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ABSTRACT

Out of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical 
ones when operating in real environments. Until now, these sensorial systems mostly relied on range 
sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely 
been employed, they can provide a complementary sensory information, vital for some applications, as 
with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities 
and also reviews some of the hurdles that are preventing smell from achieving the importance of other 
sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status 
on the three main fields within robotics olfaction: the classification of volatile substances, the spatial 
estimation of the gas dispersion from sparse measurements, and the localization of the gas source within 
a known environment.

INTRODUCTION

In the last decade, the number of research works published in the area of artificial olfaction has increased 
notably, with important advances in chemical sensor technology, bio-inspired and engineering based 
e-noses, and a broad range of algorithms to counteract drift and environmental cross-sensitivity, as well 
as to improve efficiency in the recognition of chemical volatiles. Likewise, a promising transfer from 
laboratories to real world applications has started, which despite the long and challenging road ahead, 
vows for granting this forgotten sense the importance it has in the animal kingdom (Doty, 2015).

In this regard, mobile robot olfaction (MRO), the branch of robotics that addresses the integration 
of gas and chemical sensors on-board mobile platforms, has also gained substantial relevance in the 
scientific community due to the interesting advantages a mobile robot brings when compared with the 
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traditional approach based on networks of static e-noses (Tsujita, Yoshino, Ishida, & Moriizumi, 2005). 
First, a mobile robot usually carries only one e-nose, therefore a more sophisticated and powerful (and 
more expensive) model can be used, enabling the analysis of more complex compounds and the detec-
tion of faster changes in the gas concentration (Gonzalez-Jimenez, Monroy, Garcia, & Blanco, 2011; 
Ishida, Kobayashi, Nakamoto, & Moriizumi, 1999; Sanchez-Garrido, Monroy, & Gonzalez-Jimenez, 
2014; Werle et al., 2002). The calibration phase of the sensing devices is greatly simplified because of the 
reduced number of e-noses, something that represents an important issue in large gas sensing networks 
(Esposito et al., 2016). Also, MRO systems permit sampling at higher (and adaptive) resolutions, while 
still providing the required accurate localization of each measurement. Finally, a mobile robot can leverage 
environmental information provided by other sensors on board (anemometers, cameras, laser scanners, 
etc.) to enhance the olfaction task, for example by detecting obstacles or changes in the environmental 
conditions, and to process such data in an online fashion, allowing decision making.

Three are the main fields where gas-sensitive mobile robots have been proposed: volatile chemical 
recognition, which deals with the problem of identifying which of a set of categories a new volatile 
sample belongs to, gas distribution mapping, where the objective is to obtain a truthful representation 
of how volatiles are dispersed in the inspected area and their respective concentrations, and gas source 
localization, where the robot is commanded to localize the emission sources. In this chapter, achieve-
ments made to each of these three fields are reviewed after a brief overview of the specific challenges 
of gas-sensitive mobile robots.

SPECIFIC CHALLENGES OF GAS-SENSITIVE MOBILE ROBOTS

The development of mobile robot olfaction systems is not a trivial problem, and despite recent achieve-
ments, the potential of gas-sensitive mobile robots has yet to be fully realized. Besides the inherent 
complexity of artificial olfaction, new difficulties emerge when performing olfaction with a mobile 
robot. In this section, a review of the main issues and technical solutions proposed so far is presented.

Chemical Sensors

While most animals, from simple bacteria to mammals, are empowered with a highly developed and 
sharp sense of smell, sensors for robots with capabilities close to those of animals are not yet available. 
One of their main drawbacks is related to the response speed. While the response time of an animal’s 
chemoreceptor is in the order of 100ms (Beer & Ritzmann, 1993), typical gas sensors need several tens 
of seconds before their responses reach the steady state values (Pearce, Schiffman, Nagle, & Gardner, 
2006). For illustration, Figure 1 shows the rise and recovery times of a conventional metal oxide gas 
sensor when exposed to a rapid excitation. As reported in (Monroy, Gonzalez-Jimenez, & Blanco, 2012) 
the adopted solution to palliate this negative effect has been, in most cases, to slow down the locomotion 
of the robot to a few cm/s, as in (Ishida, Suetsugu, Nakamoto, & Moriizumi, 1994). Yet, over the past 
years, different hardware and software approaches have been proposed to overcome to a certain extent 
this important limitation (Di Lello, Trincavelli, Bruyninckx, & De Laet, 2014; Fonollosa, Sheik, Huerta, 
& Marco, 2015; Gonzalez-Jimenez, Monroy, & Blanco, 2011), enabling a higher speed for the robot and 
consequently improving its effectiveness in real world applications.
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Slow sensor response also poses a significant challenge when performing volatile chemical discrimi-
nation. Gases disperse chaotically, led by turbulent advection, resulting in a concentration field that 
consists of fluctuating, intermittent patches of high gas concentration (Balkovsky & Shraiman, 2002). 
As a consequence, the sensor signals to be processed are noisy and dominated by the signal transient 
component. Patterns obtained are consequently distorted because sensors with different selectivities tend 
to have different response times (Schleif et al., 2016). Despite this, some recent works have addressed 
the issue, presenting different perspectives which will be covered.

