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Abstract. This work addresses the problem of efficiently and coher-
ently locating a gas source in a domestic environment with a mobile
robot, meaning efficiently the coverage of the shortest distance as pos-
sible and coherently the consideration of different gas sources explain-
ing the gas presence. The main contribution is the exploitation, for the
first time, of semantic relationships between the gases detected and the
objects present in the environment to face this challenging issue. Our
proposal also takes into account both the uncertainty inherent in the
gas classification and object recognition processes. These uncertainties
are combined through a probabilistic Bayesian framework to provide a
priority-ordered list of (previously observed) objects to check. Moreover
the proximity of the different candidates to the current robot location
is also considered by a cost function, which output is used for planning
the robot inspection path. We have conducted an initial demonstration
of the suitability of our gas source localization approach by simulating
this task within domestic environments for a variable number of objects,
and comparing it with an greedy approach.
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1 Introduction

The fusion of different sensing modalities can empower service robots operating
in human environments (e.g. for elder care at homes or as assistants at offices,
airports or hospitals) with new abilities and the possibility to efficiently accom-
plish complex tasks. With this aim, in this work we focus on the senses of vision
and olfaction, and face a challenging task: gas source localization, i.e. the finding
of the object releasing a particular smell. In this context, olfaction is understood
as the sensing of volatile chemical substances by means of an electronic nose (e-
nose)[1], while vision is interpreted as the perception of the environment through
a camera capturing light intensity [2,3].

Given the volatile nature of gases and the complex processes involved in
their dispersion (i.e. dominated by turbulent flows [4]), after the perception of
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an unusual gas concentration it is necessary to carry out a search of the ob-
ject that is releasing it in the environment, process commonly referred as gas
source localization (GSL). For the case of domestic environments it includes the
location of methane or butane leaks from the home heating system, the pres-
ence of smoke, or unpleasant smells coming from spoiled food, the toilet, or the
pet sandbox, among others. An efficient localization of these gas sources would
permit the robot to act consequently and in time, for instance alerting a hu-
man (e.g. notifying the presence of smoke from the oven) or suggesting different
actions to be carried out (e.g. replacing the pet sandbox).

GSL is usually addressed by mimicking animal behaviors through bio-inspired
algorithms, assuming the existence of a downwind gas plume (i.e. plume track-
ing) [5,6], or by exploiting other information sources like dispersion models or
windflow data [7,8]. However, most of these methods are prone to fail in human-
like environments due to the important assumptions they rely on (e.g. existence
of a gas plume, the predominance of laminar and uniform windflows, or the ab-
sence of obstacles in the environment that can interfere with the gas dispersion).
Thereby, their success heavily relies on how well the given algorithm adjust itself
to the environmental conditions, which determines the way in which gases are
dispersed. A way to overcome this issue is to employ artificial vision systems
to detect gas source candidates and inspect them, reducing the complexity of
the search process. For example, if the e-nose detects an abnormal concentration
of a gas classified as smoke, a visually recognized oven is a good candidate to
check, while a chair is not. This approach, not being novel, has only been superfi-
cially explored under very simple scenarios where the robot exploited knowledge
about the source physical characteristics to reduce the locations to search [9].
Yet, what is still needed is a principled way to set the nature of the objects and
their possible gas emissions – in other words, their semantics –, from which we
can infer what objects in the environment are prone to be the gas source.

Moreover, traditional GSL approaches work, in most cases, with gas classi-
fication systems that produce an exact outcome, for example, a detected smell
is smoke or not. However, the classification of gases is not extent of uncertainty
sources (e.g. the cross-sensitivity of gas sensors or the environmental conditions),
being mandatory their consideration for a coherent robot operation. For example,
an ambiguous gas classification result between smoke and spoiled food (prob-
ability of 0.55 vs. 0.45) could end up with the robot only searching for smoke
when indeed a dish with fish was forgotten in the kitchen counter. The same
holds for the uncertainty inherent to the object recognition process: an object
can be recognized as a heater with probability 0.60 or as a fan with 0.40, so it
must be also considered.

