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Abstract. Manufacturing industries are increasingly adopting data-driven, decision
making systems towards the Industry 4.0 paradigm. In the context of this data revo-
lution, the innovative SiMoDiM project aims at developing a smart predictive main-
tenance system for the stainless steel industry. In its first stage, it focuses on the
assets within the hot rolling process, one of the core components involved in the
manufacturing of steel sheets, and more specifically on the coiler drums of Steckel
mills. These drums operate under mechanical and thermal stresses that degrade
them, and their replacements directly impact the product valor chain. In this work
we present the data analysis stage of SiMoDiM, where the huge amount of avail-
able historical and real-time data from the hot rolling process (collected by onboard
sensors in the mills) are studied in order to find which variables and descriptors are
valid indicators of the coiler drums’ conditions. This analysis is the first step to-
wards an intelligent system that takes advantage of such descriptions for perform-
ing a predictive maintenance of the machinery.
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1. Introduction

The recent changes in economic, social, and environmental requirements for the manu-
facturing industries, as well as the intensive monitoring of processes and systems within
companies’ assets producing huge amounts of rich data linked by connected networks,
have promoted the emergence of the Industry 4.0 paradigm [1,2,3]. The insight behind
it is to evolve from control-based to smart factories, able to predict behaviours in cus-
tomers, processes and systems, in order to anticipate them and self-adjust their operations
at different levels [4,5].

A promising field of application of the Industry 4.0 paradigm is the reduction of
costly, unscheduled downtime and unexpected breakdowns [6,7]. An important factor
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contributing to these breakdowns is the task of maintenance (that ultimately involves re-
placement of spare parts). Maintenance approaches turned from traditional fail-and-fix
practices, which involve acting after the equipment fails, to preventive or blindly proac-
tive ones, which assume a certain level of performance degradation (based on experience
and human expertise) to carry out maintenance or replacing tasks. However, with the
recent availability of data from processes and systems in a networked environment, it is
possible to monitor the degradation of the machinery rather than detecting the faults and,
ultimately, to optimize asset utilization in the facility. This approach is commonly re-
ferred as predictive maintenance or e-maintenance methodology [8]. It relies on the fact
that machines usually go through a measurable process of degradation before they fail,
hence enabling a prediction of when a preventive maintenance must be carried out. As a
consequence, predictive systems lead to a reduction in costs, an increment of operation
efficiency, and an improvement of the product quality [9].

Despite their clear advantages, predictive systems are not so common in real facto-
ries due to its challenging implementation [4,6]. Perhaps one of the most significant chal-
lenges is that, although those factories could incorporate modern monitoring tools, the
real-time, produced data must be rendered in a usable form for its exploitation [10]. In-
formation coming from logistics, scheduling, and production (through sensors mounted
in the machinery) comprises a huge amount of data series that need to be summarized
by analytics and modelling applications. This elaborated information would permit the
manufacturers to gain awareness about the state of their systems and properly schedule
maintenance operations.

In this work we present the initial steps towards the implementation of this predictive
maintenance methodology in a stainless steel factory of ACERINOX Europa S.A.U. [11],
one of the most competitive groups in the world in stainless steel production, a widely
used product in manufacturing and construction. Concretely, we focus on one critical pro-
cedure in this industry, the multipass Hot Rolling, a mill process which involves rolling
the steel at a high temperature, enabling an easy shaped of it. From the components in-
volved in this process, the spotlight is on the drums within the coilers, crucial parts for
the proper mill performance that operate by rolling the steel under mechanical and ther-
mal stresses. The e-maintenance related to this rolling process is part of the challeng-
ing and innovative project SiMoDiM, which aims at developing a novel monitoring and
diagnostic system for the stainless steel industry, seeking the digital transformation of
the production processes in order to achieve intelligent, more efficient, competitive and
flexible factories. A preliminary version of this work, completed by the one described
here, was presented in [12].