Absence of Ground Truth

In real, uncontrolled environments, both indoor and outdoor, the dispersion of gases is dominated by 
turbulent flows. A turbulent flow is that in which fluid particles move in a random and chaotic way 
within the flow field (Sklavounos & Rigas, 2004). Furthermore, environmental variables such as tem-
perature, pressure or humidity, as well as the airflow disruptions caused by the own robot movement, 
also have an important impact in the gas dispersion. All this entails the impossibility to know the exact 
behavior of a volatile release, and consequently, to have a ground truth of the nature and concentration 
of the chemical volatiles. This undoubtedly represents one of the main drawbacks for conducting real 
experimentation, and usually forces researchers to consider semi-controlled scenarios from which ground 
truth estimations can be reasonable assumed (Monroy & Gonzalez-Jimenez, 2017).

To cope with this problem, simulation tools with the capacity to properly handle the gas dispersion 
phenomenon (e.g. based on computation fluid dynamics) can be used to perform extensive evaluations 
before moving to experimental trials. While there exist a few implementations of robotics-oriented gas 
dispersion simulation frameworks, most of them consider simplified environments, are developed in 
outdated robotic software platforms or rely on expensive, external software packages (Cabrita, Sousa, & 
Marques, 2010; Monroy, Blanco, & Gonzalez-Jimenez, 2013; Pashami, Asadi, & Lilienthal, 2010). One 
exception is the newly developed GADEN simulator (Monroy, Hernandez-Bennetts, Fan, Lilienthal, & 
Gonzalez-Jimenez, 2017), an open source gas dispersion simulation framework aimed to mobile robotic 
olfaction applications. GADEN enables the simulation of gas dispersal in any 3D environment (includ-

Figure 1. Rise and recovery phases of a metal oxide gas sensor response to a step gas concentration. 
(A) 2D plot of the sensor response over time, where the shaded-blue region denotes the sensor exposure 
to the analyte. (B) 3D gas distribution map generated from the readings of the gas sensor carried by a 
mobile robot along a corridor. It can be appreciated how the recovery phase after the gas exposure last 
for tens of seconds.
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ing obstacles and realistic configurations), together with mobile robotic platforms and sensing devices 
(e.g. MOX sensors, anemometers, etc.). This framework is built upon the robot operating system (ROS), 
arguably, the most widespread robotics OS used in academia and industry.

Power Consumption, Weight, and Size

A common characteristic of most current mobile robots is the fact that they run on batteries. This en-
tails the problem of balancing power consumption, payload and runtime, which becomes paramount for 
unmanned aerial vehicles (UAVs). In this context, and far from the bulky and power-hungry laboratory 
sensing devices (e.g. mass spectrometers), e-nose designs tailored for mobile robots have been proposed 
(Aleixandre et al., 2008; Gonzalez-Jimenez et al., 2011; Sanchez-Garrido et al., 2014). These robotic-
oriented e-noses, some of which are illustrated in Figure 2, seek reducing energy usage and weight, while 
maintaining a decent efficiency in the detection and characterization of the chemical volatiles. However, 
the precision and reliability of these systems is, in most cases, far from their laboratory counterparts.