This work presents, to the best of our knowledge, the first attempt towards
a system performing an efficient and coherent gas source localization under un-
certainty exploiting semantics. For that, it is built and maintained a semantic
representation of the robot environment that provides the GSL task with valu-
able prior information (see Fig. 1). Concretely, an ontology [10] is used to encode
the semantic knowledge of the domain at hand (e.g. ovens can give off smoke with
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Fig. 1. Overview of the proposed Semantic Gas Source Localization System: from a
new gas observation with a detected gas until the the generation of the navigation plan
for localizating the source. White boxes are processes, while blue shapes are gener-
ated/consumed data.

probability Pa, cocked meal smell with probability Pb, and no smell with Pc), and
also to store information about previously perceived objects: their probability of
belonging to the considered categories (e.g. heater, cigarette, fish, etc.), and their
locations. In this work we assume that the robot workspace has been already
visually inspected and a number of objects have been recognized and codified
into the ontology. In this way, when a gas emission is perceived and classified
as belonging to a number of gas classes with their respective uncertainties, a
semantic request is submitted to the ontology which returns: the object cate-
gories that can release those gases, and the instances (objects) of that categories
already observed in the environment, also with their recognition uncertainty. A
probabilistic Bayesian framework is then in charge of fusing this information and
assigning to each object (i.e. candidate) a probability of being the gas source.
Finally, a cost function is introduced to weight the probability of each candidate
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by the distances from the current robot location to them, and a path planning
module processes its output to provide the navigation plan to be executed by
the robot.

A demonstration of the system suitability has been carried out within com-
plex simulated scenarios using GADEN [11]. The obtained results were promis-
ing, suggesting that our probabilistic approach is suitable for efficient gas source
localization within complex environments, such as domestic ones.

2 Related Work

Gas source localization strategies are many and varied [12]. In this section we fo-
cus on two particular approaches: the fusion between the chemical data provided
by the e-nose with vision systems in order to boost the GSL task efficiency, and
works that consider uncertainty during the search process.

The former approach enables robots to identify candidates from a distance,
thus dramatically diminishing the effective search space and greatly enhancing
the ability to locate an odor source. It must be noticed that opposed to vision,
which is a range sensing modality, most of the gas sensors are point-sampling
devices, measuring only the gas that is in contact with them. Despite the notable
advantages of considering vision in the GSL task, only very basic algorithms
have been proposed so far, most of them relying on strong assumptions about
the gas-source shape or color for the visual detection of candidates [9,13]. An
exception is the work proposed by Loutfi et al. [14], where the authors proposed
a symbolic reasoning technique for fusing vision and olfaction. However, focus
is placed on object recognition, where gas sensing is only employed for object
disambiguation, not to locate the source releasing the volatiles.

Related to works considering some type of uncertainty in the search process,
we can highlight some engineered plume-tracing strategies such as infotaxis [7], a
gradient-free method exploiting the expected entropy of future samples to guide
the robot search towards the gas source, probabilistic approaches based on parti-
cle filters [8,15], or strategies based on gas distribution mapping [16]. The latter
do not rely on the presence of a plume, neither on strong assumptions about the
environmental conditions, however, their limitation resides in the time necessary
to sweep the entire environment, and their bad scalability as the environment
enlarges.

3 The Semantic Gas Source Localization System

Fig. 1 shows an overview of the processes and data involved in the proposed
system. In a nutshell, if an unusual gas concentration is detected (e.g. while the
robot is exploring the environment or while performing other non gas-related
tasks) (see Section 3.1), the Semantic Gas Source Localization (SGSL) System
is triggered for detecting the object releasing that odor and acting consequently.
For that the system performs a semantic query to an ontology to get prior in-
formation with different flavors (see Section 3.3), which is introduced into a
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probabilistic framework that yields an ordered list of objects candidates accord-
ing to their probability of being the source (see Section 3.3). This list is the
input to a cost function, which is also feed with the distance from the robot
current location to the source candidates. A path planning algorithm exploits
this function to re-order the candidates list and produce a navigation plan to
check them (see Section 3.4). For checking if an object candidate is the gas
source (process know as validation), the robot will sample the air in the object’s
proximity, measuring concentration and carrying out a new gas classification.
By comparing these values with the ones that triggered the search, the robot is
able to discern if the object is or not the gas source it is looking for. The main
components of the SGLS system are described next.

3.1 Starting Point: Gas Detection & Classification

In this work we assume that an assistance robot deployed in a home environment
is equipped with an e-nose that is sampling the environment on a regular basis.
This implies that while the robot is performing its duty tasks (e.g. patrolling,
assistance, cleaning, etc.), it is also monitoring the gases present in the air.
When an abnormal gas concentration level is detected, that is, when the gas
concentration observed exceeds a predetermined threshold, the SGSL system
triggers the search.