Given the aforementioned huge amount of real-time and historical data to process (a
Big Data problem [5]), the system for the predictive maintenance of the coilers’ drums
has to be designed in two phases: a first one where the historical data is analyzed in
order to find a proper way to summarize them, and a second step where this summary is
used to fit the predictive model (usually through a training-evaluation loop). There exist
approaches that fuse these two phases, i.e. it is not necessary a previous step to resume
the data since the own predictive technique does it internally. However, by doing so it is
lost the access to the summarized data, which is a rich source of information that can be
used to, for example, alleviate the heavy demand of memory for storage, or assess the
system performance.
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Figure 1. Information and processes involved in the development of a predictive maintenance system in the
scope of the SiMoDiM project.

Fig. 1 illustrates the interactions and information involved in these two phases. This
work focuses on the data analysis step, which encompasses the blue areas, while the fit-
ting of the predictive model (gray ones) is left for future work. Our goal is to build a pro-
cedure or function that, taking as input the recorded or real-time information about a hot
rolling process pi, summarizes it through a vector of k descriptors [d1i,d2i, . . . ,dki] [13].
This description has to be completed in such a way that the predictive system could re-
trieve from it the state of the monitored machinery, so it must be a degradation indicator.
After a review of related work in the field (Section 2), and an outline of the hot rolling
process (Section 3), we analyze the collected dataset (a vast set of data about the hot
rolling process from the ACERINOX factory in Cadiz, Spain, see Section 4), and present
the visual and numerical analysis carried out to design this summarization function (Sec-
tion 5). The paper is concluded with a discussion about the obtained results and future
work (see Section 6).

2. Related Work

The goal of the Industry 4.0 is to combine factories with modern technologies like Cyber-
physical systems (CPS), Internet of Things (IoT), Internet of Services (IoS), or Big Data,
pursuing modular and efficient manufacturing systems [1]. Essentially, CPS produce
real-time information about their state, which is accessible by means of the IoT, and
stored and analyzed through Big Data techniques. The result of such analysis can be vi-
sualized and further processed through the IoS, hence resulting in a manufacturing intel-
ligence from real-time data that supports accurate and timely decision-making [5]. The
number of works addressing the cooperation of these technologies in the manufacturing
field is growing, as illustrated by the recent surveys by Liao et al. [2] or Sreedharan and
Unnikrishnan [3]. The areas where the Industry 4.0 induces novel procedures are diverse,
including, for example, process and planning (focusing on the reduction of waste and on
the increase of product value), supply chain, transport and logistics, health and safety,
product design, or the one addressed in this paper, maintenance and diagnosis.

In this context, Lee, Kao and Yang [6] proposed a framework for self-aware and
self-maintained machines that can extract meaningful information from big data and per-
form an intelligent decision making regarding maintenance operations. A case of study is
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presented, where the target machinery was a heavy-duty equipment vehicle used in min-
ing and construction. However, they do not provide information about how the produced
data is summarized within the framework. Li, Wang and He [7] conducted a review of
maintenance strategies, including corrective maintenance, preventive maintenance, and
predictive maintenance, and investigated the potentials and trends towards the former
in the scope of the Green Monitoring project. In this case it is superficially mentioned
the domains where the data is described, including time, time-frequency, frequency, and
wavelet domains, without further information. One of these authors, He, introduced in
[14] other projects where the methodologies described in the former were also applied,
like for example the WINDSENSE [15] or MonitorX [16] projects.

General predictive manufacturing systems were broadly discussed by Lee et al. [9],
who presented a conceptual framework for their development and addressed the so-called
Prognostics and health management (PHM) tool. PHM focuses on the estimation of the
health of a production asset, the detection of incipient failures and prediction of the next
fault event. This concept is closely related to the predictive maintenance one. They em-
ploy the Watchdog Agent [17], a toolkit for the prediction of performance of products
and machines, as the component to conduct the PHM predictive analytics in a case study
with a cutting tool. Again, it is not provided information about how the statistical sum-
mary of the variables of interest is extracted. Unlike the aforementioned works, in this
paper we describe the resorted processes and techniques during the analysis of the avail-
able data in the scope of the SiMoDiM project, which encompasses information from:
sensors installed in a hot rolling mill, configuration variables, as well as logistic parame-
ters. This analysis is conducted to select a set of variables and descriptors to be leveraged
by a predictive maintenance system, enabling, this way, an informed decision making
about maintenance operations.

