

ρwn (ξ) = wn ρn(ξ) n ∈ {1, 2...N} (19)

which are subsequently minimized according to (16),(17).

V. MULTI-SCAN FORMULATION

Pure odometry always estimates motion between consecu-
tive sets of input data, irrespective of whether these data are
wheel rotations, RGB images or range scans. However, this
purely incremental strategy has one major drawback in visual
odometry: every new increment introduces some error in the
pose estimate, even if the real motion is very small or null.
This deficiency is commonly solved by periodically selecting
a particular scan of the sequence, named as “reference scan”
or “keyscan”, and aligning every new scan against it. This
keyscan acts as a local anchor, helping to reduce the drift of
the estimated trajectory. When the incoming scans get too far
from the selected keyscan, in the sense that there is not much
overlap between the two, a new keyscan must be set and the
process continues. A keyscan-based formulation is typically
more accurate than purely incremental estimation, but strongly
depends on the criterion used to introduce new keyscans. This
criterion must prevent the inserting of redundant keyscans and,

above all, it must guarantee that the latest scan is always close
enough to the keyscan so that they can be aligned.

In this paper we propose a hybrid formulation in which
the latest scan is aligned simultaneously against the previous
scan and against a keyscan (Fig. 3). This strategy preserves
the advantages of a keyscan-based approach while at the
same time reducing the risks originating from inappropriate
selection of keyscans. Since three different scans are now fed
to the algorithm, the detrimental effects of the sensor noise
and the presence of moving objects are also alleviated.

Let Tki, Tkj ∈ SE(2) be the homogeneous transformations
between the scans Ri and Rj (j = i− 1) and the last keyscan
Rk respectively, and let Tji ∈ SE(2) be the incremental
transformation between Ri and Rj (see Fig. 3). Since these
transformations form a loop, the following constraint must be
fulfilled:

Tkj Tji = Tki , (20)

where Tkj is assumed to be known from the previous esti-
mation. Therefore, we can build an optimization problem for
jointly aligning the scans Rk, Rj with Ri, subject to (20).
There are two possible ways of formulating this problem:

• Optimizing for the two sets of unknowns explicitly , i.e.,
for the vectors ξji and ξki associated with Tji and Tki.

• Warping Rk towards Rj according to the already known
transformation Tkj and solving for Tji in both cases.

The second option is more efficient because it involves less un-
knowns (we only need to estimate ξij) and implicitly imposes
the constraint (20) through the warping of Rk towards Rj .
Thus, the optimization problem associated with the proposed
multi-scan formulation is:

ξM = arg min
ξ

N∑
n=1

F (wjin ρ
ji
n (ξ)) + F (wkin ρ

ki
n (ξ)) . (21)
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VI. SOLVER

Our motion estimation problem is nonlinear and non-convex
because both the original constraint of geometric consistency
(4) and the robust function F (ρ) (17) are nonlinear and
non-convex. Where the constraint of geometric consistency
is concerned, this limitation is solved by deriving the range
flow equation (5) and defining the geometric residuals as
linear functions of the motion of the lidar. However, the
resulting linear constraints are only valid for very small
displacements and/or rotations and would fail to estimate real
motions in practice. However, this issue has already been
addressed in the literature and can be solved by formulating
the motion estimation problem within a coarse-to-fine scheme.
In a coarse-to-fine scheme, two pyramids of scans (or typically
images) are built and aligned, starting from the coarsest level,
where the linearization (5) holds for larger displacements,
and then following this by subsequent refinements in levels
with increasing resolutions. Thus, each level incrementally
improves the alignment and leaves “less motion” to estimate
in the remaining (and finer) levels. More details about coarse-
to-fine strategies and warping can be found in [9], [35].

At each level of the coarse-to-fine scheme, the optimization
problem (21) is solved using Iteratively Reweighted Least
Squares (IRLS), where the weights associated with the smooth
truncated parabola F (ρ) are:

W (ρ) =

{
1− ρ2

c2 |ρ| ≤ c
0 |ρ| > c

, (22)

Since the robust function F (ρ) is non-convex, we have also
contemplated and tested other alternatives for optimizing (21),
like the lifting strategy proposed in [36], but they do not
improve results if compared to IRLS and involve more com-
plicated and slower implementations.