Once the search has been triggered, and in order to determine which objects
in the environment are susceptible for releasing the observed gas, we carry out a
gas classification. As in many other disciplines, classification corresponds to the
process of determining which of a set of classes a new sample belongs. In this
work we account for the uncertainty in this process by considering probabilistic
classifiers. The output of such classifiers is not a class label, but a set of probabil-
ities representing the belief of the gas observation to belong to each considered
gas-class [17,18]. Therefore, any gas classifier giving as output a probability dis-
tribution over the set of classes can be employed, e.g. Support Vector Machines,
Naive Bayes (the one considered in this work), Decision Trees, etc.

3.2 Exploiting Semantic Knowledge: The Ontology

Once a gas has been detected and classified with a certain belief, e.g. 0.6 of being
smoke and 0.4 rotten food, the first step towards the localization of its source is
to obtain valuable prior information to assist the process. With prior information
in this context we mean: i) knowledge about the categories of objects that can
release such gas, i.e. in the case of smoke and rotten food smells, ovens, ashtrays
or bins are candidates, and ii) information regarding the objects already detected
in the environment which can belong to that categories. As a reminder, we are
assuming that the gas source is between a set of object candidates previously
recognized in a visual inspection of the robot workspace. The chosen recognition
method must be able to provide confidence values about its results, and although
this task is simulated in the experiments conducted in this paper, we plan to use
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Fig. 2. Excerpt of the ontology used in this work, showing part of the hierarchy of
encoded concepts, the definition of the concept Oven, and an example of object instance.

Conditional Random Fields (CRFs) [19] given their high recognition rates and
proved suitability to this end [20,21].

For codifying the previous information, which is clearly a form of Semantic
Knowledge (SK), we have resorted to an ontology [10]. An ontology is a prin-
cipled way to naturally represent and update SK about a domain of discourse,
employing for that a set of concepts arranged hierarchically, properties of that
concepts, and instances of them.

As an illustrative example, let us consider an excerpt of the ontology used in
this work, shown in Fig. 2. The root concept is Thing with two children: Feature
and World element, the latter establishing the elements that could be found in
the robot surroundings and the former their features, i.e. Size, Orientation,
and Smell. The elements can be Inert elements or Living beings, although
in this work we are interested in the first one, which is the parent of concepts
like Oven, Astray, Dishwasher or Bin. The concepts within this hierarchy are
defined by their properties, as it is shown in the same figure for the Oven case.
From that definition we can retrieve that ovens usually exhibit a medium or big
size, that can release different smells: gas, rotten food, or smoke, and that they
are placed in kitchens.
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This ontology is also populated with instances of concepts, whose in this case
are objects in the robot workspace previously detected to the SGSL process. The
bottom part of Fig. 2 shows an instance that, according to the output of an object
recognition method, could be an oven with belief 0.6 or a dishwasher with 0.4.
This is specified in the three first lines of the instance definition. The fourth
one tell us that the object has a medium size, and the next one that, at the
time of its detection, it did not release any smell. The sixth line expresses that
the object could release three different smells: gas, rotten food, or smoke, and
also their associated believes. By now, these beliefs are set uniformly, although
we are studying how to update them according to the robot experience in a
certain workspace. The last line stands for the object position (coordinates) in
the environment metric map.

This representation allows us to make semantic requests about the concepts
(concerning objects) that could release a certain smell, as well as the instances
of that concepts already detected. Notice that these instances come with un-
certainty measurements about their belonging to the posed concepts, while the
concepts that can give off that smell define an uniform probability distribution,
information that is probabilistically propagated by the framework in the next
section, along with the initial information about the detected gas.

3.3 Handling Uncertainty and its Propagation: The Probabilistic
Framework

Our probabilistic Bayesian model for uncertainty propagation aims to, given the
gas classification results and the prior information from the ontology, provide
the probability for each candidate being the source. For that it considers four
random variables:

• Z is the gas observation (i.e. a measurement of the e-nose (zg)).
• G = {Gi, i = 1 : NG} models the gas class and takes values on the set of

NG possible gases.
• C = {Ci, i = 1 : NC} stands for the category of a candidate object, assigning

to it a value from the set of NC categories.
• S = {Oi, i = 1 : NO} stands for the gas source, taking values on the set of
NO objects perceived in the environment.