GAS CLASSIFICATION WITH MOBILE ROBOTS

The classification of volatile substances is, possibly, the most studied application of e-noses among the 
scientific community. It plays an important role for many industrial and medical applications including 
disease detection and diagnosis in medicine, quality control in food processing chains, finding drugs and 
explosives, or monitoring of pollution levels in air. Traditionally, this has been performed by analyzing 
the response of the array of gas sensors that compose the e-nose, when exposed to pulse-like gas exci-
tations under well-controlled measurement conditions (i.e. temperature, humidity, exposure time, etc.) 
(Schaller, Bosset, & Escher, 1998; Vergara et al., 2012). Yet, from the variety of potential applications 
that may benefit from gas classification, some of them require to measure the environment continuously 
and at different locations. They include, among others, city odor mapping, pollution monitoring or leak 
detection. Mobile platforms can indeed contribute to this problem by trading off temporal coverage 

Figure 2. Pictures of two portable e-nose designs developed for mobile robotics. (A) The multi-chamber 
electronic nose - MCE-nose, (B-C) prototype and detailed inspection of a modular e-nose containing 
eight smart gas detector modules.
(A) Gonzalez-Jimenez et al., 2011; (B-C) Sanchez-Garrido et al., 2014.
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against spatial coverage, enabling a high spatial resolution across large areas without the need for a large 
number of sensing devices.

As mentioned, the discrimination of gases performed with a gas-sensitive robot presents a number 
of additional challenges when compared to standard analyte identification, mostly due to the differ-
ences in the measurement conditions and the fact that the sensor signals to be processed are noisy and 
dominated by the signal transient behavior. Most of the research in this direction has focused on three 
topics: impact analysis of the motion speed of the sensing device, study of which robot trajectory yields 
higher classification rates, and exploration of new feature sets to feed the pattern recognition algorithm. 
In this context, one of the first works was presented by Trincavelli and coauthors (Trincavelli, Lout, & 
Coradeschi, 2009), who used a robot carrying an e-nose and conducted a preliminary investigation on 
the most suitable path to optimize the classification accuracy, taking into account the possible effects of 
environmental variables on the signals collected along that path. The authors concluded that the move-
ment strategy of the robot clearly affects the properties of the e-nose signals, therefore being possible 
to enhance the classification performance by optimizing the robot trajectory.

On this same topic, Monroy and Gonzalez-Jimenez (Monroy & Gonzalez-Jimenez, 2017) empirically 
analyzed the impact of the robot motion speed on the classification performance. The authors presented 
a large experimental dataset composed of 240 inspections of an indoor scenario, driving a mobile robot 
at four different speeds, under the presence of two gas sources. Two questions were addressed: (i) What 
is the relationship (if any) between the motion speed of an e-nose which is continuously sampling the 
environment and the classification accuracy?, and (ii) How must the classifier be trained to get the best 
possible performance?. The authors reaffirmed the conclusions from (Trincavelli et al., 2009), stating 
that an important deterioration in the classification performance (up to 30% in some of the configura-
tions tested) was appreciated when the e-nose was sampling the environment in movement. Furthermore, 
they concluded that training the classifier with data collected at a few different motion speeds (from the 
range of possible velocities) should be enough to palliate this negative effect. Thus, and according to this 
study, training of the pattern recognition algorithm must be carried out with data collected in motion, 
in order to not deteriorate too much the classification performance.

An interesting work reaching similar conclusions is that presented by Vergara et al. (Vergara et al., 
2013), which does not employ an e-nose in motion to gather the gas samples, but considers different wind 
velocities (which may be seen as the counterpart of moving the sensing device). The authors compiled 
an extensive dataset with nine static e-noses placed within a wind tunnel to evaluate the performance 
of several sensor arrays working in open sampling settings. Different locations of the e-noses, heater 
voltages, wind speeds, and chemical volatiles compose the list of variables that make this dataset one 
of the most complete currently available. Particularly, two important conclusions where highlighted 
by the authors with regard to the wind speed: the classification performance was affected by the wind 
speed used during training, and that, in order to increase the robustness of the system against air flow 
variations, one may want to train the system at all the expected system conditions.