Lastly, for the coarser levels of the coarse-to-fine scheme,
it can occur that the motion to be estimated is actually outside
the range of motions for which the linearization (5) holds. In
this case, two different outcomes are possible:

• The real motion is much larger than the valid range for
the linearization, and therefore the solver will provide a
completely wrong solution.

• The real motion is out of but close to the valid range for
the linearization, and therefore the solver will provide a
solution which is not precise but comes close to the real
motion.

The big failure of the first case cannot be avoided: the scans are
simply too far apart and the algorithm will fail. Nevertheless,
in the second case the solution can be used to warp one of
the two scans towards the other, creating a new configuration
in which the remaining motion (to be estimated) is smaller
and, hence, can be obtained more precisely by re-running
the algorithm. This process of estimating motion and warping
scans can be performed iteratively as long as the last estimated
motion is larger than a given threshold ε, improving the basin
of convergence of our method. The whole estimation process is
summarized in Algorithm 1, where the operator ⊕ represents

ξa ⊕ ξb = log
(

exp
(
ξ̂a

)
· exp

(
ξ̂b

))
(23)

and the ξ̂ is the skew-symmetric matrix associated to ξ.

Algorithm 1 Motion estimation in a coarse-to-fine scheme
Build Scan Pyramids

Initialize estimated motion: ξS = 0

for l = 1 : number of levels do

Initialize motion in this level: ξS
l = 0

for m = 1 : max iterations do

Compute ξM
l solving (21) with IRLS

Update ξS
l = ξS

l ⊕ ξM
l

Warp Ri → Rj according to ξS
l

if ‖ξM
l ‖ < ε then break

Update ξS = ξS ⊕ ξS
l

Warp Ri → Rj according to ξS

VII. KEYSCAN SELECTION

As previously mentioned, a keyscan-based formulation pro-
vides more accurate trajectory estimates than consecutive scan
alignment, but requires a suitable keyscan selection criterion.
Different strategies have been proposed to introduce new
keyscans (or keyframes) when a certain magnitude exceeds
a manually set threshold. Typically, this threshold is applied
to the estimated angular and linear displacement [37], the
residual after image alignment [38] or the entropy of the
estimation [39]. The main problem with these approaches
is that the selection of thresholds is not directly related to
the final performance of the algorithm and, hence, the pose
estimation error is not constrained to a well defined range.
Consequently, these approaches involve tedious trial-and-error
stages to tune their thresholds until the desired performance
is achieved.

In this work we propose to model the pose estimation error
of our algorithm as a function of the translation and rotation
between the registered scans. Using this model, thresholds for
the keyscan selection can be set directly over the error domain
such that a maximum rotation and/or translation error is not
surpassed. These thresholds define a 2D working region over
the translation and rotation domains, which will be used during
operation to trigger the selection of new keyscans.1

When modeling the error, the specifications of the laser
scanner (field of view, maximum range and number of points
in the scan) are the main source of performance variability.
This means that it is not possible to obtain a single and
universal error model, but instead the model must be tuned
according to the characteristics of the scanner employed. In
this section we obtain the error models for two different laser
rangefinders: a Hokuyo UTM-30LX and a SICK LMS-500
(see Table I), used in the simulated and real experiments
presented in Section IX.

1Notice that the main virtue of this approach resides in the easy and efficient
selection of keyscans based on the desired tracking performance (expressed
as maximum allowed translational and rotational drift). Yet, as for any other
keyscan selection criterion, the estimate error cannot be proven to be bounded
to a particular figure and ultimately depends on the quality of the data used
to obtain the imposed thresholds, the environment and other factors such as
sensor tilting.
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TABLE I
RANGEFINDERS USED FOR MODELING THE ERROR OF THE ALGORITHM.

Model Samples FOV (deg) Range (m)
Hokuyo UTM-30LX 1080 270 30
SICK LMS-500 361 180 80

We rely on simulated experiments with precise ground truth
to generate sufficient and varied samples to model the estima-
tion error. The data is generated by simulating a laser scanner
in a certain environment and applying random displacements
and rotations to it in the range of [0, 1] metres and [0, 1]
radians. For these simulations we make use of three publicly
available scenarios/maps: Belgioioso Castle and Intel Research
Lab from the Robotics Data Set Repository (Radish) [40],
and the Sarmis domestic environment from Robot@home
dataset [41]. Furthermore, Gaussian noise with σ ranging
from 5 mm to 25 mm is added to the laser measurements.
Overall, 60,000 odometry estimates (i.e 20,000 error samples
per scenario) are employed to model the error.