3. Steckel Hot Rolling Process

In metalworking, rolling is a metal forming process in which metal stock is passed
through one or more pairs of rolls within a mill to reduce and uniform the thickness. Hot
rolling refers to the case when the rolling process takes place employing metal that is
preheated above its recrystallization temperature, typically over 1700 ◦F [18].

Coiler

Coiler Drum

Roller ConveyorsInput Output

Driver

Looper

Roll Stand

Figure 2. Scheme of the Steckel hot rolling mill. The stainless steel sheet (in red) is heated and worked in the
mill through one or multiple passes, until desired thickness is obtained.
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The starting material are large pieces of metal (like semi-finished casting products,
often called plates), which, after being heated, are worked to reduce their thickness. For
that, the material may need to pass one or several times through the mill, iteratively
reducing the thickness and increasing its length. Fig. 2 shows a scheme of the Steckel hot
rolling mill [19] employed by ACERINOX, where the steel sheets run along the roller
conveyors to be worked in the roll stand. If more than one pass is necessary, the metal
sheets are coiled around the drum, and the process is repeated in the inverse direction
(left-to-right, right-to-left). In a Steckel mill with this configuration the number of passes
is always odd.

Due to the high temperatures of the process (the coilers contain a furnace to keep the
steel temperature high), degradation of the machinery is common and a proper mainte-
nance plan is mandatory to avoid costly and long production downtimes. In this respect,
the coiler drums are the parts of the mill that fastest degrades because of the high tem-
peratures and the friction against the material being rolled, therefore being the spare part
which replacement we want to predict before it breaks.

4. The Data

The available data span over the years 2013-2016. For each month within that period, a
number of files are provided describing each hot rolling process carried out in the AC-
ERINOX factory in Cadiz, Spain. These files contain the value of 18 different variables
measuring the processes’ state after every 0.5 meters of rolled steel, including, for ex-
ample, steel densities, coiler temperature, engines power or pressure and forces in the
roll stand. The variables are directly measured in the rolling mill by a number of sensors
provided by the own control system of the machine, as well as from additional sensors
gathered by a data acquisition card commanded by LabView. The Fig. 3 shows an excerpt
of one of these files. The files have a different number of measurements (each one codi-

Figure 3. Excerpt of a file containing information relative to a hot rolling process. Note that the measurements
are taken each 0.5 meters of steel sheet processed.
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fied in a row), which depends on the number of passes of the steel sheet in the mill and
the final thickness desired. In the case of the process in the figure, the steel completed 7
passes and the file has a total of 5,615 rows.

Additionally, each process is identified by two logistic variables (number of cam-
paign and steel plate identification, the two first columns in Fig. 3). There are also pro-
vided 18 meta-variables or configuration variables about the process, which consist of
8 variables reporting the properties of the steel plate (e.g. steel type, weight, length and
thickness at the entrance, etc.), and 10 more configuring the behaviour of the process
itself (work code, number of passes in the mill, coilers’ temperature etc.).

The resultant dataset is vast, containing a total of 118,484 hot rolling processes (re-
call that each process, in its turn, consists of thousands of measurements), divided into
7,351 with one pass, 6,523 of 3 passes, 65,704 processes with 5 passes, and 38,906 of
7 passes or more. This data, as well as the real-time information produced by each hot
rolling process in the factory, need to be summarized for their suitable exploitation by
the predictive maintenance model. The next section describes how to achieve this.