Naturally, not only the motion of the gas sensing device must be taken into account. As reported in 
(Trincavelli & Loutfi, 2010), the feature selection process is also of great importance. In this work the 
authors analyzed multiple features to determine those which are more robust to changes in the sampling 
trajectory and less dependent of the experimental setup. Two feature selection algorithms were proposed 
and compared to improve the performance of an olfactory robotic system. Experiments were performed 
in three different scenarios (two indoor and one outdoor) with four moving strategies, attempting to vary 
the interaction of the robot with a possible plume.
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The classification of multiple volatile substances with an e-nose in motion is still an open and chal-
lenging research topic. Recent works keep proposing new feature selection algorithms and feature sets 
to enhance the performance, as in (Hernandez-Bennetts, Schaffernicht, & Pomareda-Ses, 2014) where 
the authors proposed to employ the sensor amplitude as an additional feature, or the application of 
statistical tools to exploit the temporal correlation of the e-nose data (Monroy & Gonzalez-Jimenez, 
2015; Monroy, Palomo, Lopez-Rubio, & Gonzalez-Jimenez, 2016). Furthermore, like in the case of a 
network of fixed e-nose, the calibration and drift compensation of the sensors composing the e-nose is 
also an important drawback to consider. In this regard, works like (De Vito, Massera, Piga, Martinotto, 
& Di Francia, 2008; Esposito et al., 2016) have presented different approaches to cross-calibrate differ-
ent e-noses without the need to perform a tedious and costly laboratory calibration. These proposals are 
indeed fundamental when the MRO system is to be deployed for long times (drift and ageing), or when 
multiple mobile e-noses are set up simultaneously (Hasenfratz, 2015).

Related to environmental monitoring applications, there are works where a gas measuring device 
sensing the air quality is carried by a person (Zappi, Bales, Park, Griswold, & Šimuni, 2012), a bike 
(Elen et al., 2013; Monroy, Gonzalez-Jimenez, & Sanchez-Garrido, 2014), public transport vehicles 
(Hasenfratz et al., 2015) or even drones (Neumann, Bartholmai, Schiller, Wiggerich, & Manolov, 2010; 
Pobkrut, Eamsa-ard, & Kerdcharoen, 2016). Despite sampling the environment in motion, most of the 
works does not perform a classification phase to discriminate the type of gas, but rather employs an array 
of gas sensors with disjoint selectivity (i.e. one sensor for each analyte to monitor, and usually discard-
ing the cross-selectivity among classes). An interesting remaining question is whether the concentration 
measurements of the different pollutants can also be improved by taking into account the motion speed 
of the sensing device.

GAS DISTRIBUTION MAPPING

Gas distribution mapping (GDM) is the process of creating a representation of how gases spread in 
an environment from a set of spatially and temporally distributed measurements of relevant variables. 
Foremost, these measurements include the gas concentration itself, but may also comprise wind flow, 
pressure or temperature, among other representative variables.

Many gas distribution models were developed back in the early 90s to tackle atmospheric dispersion 
(Holmes & Morawska, 2006). These models estimate the distribution of airborne materials at the different 
atmospheric-scales given a set of environmental and topographic conditions. Yet, such models are not 
suitable for local scales, not being designed to capture all the relevant aspects of gas propagation with 
a sufficient level of detail, as in the case of complex indoor and outdoor settings. Given that analytical 
solutions are intractable, it is then common practice to divide the space into a regular lattice of cells 
(gridmap), and then estimate a probability density function (pdf) of the gas concentration at each cell 
of the grid (see Figure 3). A crucial aspect when updating this gridmap is the fact that the majority of 
current e-noses are point sampling devices, that is, observations are only representative of the very near 
air around the e-nose. Moreover, given the ephemeral nature of gases (due to the mechanisms that rule 
gas dispersion (Shraiman & Siggia, 2000), the information conveyed by a given measurement quickly 
vanishes as time goes by. The latter is the reason why most GDM approaches aims at modeling the 
time-averaged gas distribution (Lilienthal, Reggente, Trincavelli, Blanco, & Gonzalez-Jimenez, 2009; 
Loutfi, Coradeschi, Lilienthal, & Gonzalez-Jimenez, 2008; Stachniss, Plagemann, & Lilienthal, 2009), 
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being the works presented in (Asadi, Pashami, Loutfi, Lilienthal, & Gouma, 2011; Marjovi & Marques, 
2014; Monroy, Blanco, & Gonzalez-Jimenez, 2016) the only notable exceptions.