After collecting the samples, we estimate the translational
eT and rotational eR errors at any location (xT , xR) of the
translation-rotation plane by calculating a weighted mean of
the errors obtained in simulation using an anisotropic Gaussian
windowing function with σR = 0.1 rad and σT = 0.12 m:

eT (xT , xR) =

∑S
s=1 λse

T
s∑S

s=1 λs
, (24)

eR(xT , xR) =

∑S
s=1 λse

R
s∑S

s=1 λs
, (25)

λs = exp

(
−||x

T − xTs ||2

2σ2
T

− ||x
R − xRs ||2

2σ2
R

)
(26)

where S is the total number of samples. The resulting surfaces
are shown in Fig. 4. As expected, when the translation and/or
rotation between consecutive scans increases, so does the
average error in the pose estimation. Comparing the error
models of the two laser scanners, we can see that they both
have a similar shape, but the error values are higher for the
SICK LMS-500. This is to be expected because the SICK
rangefinder has a smaller field of view and fewer points per
scan than the Hokuyo scanner.

Making use of these models, we set thresholds directly
for the translational and rotational errors to restrict them
to an acceptable range. Specifically, in this work we set
these thresholds to 10 mm and 0.1 degrees, respectively. By
intersecting them with the surfaces of the error models, we
obtain the final working regions shown in Fig. 5. It can be
seen that the shapes of the regions are similar but their scales
differ. The scanner with larger field of view and higher number
of points offers a larger working region, indicating that scans
carrying more information can work with sparser keyscans
while keeping the pose error within the same bounds. Once
the working region has been calculated, we fit a fourth-degree
polynomial to its boundary, which will be evaluated at each
iteration to determine whether the system is inside or outside
of the working region. If the estimated pose with respect to
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Fig. 4. Translation and rotation error models of the presented odometry
algorithm when employing: (top) SICK LMS-500, and (bottom) Hokuyo
UTM-30LX.
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Fig. 5. Working regions obtained from the error models (see Fig. 4) for two
different laser rangefinders, setting a maximum translation error of 10 mm,
and a maximum rotation error of 0.1 degrees. If an odometry estimate falls
outside the working region, a keyscan update is triggered.

the current keyscan falls within the working region, we trust
the odometry estimation and keep the current keyscan while
otherwise we trigger a keyscan update.

VIII. IMPLEMENTATION DETAILS

In this section we describe important details of our algo-
rithm which are not a part of its theoretical core but have
an impact on its performance. We also set the values of the
parameters introduced throughout the paper and explain how
they affect the motion estimates.

A. Gradient Approximation

Typically, a fixed discrete formula is employed to approx-
imate scan or image gradients. In the case of range data,
this strategy leads to very high values of the gradients at the
object borders, which do not represent the real gradients of
the observed surface(s). As an alternative, we make use of
an adaptive formula that weights forward (R+

θ ) and backward
(R−

θ ) derivatives in the scan with the 2D distances between
contiguous observations (points):

Rθ(n) =
d(n+ 1)R−

θ (n) + d(n)R+
θ (n)

d(n+ 1) + d(n)
, (27)
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(B)

(C)

(D)
(A)

20 m

Fig. 6. Occupancy gridmaps of the environments used in the experiments (simulations). (A) Synthetic map based on curved lines, (B) real map of an office
environment, (C) synthetic polygonal map and (D) dynamic environment with additional mobile robots to test robustness to moving objects.

d(n) = ‖((x(n)− x(n− 1), y(n)− y(n− 1))‖ ,

where n refers to a specific index in the scan. Thus, the closest
neighbour always contributes more to the gradient computation
while very distant points barely affect it. If both neighbours are
approximately equidistant, the presented formula is equivalent
to a centred finite-difference approximation.