5. Data Analysis

The goal of the data analysis step is to find the variables and descriptors that best sum-
marize the (huge) available data from the hot rolling process in a meaningful way. In
this context, with meaningful we refer to information that provides indications about the
degradation of the coiler drums. In other words, with this study we are pursuing the de-
sign of the function f (pi) that summarizes each process pi through a vector of descriptors
d = [d1i,d2i, . . . ,dki] that reflects such degradation (recall Fig. 1). Typically, this analysis
consists of a preliminary visual study of the variables’ behaviour through graphical rep-
resentations, carried out in Section 5.1, as well as the exploration of the possible features
or descriptors to summarize the data (like measures of center or spread), conducted in
Section 5.2.

From the 18 variables describing each hot-rolling process, two of them refer to the
process progress (current pass and meters of steel processed), and other twelve reflect
values that are consequence of the process configuration (aperture of the roll stand, tem-
perature within the coilers, power in the engines, etc.). The remaining four, although can
be also influenced by the process configuration, refer to behaviours of the steel sheets
and the coilers during the hot rolling processes that are susceptible to be affected by the
drums’ state, hence being candidates to reflect their condition. Thereby, the four candi-
date variables to be studied are: input and output-tension, which measure the traction
forces in both coilers, leveling that indicates the slope of the sheet being processed, and
bending that measures its curvature. After the conducted analysis, we obtained the final
set of promising variables and descriptors, which will be exploited by the smart predic-
tive maintenance system (recall Fig. 1).

The possible interactions between the promising variables and the configuration
ones have been also examined (see Section 5.3). This study reports which configuration
variables influence the measurements of the candidates so, for a reliable performance,
they have to be considered in the predictive system in order to isolate the effect of the
drums’ state. The conducted analyses have been carried out employing powerful Python
packages for data management and visualization like numpy [20], matplotlib [21], pan-
das [22], or seaborn, among others.
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Figure 4. (a) and (b), measured tensions from the 4th pass in four 5-passes processes just before (left) and after
(right) a replacement of both coiler drums (vertical axes are kilograms). (c) and (d), measured sheets’ leveling.
(e) and (f), measured bending.

5.1. Visual analysis

A preliminary analysis of the data was visually performed aiming to figure out which
descriptors could be the most appropriated to summarize the measurements from the four
candidate variables, detect changes in their behaviour during the coiler drums lifetime,
and identify possible relations with configuration variables. The experts from the factory
pointed out that, in addition to other factors, the measurements of these variables are
heavily influenced by the number of passes that the steel sheet does in the mill. To take
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this into account, we used that parameter to cluster the processes, being the resultant
groups individually studied. This drastically reduced the data dispersion.

By means of this visual inspection it was also detected a strong correlation between
the observed variables and the length of the sheets being processed. Fig. 4-(a) illustrates
this for the case of the input-tension and output-tension variables, where we can clearly
see that the shorter the sheet, the higher the tensions. This figure shows the input and
output tensions measured during 4 processes (with sheets between 300 and 320 meters
long) just before (a) and after (b) the replacement of both drums. According to the clus-
tering done, in these processes the steel sheets accomplished 5 passes in the mill, and
the figures correspond to the fourth pass. Exploring them, we can see how the tensions
become more stable after the maintenance operation, which supports the expert’s intu-
ition that these variables can indeed be used to predict the drum’s deterioration. This also
incites to think that descriptors characterizing that stability could be useful.

The Fig. 4-(c) and (d) display the sheet leveling measurements for ten processes
before and after a replacement, respectively. The black, horizontal line in those graphics
represents the mean value of the measurements, and we can see how it decreases after the
maintenance operation. The same occurs in the case of the bending measurements (see
Fig. 4-(e) and (f)), where we can check that for three processes the valley values (those
where the measurements are lower) decrease considerably, also decreasing its values on
average.

5.2. Numerical analysis

This section outlines the numerical analysis performed to validate the previous insights
and select promising variables and descriptors. For that, we performed a two-steps pro-
cess: first, it was explored the descriptors’ behaviours in the surroundings of four drum
replacements, while in the second step we focused on the behaviour along the life-time
of the coiler drums.