It is the task of a GDM algorithm to extrapolate sparse measurements, both spatially and temporally, 
to obtain an estimation of the gas dispersal for the entire environment. Several efforts addressing this 
problem have been proposed in the robotics literature. Farell et al., (Farrell, Pang, & Li, 2003) presented 
a hidden Markov model based approach to estimate the location of odor source based on mapping the 
plume. Marques et al. (Marques, Martins, & de Almeida, 2005) proposed a mapping methodology based 
on neural network regression and an advection-diffusion model by means of a reduced order Kalman 
filter. Lilienthal and Duckett (Lilienthal & Duckett, 2004) presented a grid-mapping technique based 
on Gaussian density functions, modeling the likelihood of each observation in the grid as a decreasing 
Normal distribution with respect to the distance from the point of measurement. This method was later 
extended for the case of multiple odor sources (Loutfi et al., 2008) and to the three-dimensional case 
(Reggente, Lilienthal, Pardo, & Sberveglieri, 2009). It was further shown how gas distribution mapping 
methods can be embedded into a Blackwellized particle filter to account for the uncertainty about the 
position of the robot (Lilienthal, Loutfi, Blanco, Galindo, & Gonzalez-Jimenez, 2007).

Stressing the importance that probability and uncertainty have on any mobile robotic system, recent 
approaches provide in addition to the most-likely value of the gas distribution, an estimate of the as-
sociated uncertainty (via a variance value as illustrated in Figure 4). Stachniss et al. (Stachniss et al., 
2009) proposed an approach using Gaussian process mixture models (GPM), treating gas distribution 
modeling as a regression problem. The components of the mixture model and the gating function, which 
decides to what component a data point belongs, were learned using Expectation Maximization (EM). 
At the same time, in (Lilienthal, Reggente, Trincavelli, Blanco, & Gonzalez-Jimenez, 2009), Lilienthal 
et al. carried out two parallel estimation processes, one for the mean and another for the variance, un-
derstanding the latter as the variability of the gas readings, not the uncertainty in the estimation which 
is the standard in probabilistic estimators. Results demonstrated that although providing similar maps 

Figure 3. The 2D map is commonly represented by a lattice where each cell keeps the estimate of gas 
concentration by means of a probability density function, represented here as a Gaussian density in the 
vertical axis.
From (Blanco, Monroy, Gonzalez-Jimenez, & Lilienthal, 2013).
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to previous approaches, this method had the advantage of scaling better to larger training datasets and 
to possess a simpler learning procedure. In (Blanco et al., 2013), an approach to obtain the variance of 
each map cell is proposed employing a sparsified Kalman filter.

Exploiting the availability of other sensors onboard the robot, some works have considered the pres-
ence of obstacles in the environment (Monroy, Blanco, et al., 2016), introduced wind flow measurements 
as secondary variables (Reggente & Lilienthal, 2010), and even considered the modeling of homologous 
wind maps to exploit the strong correlation between gas dispersion and wind flow conditions (Monroy, 
Jaimez, & Gonzalez-Jimenez, 2017). With respect the number of robots, it is common practice to face 
GDM with a swarm of robots (Marjovi & Marques, 2014; Nguyen, Kodagoda, Ranasinghe, & Dis-
sanayake, 2014). This approach enables measuring multiple locations simultaneously, but introduces the 
problems of cross-calibration between the different e-noses, and the communication between the robots in 
the swarm. These problems are also shared by applications that mount multiple e-noses on other mobile 
platforms, such as buses (Hasenfratz, 2015), or bikes (Zappi et al., 2012) for creating pollution maps.

Up to date multiple approaches based on different mathematical and statistical models have been 
presented. Yet, a key hurdle to provide a formal and serious comparison among them is the lack of 
experimental datasets with ground truth. This is a one of the main limitations for the development of 
precise and trustable GDM algorithms in real robots. Waiting for a breakthrough in the chemical sensing 
technology that could provide such ground truth, the only intermediate solution is to employ compu-
tational fluid dynamic tools which, not modeling whole the dispersion phenomena, allow us to gather 
reasonable accurate simulated data with ground truth.

GAS SOURCE LOCALIZATION

Gas source localization is likely the most studied research area and direct application of an olfactory 
mobile robot. Traditionally, it has been divided into three stages: first, explore the environment looking 

Figure 4. Example of a gas distribution map generated by a mobile robot. (A) Occupancy map of the 
environment (white represents obstacles and the source location is depicted as a cross inscribed within 
a circle) and robot path during the inspection (white-solid line). (B) Map of the estimated gas concen-
tration and (C) associated uncertainty.
Adapted from (Monroy, Blanco, et al., 2016).
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for the presence of a chemical release, then search for the source guided by chemical and other sensing 
stimuli, and finally the so called source declaration, that is, verification of the identified source location. 
The first stage can be considered a trigger event, not being usually carried as an active stage, but run on 
the background while the robot is performing other non-related olfaction operations such as patrolling, 
exploration, delivering, etc. If while performing these tasks, the e-nose on-board the robot detects an 
abnormal concentration level, then the gas source localization task is triggered and the search process 
begin. Therefore, the rest of this section will focus on the other two stages, the search and declaration of 
a gas source. More detailed information can be found in the review (Kowadlo & Russell, 2008).