B. Motion Filter

The environments in which the robot operates sometimes
includes rooms or areas where the sensor motion cannot be
fully recovered, e.g. a long corridor. This is the so-called
“aperture problem”: some components of the motion are
undetermined and the solver can only provide an arbitrary
solution for them. In order to mitigate this problem, we apply
a low-pass filter in the eigenspace of the velocity ξ and use
the previous estimate to constrain the underdetermined motion.
First, we obtain the covariance matrix Σ ∈ R3×3 associated
with the IRLS solution of (21). Second, the eigenvalues of Σ
are computed and analyzed to detect which components of the
motion are undetermined and which are perfectly constrained.
In eigenvector space, the velocity ξMi provided by (21) is
weighted with that of the previous time interval ξi−1 to obtain
the new filtered velocity ξi:

[(1 + kl)I + keE] ξi = ξMi + (klI + keE) ξi−1 , (28)

where E is a diagonal matrix containing the eigenvalues and
kl, ke are parameters of the filter. Actually, kl imposes a
constant weighting between the solution from the solver and
the previous estimate while ke defines how the eigenvalues
affect the final estimate. These parameters are set to the
following values:

kl = 0.02 e−(l−1), ke = 5× 103e−(l−1) (29)

where l is the pyramid level that ranges from 1 (coarsest)
to the number of levels considered. These values provide
good results in all the experiments presented in this paper
but they have been obtained heuristically. As a general rule,
these values could be decreased if the environment is known
to be “geometrically well-constrained”, and could be increased
in the opposite case. Please refer to [8] for a more detailed
explanation on how this filter is applied in a coarse-to-fine
scheme.

C. Parameters for the Robust Optimization
There are several parameters that directly affect the opti-

mization problem (21). On the one hand, the pre-weighting
function w depends on two parameters (KD and K2D) and
the sensor noise model σs. We do not present a formal
procedure for tuning KD and K2D but rather use the values
that empirically provided us with the most accurate results.
Specifically, we set KD = 0.01 and K2D = 2 × 10−4.
In general, higher values of KD and K2D lead to higher
weights for points close to the sensor (whose coordinates
and derivatives tend to be more precise) but will excessively
downweight distant points which are sometimes necessary
to constrain the estimated motion. For sensor noise, we set
σs = 0.02 m for all cases, which is a representative average
value of the noise found in common laser scanners used
in robotics. On the other hand, the robust penalty function
F (ρ) (17) includes the parameter c which marks the limit
between inliers and outliers (residuals higher than c lie on the
flat area of F (ρ) and therefore do not contribute during the
optimization process). We use the median absolute deviation
(MAD) of the residuals to tune c and, more specifically, we set
c = 4 MAD (ρn). This is a high threshold for outlier rejection,
in the sense that it keeps most of the observations as inliers and
only those with noticeably high residuals will become outliers
(e.g. moving objects).

IX. EXPERIMENTS

We present a thorough evaluation of our method with
simulated and real data in static and dynamic environments.
First, we analyze the contribution of each component of our
algorithm to its overall performance. We compare different
versions of it: with or without pre-weighting (19), robust
or non-robust minimization, symmetric versus nonsymmetric
formulation, and multi-scan versus scan-to-scan alignment.
Second, our method is quantitatively and qualitatively com-
pared with some of the most prominent algorithms on scan
matching.

For the synthetic experiments we use the environments
presented in Fig. 6 and simulate a Hokuyo UTM-30LX laser
scanner (see Table I), including Gaussian noise in the range
measurements of σ = 1 cm. Note that to avoid any bias in
these experiments related to the learned error model presented
in Section VII, we employ different testing scenarios here.
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TABLE II
EFFECT OF PRE-WEIGHTING AND ROBUST MINIMIZATION - TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND, AND OVERALL DRIFT.

Translational RMSE (cm/s) Rotational RMSE (deg/s) Overall drift (m)
Map Traj. length (m) SQ SQ+PW RF RF+PW SQ SQ+PW RF RF+PW SQ SQ+PW RF RF+PW

A 148.3 86.87 0.688 0.396 0.298 7.147 0.096 0.096 0.026 12.98 0.799 0.277 0.225
B 137.5 617.0 1.212 0.596 0.505 6.915 0.105 0.069 0.044 483.4 0.862 0.156 0.164
C 144.9 193.4 0.759 0.436 0.225 15.06 0.129 0.104 0.023 42.35 0.201 0.264 0.084

In both the real and simulated experiments, we do not make
use of the robot wheel odometry as an initial guess for the
motion estimate. Unlike other approaches, which assume that
a good initial estimate is always provided, we consider that
the scans are the only available inputs for the algorithms.