Thus, the probability of a certain candidate object oi being the gas source,
given a gas observation zg, is modeled as:

P (S = oi|Z = zg) =

NC∑
j=1

P (S = oi|Z = zg, Cj) P (Cj |Z = zg) (1)

P (Cj |Z = zg) =

NG∑
k=1

P (Cj |Z = zg, Gk) P (Gk|Z = zg)
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Such source probability is calculated by marginalizing first against the object
categories Cj , and second against the gas classes Gk. It allows us to model the
probability of each object in the environment of being the gas source as the prod-
uct of three conditional probability distributions. The first one,
P (S = oi|Z = zg, Cj), represents the probability of object i being the gas source
conditioned on both the gas observation and knowledge about the object cate-
gory of the gas source (e.g. bin, oven, toilet, etc.). Assuming independence with
the gas observation given the object category Cj , this probability can be defined
as the likelihood of the object belonging to that category (i.e. object recognition
probabilities), information provided by the ontology (recall line 3 in the bottom
part of Fig. 2).

The second probability distribution P (Cj |Z = zg, Gk), models the likelihood
of the source to belong to a certain category Cj conditioned on the gas obser-
vation and knowledge of the gas class Gk that has ben released. Again, we can
safely assume that this distribution is independent of the gas observation given
the gas class, computing its value from the semantic knowledge encoded in the
ontology about the object categories that can give off the gas Gk. For exam-
ple, if Gk = Smoke and the defined object categories that can release smoke are
Oven, Heater and Ashtray, then: P (COven|GSmoke) = P (CHeater|GSmoke) =
P (CAshtray|GSmoke) = 0.33, while for the rest of object categories it takes a
value of 0, e.g.P (CPet sandbox|GSmoke) = 0.

Finally, P (Gk|Z = zg) is interpreted as the probability of the gas release
belonging to gas of class Gk conditioned on the gas observation, which corre-
sponds to the output of the probabilistic gas classifier (recall Section 3.1). Given
the three described probability distributions, the computation of Eq. (1) can be
accomplished in short time, enabling a real time operation.

3.4 Giving Coherence to the Localization Process: The Path
Planning Algorithm

Once computed the probability of each object in the environment of being the
gas source, the robot must plan and inspect the different objects in order to
locate the one that is the gas source. For this step we rely on a path planning
module that in addition to the referred probabilities also takes into account the
distance between the current robot location and the objects. For doing that a
cost function is used:

L(oi) = − ln
(
P (S = oi|Z = zg)

)
distTo(oi) (2)

where distTo(oi) is the distance between the robot location and the candidate
object oi. This cost function models a trade off between source probability and
distance, giving lower values for objects with high probability and/or close to
the robot. On each iteration, the path planning module calculates these costs to
retrieve the best object to check ô through the optimization:

ô = argmin
oi, 1≤i≤NO

L(oi) (3)
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Fig. 3. Experimental setup. (a) 3D simulated environment composed of four rooms
and fifteen objects. Objects are shown as 3D colored boxes specifying their location in
the environment and their category probabilities. (b) Illustration of a gas dispersion
simulation within the environment using GADEN [11]. When the robot is exposed to
a gas concentration higher than a set threshold, the search is triggered to locate the
source. As can be seen, gas dispersion is chaotic and spreads over multiple rooms, which
implies that the robot may be far from the source when the search is triggered.

Once ô has been calculated, the robot checks if it is the gas source releasing
the gas trhough a process commonly referred as source validation. If it is, we are
done. If not, the object is removed from the list of candidates, and the optimiza-
tion in Eq. (3) is carried out again (since the distances from the robot to the
remaining candidates have changed), obtaining a new target candidate. Recall
that we are assuming that the gas source is among the objects already present
in our system, otherwise a more sophisticated search must be implemented for
example by performing object recognition along the search process to find new
candidates. We will explore that approach in a future work.

4 System Demonstration

This section presents a simulated experiment where a mobile robot equipped with
an e-nose must locate a gas emission source in a home environment (see Fig. 3).
For this scenario we consider 3 gas classes, namely: Smoke smell, Gas smell and
Rotten food smell, 11 object categories (Vase, Bin, Ashtray, Oven, Heater,
Dishwasher, Fan, Puf, Incense stick, Pet sandbox and Pet bed), and model
P (Cj |Z = zg, Gk) as an uniform probability distribution (see Table 1). Further-
more, we set up fifteen different objects in the environment, which we assume
have been previously detected by the robot with the probabilities shown in Fig. 3.
All this information is managed by the ontology by means of associations be-
tween the objects, categories, gases, the robot and the environment itself.