Source Search

This stage involves searching of the gas release point, primarily relying on the chemical sensed data, but 
also on the wind flow or the objects and structure of the scenario. The success of this stage heavily relies 
on how well the given algorithm adjust itself to the environmental conditions, which determine the way 
in which odor is dispersed. In this sense, gas source localization strategies can be classified into those 
designed to work under the presence of a chemical plume, also known as plume tracking strategies, and 
those which do not relay on the existence of a well formed, downwind plume.

Plume Tracking

At medium Reynolds values, odor dispersal occurs mainly through carriage by the background fluid 
currents (advection), causing an odor plume to form downflow of the source (Kowadlo & Russell, 2008). 
In most real scenarios, this plume is not straight and continuous, but given the time-varying nature of 
flow fields and the predominance of turbulence over diffusion, plumes tend to meander, become patchy 
and, to a far lesser extent, spread out. This results in peak concentration values much higher than the 
average, and fluctuations in the instantaneous gradients in magnitude and direction. Furthermore, the 
plume structure can even change if the direction of air or water flow shifts considerably. Therefore, 
occasional failures are almost inevitable in the tracking of plumes (Pearce et al., 2006), being a key for 
success not only the track of the plume but also the plume recovery mechanisms to relocate the lost 
plume in case of failure.

As in the case of gas distribution mapping, research on plume tracking robots started with pure 
chemotactic approaches (Kazadi, Goodman, Tsikata, Green, & Lin, 2000; Menzel & Goschnick, 2000). 
They involve taking measurements of the chemical concentration at more than one spatially separated 
position, and determining the chemical gradient, which is used to move towards the source (see Figure 
5). In most occasions, algorithms for searching for an odor source are based on local sensing and the 
reactive behaviors of microbes, insects, or crustaceans. Such strategies involve tracking the plume along 
its entire length, which can be a limitation as it is time consuming and may not always be possible. Pro-
posed strategies include Braitenberg approaches (Lilienthal & Duckett, 2003a; Russell, 2003), where 
a pair of bilateral chemical sensors, each directly controlling the speed of a wheel, either the opposite 
wheel in cross-coupling, or the wheel on the same side, are used to reach the source; Algorithms based 
on E. coli bacteria (Marques, Nunes, & de Almeida, 2002), rooted in gradient navigation through the 
plume; and other methods, like in (Ishida, Zhu, Johansson, & Moriizumi, 2004), exploited the airflow 
obstructions generated by the robot shape, and the consequent disparity between the responses of upwind 
and downwind sensors, to determine the moving direction. Experimental results have demonstrated that 
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pure chemotactic approaches are relatively ineffective under real conditions where turbulence dominates, 
attributing their low success rate to the susceptibility of the algorithms to rapid fluctuations in the chemi-
cal concentration and the fact that the concentration gradient along the plume centerline is extremely 
small except in the vicinity of the source.

Performance was then improved by combining chemotaxis with anemotaxis, exploiting the strong 
directional cue that the flow direction brings when acting under turbulent flows. Several methods have 
been proposed to exploit information from chemical concentration and fluid flow measurements (anemo-
metric data), among them is the dung beetle or zigzag method, which involves moving upwind within the 
odor plume in a zigzagging fashion (see Figure 6A). Each time the plume boundary is encountered, the 
robot turns back into the plume. Reported implementations include that in (Ishida et al., 1999), which 
employed a basic “odor probe” composed of four pairs of a semiconductor gas sensor and a hot wire 
anemometer, each pair spaced 90º with respect the other, (Farrell, Pang, & Li, 2005) for underwater 
robots, or (Russell, 2006) for the case of 3D. Other approaches exploiting anemotactic information are 
the plume-center upwind search (Ishida, Nakayama, Nakamoto, & Moriizumi, 2005; Marques, Almeida, 
& de Almeida, 2003) or the silkworm moth strategy, also known as the surge-cast algorithm (Lochmat-
ter & Martinoli, 2009b). The former involves moving towards the center of the plume whilst tracking 
upwind, assuming that higher concentrations are likely to be found at the plume centerline. The latter is 
based on the studied behavior of how male silkworm moths locate female mates by tracking a pheromone 
release. In a nutshell, a robot in the plume moves straight upwind until it loses the plume (surge phase), 
then, it tries to reacquire the plume by moving cross-wind (cast phase), first on one side and then on 
the other (see Figure 6B). Different versions of this behavior have been presented both with procedural 
algorithms, and with neural networks (Pyk et al., 2006).