All the experiments presented here have been run under
Ubuntu 16.04 using a single core of an Intel(R) Core(TM)
i7-2600K at 3.40GHz.

A. Comparative Analysis of Each Component of the Algorithm

In this section, several versions of our algorithm are eval-
uated. We simulate a robot equipped with a laser scanner
navigating randomly around the free space of the maps shown
in Fig. 6. We use simulations instead of real data because they
provide a perfect ground truth, which is necessary for quanti-
tative comparisons. The maximum translational and rotational
velocities of the robot are set to 0.5 m/s and 45 degrees/s
respectively.

1) Pre-Weighting and Robust Minimization: We assess the
usefulness of the pre-weighting strategy (19) and the robust
minimization of the residuals (16) within the overall motion
estimation process. To this end, we compare four basic ver-
sions of our method which minimize:

• Squared residuals |ρ(ξ)|2 without pre-weighting (SQ).
• Squared residuals |ρw(ξ)|2 with pre-weighting (SQ+PW).
• Robust residuals F (ρ(ξ)) without pre-weighting (RF).
• Robust residuals F (ρw(ξ)) with pre-weighting (RF+PW).

In these experiments, the motion is estimated by aligning con-
secutive scans (we do not evaluate the multi-scan formulation
yet). We simulate a robot navigating for 10 minutes in the three
environments A-C shown in Fig. 6. The scanning frequency
is set to 5 Hz. The estimation errors are measured as the root
mean square (RMSE) translational and rotational deviations
per second, as described in [42]. Results are presented in Table
II, where it can be seen that all versions except SQ provide
fairly good estimates with overall translational drifts always
far below 1% of the distance travelled by the robot. Robust
estimation without pre-weights is more accurate than non-
robust estimation with pre-weights, but it is the combination
of both strategies which leads to the best results. Moreover,
the associated runtimes (Table III) show that the pre-weighting
actually accelerates convergence of the solver when combined
with the robust function F (ρ).

2) Symmetric vs Non-symmetric Formulation: In this sec-
tion we compare two different versions of our method: one
based on symmetric range flow (5) (SRF) as described in
Section III, and another derived from the standard non-
symmetric range flow constraint (2) (NSRF). For this and

TABLE III
RUNTIME (MS) OF THE SIMPLIFIED VERSIONS OF OUR ALGORITHM.

SQ SQ+PW RF RF+PW
0.629 0.645 1.254 1.139

TABLE IV
SYMMETRIC VS NONSYMMETRIC FORMULATION - TRANSLATIONAL AND

ROTATIONAL DEVIATIONS PER SECOND, AND OVERALL DRIFT.

Traj. Translational Rotational Overall
Map length RMSE (cm/s) RMSE (deg/s) drift (m)

(m) SRF NSRF SRF NSRF SRF NSRF
A (5Hz) 158.0 0.314 0.323 0.025 0.025 0.11 0.01
B (5Hz) 122.8 0.517 0.537 0.043 0.048 0.33 0.29
C (5Hz) 163.9 0.227 0.231 0.025 0.025 0.21 0.23
A (2Hz) 374.6 0.233 0.325 0.016 0.274 0.15 2.27
B (2Hz) 376.9 0.704 1.433 0.736 1.293 2.55 3.19
C (2Hz) 393.1 0.191 0.372 0.017 0.219 0.27 2.08

the rest of the experiments presented below we minimize the
geometric residuals using pre-weighting and the robust penalty
function F (ρ). The methodology is similar to that described
in Section IX-A1 but in this case two different scanning
frequencies are employed: 2Hz and 5Hz.

Results are shown in Table IV. It can be seen that differences
between the two methods are negligible when the scanning
frequency is 5Hz, but they become significant for 2Hz. These
results are consistent with the theory presented in Section III.
When the scanning frequency is 5Hz consecutive scans are
close to each other and hence both linear approximations
(2) and (5) are valid and provide accurate results. However,
the alignment of consecutive scans taken at 2Hz involves
estimating larger translations and rotations for which non-
symmetric linearization (2) is no longer valid.