For demonstration purposes we compare our approach with a deterministic
case where there is no uncertainty consideration neither in the gas classification,
nor in the object recognition. It must be noticed that this second approach
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Table 1. Conditional probabilities of each object category given the gas class being
released by the source: P (Cj |Gk). As can be seen, some categories do not release any of
the gas classes considered in the experiment (P (Cj |Gk) = 0), aspect to be exploited by
our system, together with the object recognition uncertainty, to locate the gas source.

Category Smoke smell Gas smell Rotten food smell

Vase

Bin 0.33

Ashtray 0.25

Oven 0.25 0.5 0.33

Heater 0.25 0.5

Dishwasher 0.33

Fan

Puf

Incense stick 0.25

Pet sandbox

Pet bed

will fail when the gas or the objects are misclassified (i.e.when uncertainty is
relevant), being necessary to check all the objects in the environment one by
one using only the distance between the robot and the objects to optimize the
search. Fig. 4 shows the averaged distance traveled by the robot and the number
of objects checked before locating the gas source for three setups with different
number of objects: 7, 11 and 15. In order to obtain statistically representative
results, for each case we run the experiment 1000 times varying (i) the initial
robot pose, randomly selecting a pose from within the environment, (ii) the gas
source, randomly selecting an object to be the gas source from the list of objects,
and (iii) the class of the released gas, generating a gas dispersion in accordance
with the types of gases the selected source can emit (see Table 1). As can be
seen our approach improves both magnitudes considerably, not only reducing
the total distance traveled (which is directly related to the exploration time),
but also reduces the number of objects visited before locating the source. The
latter is important since the validation of a gas source is also an expensive task
in terms of time. Furthermore, it can be noticed that the improvement seems
to increase with the number of considered objects, something reasonable when
comparing with the greedy approach that visits all the objects one by one.

5 Discussion

This work contributes a gas source localization system for mobile robots that
aims to find the object releasing a smell efficiently and coherently by exploiting
semantic information. On the one hand, it is efficient in the way that selects a
set of candidate objects to be the source, and checks them according to their
source probability and their distance from the current robot location. On the
other hand, its coherence comes from the consideration of the uncertainty com-
ing from both the gas classification and object recognition processes, as well



Authors’ accepted manuscript: Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems. Cadiz, Spain. 2018

7 11 15

Number of objects

0

5

10

15

20

25

30

35

40

45

T
ra

ve
le

d 
di

st
an

ce
 (

m
)

Greedy GSL
Semantic GSL

7 11 15

Number of objects

0

2

4

6

8

10

12

14

N
um

be
r 

of
 o

bj
ec

ts
 v

is
ite

d

Greedy GSL
Semantic GSL

Fig. 4. Traveled distance (left) and number of objects visited (right) during the gas
source localization experiments for three different set of objects. In each case, the
average ± one standard deviation are plotted. As can be seen our approach improves
both magnitudes substantially, specially for a high number of objects.

as semantic information providing valuable prior information, like the possible
smells that a type of object can release. The system relies on an ontology to nat-
urally encode this prior knowledge in a principled way, and also serves to codify
information about the objects already detected in previous explorations of the
robot workspace, including the belief concerning their classification as belonging
to a certain object category.

We have proposed a probabilistic Bayesian framework to fuse such informa-
tion, and implemented a simple cost function to derive a path planning algorithm
that completes the localization system. The suitability of our approach has been
demonstrated in a simulated home-like scenario with multiple objects and with
realistic uncertainties. Comparison with a greedy approach based only on dis-
tance to the objects has been provided, suggesting that the consideration of
semantics and uncertainty represents an interesting approach for tackling this
complex problem.

The proposed system has significant room to explore. First of all, experiments
in real environments must be carried out in order to find possible limitations and
face them. We also plan to replace the simulated object recognition system by
one based on Conditional Random Fields. Another certainly interesting point is
how to update the beliefs about the smells of objects with the robot experience
in a certain environment, which could further improve the search efficiency.
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