Figure 5. Illustration of chemotactic plume tracking approaches. (A) Navigation based on concentra-
tion gradients detected by comparison of the left and right chemical sensor outputs. (B) Three different 
plume recovery algorithms in case of lost. Robot 1 is programmed to back up when neither sensor detects 
chemical. Robot 2 performs random walk. Robot 3 mimics the behavior of a male silkworm moth. When 
one of the sensors is stimulated, the robot surges in that direction to track a plume. When the chemical 
signal is lost, the robot performs zigzag walk and circling to relocate the lost plume.
Adapted from (Pearce et al., 2006).
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As reported in (Lochmatter & Martinoli, 2009a), the main drawback of these anemotactic strategies 
is the fact that under realistic, turbulent environments, a great difficulty exists in accurately determin-
ing the wind flow direction. The latter entails, in most occasions, a major impact on the success rate 
when compared with laboratory results. In addition, obstacles will not only negatively influence the 
performance, but require, in many cases, to substantially modify the algorithm (Lochmatter, Heiniger, 
Martinoli, Pardo, & Sberveglieri, 2009).

Turbulence Dominated Search

In most real environments, the strong predominance of turbulence as the dispersal mechanism, together 
with the presence of obstacles, lead to chaotic dispersion patterns where the chemical downwind plume 
breaks down into intermittent gas patches. Moreover, for indoor scenarios, the low strength of wind flows 
does not guarantee the formation of chemical plumes, being the movement of other entities (e.g. people, 
or the own robot) responsible of the chaotic dispersion of the gases. This entails that most plume tracking 
algorithms are unable to localize the source, as there is not such a thing as a chemical plume to follow.

Researchers have attempted to overcome this limitation by developing systems that go beyond purely 
reactive control, for example by exploiting other information sources available on the mobile robot. One 
of the first alternatives to appear was the combination of traditional strategies with vision based systems. 
This approach enables robots to identify candidates from a distance, thus dramatically diminishing the 
effective search space and greatly enhancing the ability to locate an odor source when a downwind 
plume is not well formed or even inexistent. Yet, only very basic algorithms have been proposed so far 
(Ishida, Tanaka, Taniguchi, & Moriizumi, 2004; Loutfi, Coradeschi, Karlsson, & Broxvall, 2004), most 
of them relaying on strong assumptions about knowledge of the source shape or color, for detection of 
the visual candidates.

Moreover, some engineered plume-tracing strategies have also been presented, such as fluxotaxis 
(Zarzhitsky, Spears, Thayer, & Spears, 2004), a multirobot based approach in which computational fluid 
dynamics techniques are applied, infotaxis (Vergassola, Villermaux, & Shraiman, 2007) a gradient-free 
method exploiting the expected entropy of future samples to guide the robot search, or the SPIRAL algo-
rithm (Ferri et al., 2009), a source location strategy for indoor environments with no strong airflows (see 
Figure 7). More recently, and facing more challenging environmental conditions such as time-varying 

Figure 6. Illustration of (A) the zigzag algorithm and (B) the surge-cast algorithm. The robot continu-
ously measures the gas concentration, and at some points (indicated by stars) also the wind direction.
(A) Ishida et al., 1994; (B) Lochmatter & Martinoli, 2009b, Adapted from (Neumann, Hernandez-Bennetts, Lilienthal, Bar-
tholmai, & Schiller, 2013).
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airflows, Li et al proposed a novel probabilistic approach based on a particle filter (J. G. Li, Meng, Wang, 
& Zeng, 2011). Their main contribution was the estimation of the chemical source location while the 
robot performs exploratory behaviors, not necessarily requiring it to navigate towards it. In this line, 
Ping et al proposed a behavior-action based method (Ping, Xiao-fang, & Ai-dong, 2014), combining 
multiple search strategies with visual recognition, and in (Hernandez-Bennetts, Schaffernicht, Stoyanov, 
Lilienthal, & Trincavelli, 2014) and (Bonow & Kroll, 2013), the authors proposed the use of a TDLAS 
range gas sensor to localize a gas source by applying tomography principles.