5.2.1. Analyzing variables’ behaviour after a drum replacement

For this study we employed a window of 50 processes just after and before such replace-
ments, selecting only processes with sheet lengths between 300 and 320 meters. From
each data window, we computed a number of descriptors that summarize each process,
and numerically analyzed the variability/discrepancies before and after the replacements.
These descriptors are enumerated in the Table 1, and include among others: average and
variance of each variable, oscillation value or FFT coefficients (analysis in the frecuency
domain), etc.

In turn, the Table 2 reports an excerpt of the results obtained in this step. For exam-
ple, in the case of the first studied replacement, the average values of the leveling and
bending variables decreased considerably (e.g. from 1.01 to 0.82mm. and from 93.46 to
72.61Ton. respectively). They also oscillated less, which was checked by counting the
number of times that these measures took values out of a certain range, reported as hits
in the table. In the case of the tensions, in both cases the average values remained simi-
lar, however, considering the region when they reach a hill (e.g. around 10Kg. in Fig. 4-
(a)), the standard deviations of their measures also decrease significantly: from 0.38 to
0.21 in the case of the input tension, and from 0.14 to 0.11 for the output one. Thereby,
since the behaviour of the four (described) candidate variables differs before and after a
maintenance operation, all of them passed this first verification/step.

Draft Version. To appear in Frontiers in Artificial Intelligence and Applications (FAIA), IOS Press



Table 1. Computed descriptors for the different candidate variables (between parentheses, the number of total
descriptors for each one). The descriptors of the output-tension variable have been omitted since they are the
same as the input-tension ones. The check mark symbol (X) identifies the promising descriptors chosen to feed
the predictive system.

Leveling (3) Bending (3)

mean 1 mean 1

hits 1 hits 1

hill stdv 1 minimum 1

Input Ten. (12)

mean 1 Max. amplitudes of FFT coefficients [X] 3

stdv 1 Frequencies with max. amplitudes 3

hill mean 1 Skewness (frec. domain) [X] 1

hill stdv [X] 1 Kurtosis (frec. domain) [X] 1

Table 2. Features extracted from the observed variables just 50 processes before and after three replacements
of coiler drums.

Replacement #1 Replacement #2 Replacement #3

Variable Descriptor before after before after before after

mean 1.01 0.82 0.77 0.63 0.91 0.74

Leveling hits 25 14 19 14 9 8

hill stdv 0.21 0.18 0.14 0.11 0.15 0.10

mean 93.46 72.61 102.6 78.72 93.37 84.23

Bending hits 30 13 30 17 21 13

minimum 84.86 60.12 91.20 65.26 81.08 70.06

Input tension hill stdv 0.38 0.21 0.26 0.18 0.31 0.20

Max. amplitude 0.069 0.038 0.052 0.029 0.055 0.031

Output tension hill stdv 0.13 0.11 0.12 0.09 0.11 0.10

Max. amplitude 0.021 0.016 0.017 0.013 0.017 0.013

5.2.2. Exploring variables’ behaviour throughout drum life-time

In the second validation step, the behaviour of the described variables was checked
through sequences of processes ranging from the instant of the installation of a fresh
coiler drum until its replacement. The Fig. 5 illustrates this analysis for two variables:
the sheet bending described through its mean values, and the coiler input tensions by
its hill oscillations (standard deviations). In both cases it is shown their values for two
sequences (as well as their trends), and we can check that although the behaviour of the
input tensions’ oscillations is similar (both increase similarly), it is not the case when
analyzing the bending of the sheets.

To numerically drive the analysis, we computed the well-known coefficient of de-
termination [23], denoted as R2, which represents the portion of the variance in a depen-
dent variable (in this case, the descriptions of the candidate variables) that is predictable
from an independent variable (total number of hot-rolling processes completed). This
is a good measure about in which magnitude a variable influences another one, that is,
how the degradation of the coilers, which is clearly related to their usage, affects the be-
haviour of the candidate variables. To compute it, first, a linear regression model is built,
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Figure 5. (a) and (b) illustrates the sheets’ bending of the processes after the third and fourth drums’ replace-
ments, respectively, while (c) and (d) shows oscillations of input tensions for the processes after the same
replacements. The data have been smoothed to improve their visualization.

and then the model residuals are analyzed. The output of this study was, for example, a
coefficient of 0.34 for the oscillations of the input tension (i.e. the 34% of the oscillation
can be predicted by the total number of hot-rolling processes completed), 0.26 for the
oscillations of the output one, 0.01 for the mean bending values, and 0.11 for the mean
leveling values2.