3) Scan-to-Scan vs Multi-Scan Alignment: In this section
we compare three different strategies to estimate motion:
consecutive-scan alignment (CA), keyscan-based alignment
(KA) and the multi-scan approach (MA) described in Section
V. Experiments include normal operation at 5Hz in static and
dynamic environments, the estimation of large displacements
when the laser frequency is set to 2Hz and estimation with
noisy measurements. For the experiment with moving objects,
we introduce additional robots in the simulation that are
permanently wandering and contradict the assumption of a
“static environment”. In this case we employ a very simple
synthetic map (Fig. 6-D) which, due to its limited number
of obstacles and small dimensions, ensures that the additional
robots are visible from the laser scanner. As a consequence
of the multiple random navigations, which often lead to some
robots blocking the way of the others, the distance travelled
during these tests is considerably shorter than in the remainder
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TABLE V
DIFFERENT SCAN ALIGNMENT STRATEGIES - TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND, AND OVERALL DRIFT.

Experiment Map Trajectory Translational RMSE (cm/s) Rotational RMSE (deg/s) Overall drift (m)
length (m) CA KA MA CA KA MA CA KA MA

Standard (5Hz)
A 162.6 0.327 0.208 0.222 0.025 0.018 0.017 0.152 0.045 0.034
B 168.7 0.596 0.421 0.452 0.043 0.032 0.030 0.595 0.315 0.433
C 165.4 0.252 0.182 0.186 0.024 0.018 0.018 0.092 0.033 0.033

Large displ. (2Hz)
A 175.8 0.216 0.181 0.186 0.018 0.016 0.015 0.320 0.140 0.101
B 139.7 0.905 0.938 0.734 0.614 0.483 0.360 1.417 1.959 2.646
C 152.8 0.193 0.178 0.173 0.017 0.017 0.015 0.017 0.020 0.015

noise (σ = 0.1m, 5Hz)
A 172.9 1.894 1.557 1.397 0.205 0.151 0.141 0.372 0.766 0.256
B 163.8 1.922 1.613 1.555 0.095 0.096 0.078 0.502 0.416 0.302
C 148.9 1.803 1.542 1.418 0.203 0.149 0.139 1.386 0.590 0.496

moving objects (5Hz)
D (3 obj.) 17.65 0.251 0.363 0.186 0.046 0.063 0.037 0.123 0.097 0.104
D (5 obj.) 16.34 0.364 0.943 0.197 0.051 0.428 0.031 0.524 0.080 0.076
D (7 obj.) 13.94 0.273 0.616 0.261 0.061 0.184 0.061 0.276 0.083 0.062

of the experiments.
Results are presented in Table V. It can be observed that KA

and MA provide equally good results in static environments
when the scanning frequency is 5Hz, while CA always being
less accurate both locally and globally. However, the multi-
scan formulation is the most precise alternative in the other
(more challenging) experiments. It is slightly more precise
than KA for large displacements because it is less dependent
on the right selection of keyscans. It is also more precise when
tested with very noisy scans (σ = 0.1m) since it has more
information than CA or KA alone with which to constrain the
motion estimate. Lastly, it significantly outperforms CA and
KA in the presence of moving objects: the use of multiple
scans implicitly facilitates the discernment and downweighting
of the moving parts of the scene. In this case, MA is locally as
smooth as CA (KA provides trembling estimates which lead
to high relative errors) and overall precise as KA.

B. Comparisons with Other Methods

In this section we compare our approach (SRF) with the
Polar Scan Matcher (PSM) [11], the Canonical Scan Matcher
(CSM) [10], the Normal Distributions Transform (NDT) [12]
and the Signed Distance Function-based SLAM (SDF) [13].
We consider here two versions of SRF, a complete version
based on symmetric range flow and multi-scan alignment, and
a trimmed-down version (T-SRF) disabling the motion filter
described in Section VIII-B. For PSM, CSM and SDF we use
the original code published by the authors, while for NDT
we employ the implementation available in the Point Cloud
Library [43]2.