Finally, gas distribution mapping techniques have also been proposed to pinpoint the location of 
one or multiple chemical sources (Lilienthal et al., 2009; Monroy, Blanco, et al., 2016). These generic 
methods do not rely on the presence of a plume, neither on strong assumptions about the environmental 
conditions, however, their limitation resides in the time necessary to sweep the entire environment, and 
their bad scalability as the environment enlarges.

Source Declaration

The declaration of the chemical source corresponds to the last phase of the gas source localization 
task. Its purpose is to inspect the candidate locations provided by the search algorithm (second phase 
described previously), and to verify the presence of the gas source. In many cases, this task is relegated 
to a human operator, which analyzing the data offered by the robot (e.g. the robot path followed during 
the search stage, the gas distribution map created, or just the current gas and wind measurements) is in 
charge of declaring the gas source location, or a failure in the search stage. Yet, different approaches 
have been proposed to declare the gas source location autonomously, in most occasions derived on the 
basis of empirical studies.

Figure 7. Illustration of the SPIRAL algorithm for gas source localization. The robot performs spiral 
movements, stopping to sample the gas concentration. If current measurements suggest that the robot is 
closer to the source (referred as a hit), it starts a new spiral movement.
Adapted from (Ferri et al., 2009).
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Initial works based source declaration on the intuitive fact that gas concentration in the vicinity of 
the gas source should be higher. Approaches like (Grasso & Atema, 2002) proposed heuristic strategies 
based on gas sensor saturation over empirically set thresholds, while Cowen & Ward (Cowen & Ward, 
2002) sharpen the declaration by comparing the chemical concentration at different heights. Hayes et 
al. (Hayes, Martinoli, & Goodman, 2002) mentioned a source declaration method which identified the 
source by detecting a series of contiguous odor hits, provided that such frequency of odor patches is 
likely to occur only near the source.

More sophisticated methods based on machine learning were proposed to improve the declaration 
of the gas source under more realistic environments. In (Weissburg et al., 2002) the authors based the 
declaration of the gas source attending to the studied chemical patterns a gas source generates, while in 
(Lilienthal et al., 2004) the declaration was approached as a classification problem, using neural networks 
and support vector machines. As reported in (Cabrita & Marques, 2013), the problem with these and 
similar strategies is the need of a training phase, and the assumption that the source characteristics during 
training would be similar to the odor sources found during normal operation. More general approaches, 
resorting to concentration gridmaps to achieve odor source declaration, were presented in (Lilienthal & 
Duckett, 2003b; Marques, Nunes, & De Almeida, 2003). Later, Li (W. Li, 2006) conducted experiments 
on underwater vehicles, constructing a source identification zone based on chemical detection points, 
and more recently (J.-G. Li, Meng, Wang, & Zeng, 2010), proposing a particle filter approach to locate 
and declare the gas source. Similarly, in (Neumann et al., 2013) the authors presented a novel pseudo-
gradient-based plume tracking algorithm and a particle filter-based source declaration approach, testing 
the proposal with a gas-sensitive micro-drone.

Recent approaches like (Cabrita & Marques, 2013; Wang et al., 2016), have tackled the problem from 
a multi-robot approach and mass flux divergence theory, relaying in the simultaneous measurement of gas 
concentration and fluid flow at different locations of the environment to analyze the presence of sources.

CONCLUDING REMARKS

Gas sensitive mobile robots are not yet a reality. Most of the works mentioned through this chapter pres-
ent only simulations or laboratory-based experimentation, where some control over the environmental 
conditions and the chemical sensors is performed. Development of chemical sensors designed for mobile 
robots is indeed a necessary subject for future work. More robust and efficient sensors are needed to 
overcome limitations such as the long response times, ageing or drift, drawbacks that hinder gas sensi-
tive mobile robots to be deployed in real world applications.

Besides the limitations imposed by technology, that will hopefully banish with time, future work is 
needed to develop design strategies which enable a mobile robot with the capabilities to detect, recog-
nize and locate chemical releases, to be useful in a variety of scenarios such as homes, manufactures or 
emergency areas.
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