The Table 1 shows a check mark next to the descriptors that reported a coefficient
of determination above 0.2, comprising in this way the final set of promising variables
and descriptors. Therefore, the vector of descriptors d describing each hot rolling process
has 12 components (6 characterizing the input tensions and 6 for the output ones). These
results also match the intuition of the experts from the factory, which argued that the
sheets’ bending and leveling can be strongly influenced by the state of other components
of the rolling mill, and not just by the coiler drums.

5.3. Interaction of configuration-variables

For adjusting a reliable predictive system it is crucial to find and integrate the interac-
tions between configuration-variables and candidate ones [9]. These interactions permit
us to better model the behaviour of the studied variables, since their measurements would

2Notice that although the coefficient of determination for the mean leveling values is not negligible, it was
discarded due to its irregular behaviour during the drums’ lifetime.
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Table 3. Coefficients of determination measuring the interaction of the configuration-variables with the oscil-
lations of the input tension.

Meta-variable R2 Meta-variable R2 Meta-variable R2

STEEL TYPE 0.15 WORK CODE 0.01 FINISHING CODE 0.15
REAL WIDTH 0.20 REAL LONG 0.00 REAL WEIGHT 0.14

REAL THICKNESS 0.00 NOMINAL WIDTH 0.20 NOMINAL WEIGHT 0.00
FINISH TARGET THICKNESS 0.20 FINISH TARGET WIDTH 0.18 DOWNLOAD TEMP 0.00
NOM FINISHER THICKNESS 0.18 NUMBER PASSES 0.01 PASS 0.25

probably not only depend on the coilers’ conditions. Two of these interactions were dis-
cussed in Section 5.1: the number of passes of the steel sheet in the hot rolling process,
and the length of the sheet within those passes. The goal here is to establish them in a
principled way.

For that, the coefficients of determination between the candidate variables and the
configuration ones were computed. The Table 3 reports these coefficients for the case of
the oscillations of the input tensions (the results for the other descriptors were similar),
and we can see how the strongest interaction is caused by the pass that the sheet is cur-
rently performing in the mill (first, second, third, etc.). This result matches the experts
intuition. However, other configuration-variables also show high values for this coeffi-
cient, like the type of steel, the width of the sheet before the hot rolling process, or the
target thickness after completing it, to name a few. This demonstrates the necessity of
introducing these variables in the design step of the predictive model.

6. Conclusions

This work has described the data analysis step towards the development of a predictive
maintenance system in the scope of the SiMoDiM project. The aim of SiMoDiM is the
implementation of aspects from the Industry 4.0 in the production chain of stainless steel
factories, concretely in the hot rolling process. As a case of study, it is explored the
application of this revolutionary paradigm to the drums within the coilers in the Steckel
hot rolling mills, critical components of such process. With the analysis carried out in
this paper, a number of variables (collected from sensors installed in the Steckel mill)
and descriptors have been selected to summarize in a usable way the huge amount of data
produced by the mills monitoring. They have been also studied and detected interactions
between these variables and those configuring the hot rolling processes, which must be
taken into account by the predictive system.

Once the produced data is expressed in an usable form, our next milestone is to select
and fit a suitable model for the predictive maintenance of the drums, which by being fed
with such variables, allows us to detect the optimum timing for a preventive maintenance.
At the moment we are obtaining promising results employing a Discrete Bayes Filter for
that end. We also plan to add visual information to the model through the installation
of cameras, aiming to detect possible deformations in the drums by means of computer
vision techniques [24].
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