1) Simulation experiments: We provide a general quan-
titative evaluation of the different methods in simulation,
where ground truth is available. Firstly, we evaluate their
performances in static environments (Fig. 6 A-C) with two
scanning frequencies (5Hz and 2Hz). Secondly, we evaluate
the accuracy of all methods in the presence of moving objects
(map D in Fig. 6), i.e. when assumption (11) is violated.
Thirdly we include an additional test in an outdoor environ-
ment. The latter case is unfavourable for our approach, which
performs dense alignment without explicit correspondences

2The original code should provide better results with a lower runtime, as
supported by [12], but unfortunately it is not publicly available.

and therefore requires piece-wise differentiable scans to work.
The map of the Freiburg Building dataset [40] is used for
this test, which is approximately 250 × 250 meters wide and
contains large empty areas and many scattered points.

Results are shown in Table VII. Our method clearly out-
performs PSM, NDT and SDF for both small (5Hz) and
large (2Hz) motions, CSM being the only close competitor
with good relative errors on average. In general, PSM and
SDF perform poorly in all sequences, requiring higher scan
frequencies than the ones tested (i.e less displacement between
scans) to obtain good estimates. This is specially noticeable
for SDF, which often fails to register new scans to its in-
ternal map/representation of the environment (even at 5Hz),
with consequent errors in the odometry estimation and map
updating. NDT is the third best candidate after SRF and CSM.
It estimates translations fairly well but copes poorly with large
rotations and scans with many sparse points (see outdoor
results). It exhibits reasonably good results in the presence of
moving objects, with error values similar to those for CSM. As
can be seen from Table VII, our approach still outperforms the
other methods in the outdoor test with an RMSE improvement
of more than 50% relative to its closest competitor (CSM).
Although the scans were much sparser in this test than in the
other experiments, the structure of some buildings was often
visible from the lidar (otherwise our method would not have
been able to align the scans and CSM would have provided
the best results). As expected the performance of the trimmed
version without motion filter (T-SRF) is slightly worse than
that of the complete SRF version, while still outperforming
the other methods.

The average runtimes shown in Table VI illustrate that our
method is not only more accurate but also much faster than
the rest of the compared methods, which demonstrates its
superiority to current state-of-the-art scan matchers.

TABLE VI
RUNTIME (MS) OF THE DIFFERENT METHODS.

SRF CSM PSM NDT SDF
1.617 10.187 3.947 124.1 12.649

2) Comparisons with Real Data: In this section we evaluate
the different methods with real datasets, and present qualitative
and quantitative results. Specifically, we utilize two of the
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TABLE VII
GENERAL COMPARISON OF OUR APPROACH WITH OTHER METHODS -

TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND.

Translational RMSE (cm/s) Rotational RMSE (deg/s)
Map SRF T-SRF CSM PSM NDT SDF SRF T-SRF CSM PSM NDT SDF

A (5Hz) 0.208 0.236 0.826 11.991 2.868 7.802 0.017 0.020 0.156 1.632 1.095 1.122
B (5Hz) 0.374 0.408 0.958 2.039 3.572 23.17 0.028 0.029 0.073 0.732 1.298 3.644
C (5Hz) 0.166 0.177 0.468 11.03 2.793 10.75 0.016 0.017 0.074 0.920 0.756 2.278
A (2Hz) 0.192 0.209 2.311 12.72 10.91 12.91 0.012 0.019 0.320 3.852 6.454 3.661
B (2Hz) 0.409 0.570 4.804 12.70 14.76 22.41 0.480 0.522 1.556 5.282 7.709 7.449
C (2Hz) 0.169 0.267 2.258 13.97 11.23 20.73 0.016 0.051 0.123 3.802 4.493 6.704

D (3 obj.) 0.223 0.246 0.701 9.844 1.226 7.714 0.038 0.052 0.207 2.974 0.724 2.328
D (5 obj.) 0.360 0.382 0.914 3.474 1.457 6.012 0.050 0.076 0.151 0.665 1.447 2.853
D (7 obj.) 0.264 0.381 0.549 3.480 1.138 4.730 0.059 0.103 0.122 1.436 1.134 2.471
Outdoor 0.426 0.798 0.996 4.629 14.99 20.52 0.028 0.308 0.354 0.675 6.085 9.275

Ground truth T-SRF CSM PSM
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Fig. 7. Sets of Sub-maps built from the Freiburg and MIT CSAIL datasets. The scan measurements are shown as blue point clouds and the trajectories are
plotted in red.

datasets listed in [44]: the Freiburg indoor building 079 and the
MIT CSAIL building (introduced in [45]). These datasets are
conceived to test SLAM algorithms and cover long distances
(423 and 380 meters), very often re-visiting the same place
one or more times to test loop-closure strategies. Moreover,
consecutive scans are not very close to each other, which
makes them particularly challenging for methods based on
pure incremental odometry. Given this complexity and the
low performance demonstrated by SDF in Section IX-B1
(Table VII), we excluded it from this comparison.

One important drawback of these datasets is that no ground
truth for the robot pose is provided. Instead, they include a
precise trajectory estimated with SLAM algorithms, which can
be used for quantitative evaluation in some applications. For
the odometry estimation problem at hand, only the Freiburg
dataset provides a suitable estimated trajectory that can be used
as ground truth. In the case of the MIT CSAIL dataset, the
laser/pose data is too decimated and therefore insufficient to
evaluate odometry. As a consequence, we present quantitative
and qualitative results for the Freiburg dataset, but only
qualitative results for the MIT CSAIL dataset.

Qualitative results are obtained by fusing the scan observa-
tions in a 2D map according to the estimated trajectories pro-
vided by each method. Since the datasets are long and the same
places are often re-visited, we divide the sequences into a few
sub-sequences and build the corresponding sub-maps instead
of just one large map per sequence. The resulting estimated
maps, together with the maps built from the ground truth, are
depicted in Fig. 7. It can be seen that our approach achieves
the best results in both datasets and for every sub-sequence.
For the MIT CSAIL dataset, it estimates an almost perfect
trajectory for 2 of the 3 sub-maps (bottom-left and right)
using only odometry in a sequence which would normally
require global pose optimization and loop closure detection.
Finally, the comparison between the full and trimmed versions
of our approach highlights the contribution of the motion
filter when facing challenging environments. The estimated
trajectories with T-SRF accumulate more errors and therefore
the reconstructed sub-maps are less precise. Yet, for many
of the sub-sequences T-SRF still outperforms the other scan
matchers.

Quantitative results are obtained by measuring the RMS
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Fig. 8. Translational RMS errors per segment length computed for the
Freiburg dataset, using path lengths from 1 to 100 metres. The errors are
shown as a percentage of the segment length under consideration, which
illustrates the drift to be expected if trajectories of the given length are to
be estimated.

translational errors per segment length, as described in [46].
We compute these errors for different segment lengths rang-
ing from 1 to 100 meters, and show them in Fig. 8 as a
percentage of the segment length considered. Errors for the
shortest segment lengths are not very accurate because the
ground truth, although globally consistent, is not exact for
local pose increments. Our algorithm has the lowest drift,
with RMS errors around 2%, followed by its trimmed-down
version, with errors in the interval from 2% to 5%. The error
associated with CSM ranges from 5% to 7.5%, while the errors
associated with PSM and NDT are always above 10% and
20% respectively. These results are less precise than the ones
obtained in simulations because the laser scanner employed to
record the datasets has a narrower field of view and a smaller
size and also because the observed environments contain a
high ratio of scattered observations which complicate the scan
alignment.

X. CONCLUSION

This paper extends and improves the work presented in [9].
We have derived the range flow constraint from a symmetric
expression of geometric consistency and have incorporated
a multi-scan formulation that combines the advantages of
consecutive scan alignment and keyscan-based approaches. We
have also described a procedure to model the average error
of our algorithm for different laser scanners and have used
this model to define a keyscan-update criterion as a direct
function of the maximum desirable translation and rotation
errors. We have presented a large set of experiments used
to evaluate our method with simulated and real data and to
compare it with several state-of-the-art algorithms in scan
matching. Quantitative and qualitative results demonstrate that
our method is significantly more accurate and faster both in
static and dynamic environments.

However, results from the datasets show that the perfor-
mance of our algorithm deteriorates when the laser primarily
sees scattered points in the environment. This is expected
because our method relies on range gradients and requires
at least a piecewise-differentiable range function to align

the scans. For future work, we plan to combine our dense
formulation with other sparse techniques, adding an extra term
to our cost function to also align interest points.
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