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Abstract. This work deals with the problem of gas source localization by a mobile
robot with gas and wind sensing capabilities. Particularly, we address the problem
for the case of indoor environments where the presence of obstacles and the com-
plex structure provoke the chaotic dispersion of the gases. Under these challenging
conditions where traditional approaches based on mathematical modeling of the
plume cannot be applied, we propose the use of numerical methods to solve the gas
dispersion and its exploitation in a probabilistic formulation to estimate the likeli-
hood of the gas source location from a set of sparse observations. We validate our
approach with a simulated set of experiments in an office-like environment com-
posed of multiple connected rooms. Two search strategies are compared (active and
passive) demonstrating the suitability of our approach to infer the location of the
source even when the robot is not actively searching for it.
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1. Introduction

The term gas source refers to any element in an environment with the property of re-
leasing volatile substances (gases) into the air. This includes a large number of items
like open waste containers, pipe leaks, explosives, or decomposing organic matter. The
emitted gases from sources are dispersed in the environment following different physical
principles, mainly diffusion and advection [2], which in turn depend on numerous envi-
ronmental factors such as the wind direction and speed, the temperature, or the humidity,
among others. This fact greatly hinders the accurate location of gas sources: the gases
detected at large distances from their origin might have followed quite different, unpre-
dictable paths, especially in complex scenarios where the presence of obstacles (walls,
furniture, etc.) and inlets/outlets (doors and windows) cause turbulences and interfer-
ences with the path that largely modify the dispersion patterns [23].

Therefore, the location estimation of a gas source consists of inferring the position
of the object releasing the gas from a series of observations (typically, gas concentration

1Corresponding Author; E-mail: carlossanchez@uma.es



Authors’ accepted manuscript: Frontiers in Artificial Intelligence and Applications
(FAIA), IOS Press, 2018. doi: 10.3233/978-1-61499-929-4-110

Gas Source

Gas Dispersion

(a) (b)

Robot

Windows

Furniture

Doors

Figure 1. (a) Illustration of an office-like indoor environment with multiple objects that may potentially release
gases. (b) Snapshot enlightening the complexity of the gas dispersal within indoor environments. As can be
seen, there is not a straight and well formed downwind plume, but the collision with walls and furniture breaks
it down into patches (image generated with GADEN [15]).

and wind vector) the position of the object releasing the gas (see Fig. 1). There are a
variety of applications that would benefit from a system capable of locating sources of
volatile substances, including: finding survivors in catastrophic areas, stopping a fire or
leak in its initial stages, detecting explosives, drugs or dangerous agents, or monitoring
landfills and chemical warehouses.

Traditionally, this problem has been addressed from two different perspectives: the
deployment of fixed sensor networks [24], and the use of autonomous vehicles with ol-
factory capabilities [1] [20] [7]. Although the former approach enables the measurement
of the gases dispersed in the environment at multiple locations simultaneously, in this
work we opted for employing a mobile robot equipped with an ”electronic nose” or ”e-
nose”[22] and an anemometer because they enable the measurement of gas concentration
and wind velocity and direction at different spatial resolutions and in an adaptive way.
Furthermore, a mobile robot brings the possibility of merging the chemical information
with other sensory systems like laser scanners, cameras, etc., making it a very interesting
and promising line of research.

Despite the advantages that a mobile robot brings, the estimation of the location of
the gas source is not a simple task, particularly when carried out in indoor environments
where the presence of obstacles contributes towards a chaotic gas dispersion. This is no-
ticeable in the fact that most of the proposed works addressing this problem are accom-
plished under simplified and controlled scenarios [17], assuming the existence of laminar
and/or homogeneous wind flows, and without accounting for obstacles that may interfere
in the gas dispersion. As a consequence of relying on such strong premises, the proposed
solutions are not applicable to most real environments.

Particularly, our interest is in indoor environments, with the presence of multiple
rooms and obstacles, where a mathematical model of the gas dispersion is not avail-
able due to its inherent complexity. We model the environment as a 3D grid of cells,
each one being free or occupied, and consider a set of gas source location candidates
(e.g. a coarser tessellation of the grid map) on which to estimate the source probability.
Then, our goal is to estimate the probability of this source-map, based on a Bayesian-
probabilistic framework, from a sequence of wind and gas concentration measurements
collected by a mobile robot. To overcome the lack of a mathematical model of the gas
dispersion, we propose a solution based on computational fluid dynamics (CFD) and gas



Authors’ accepted manuscript: Frontiers in Artificial Intelligence and Applications
(FAIA), IOS Press, 2018. doi: 10.3233/978-1-61499-929-4-110

dispersal simulation tools. The goal is to generate a set of likely gas dispersal scenarios
from which the probability distribution of the gas concentration and wind map can be
estimated.

In this paper, after a summary of related works in Section 2, Section 3 introduces the
graph representation of the problem (i.e. Bayesian network) and derives the probability
of each cell in the map to contain the gas source from a sparse set of observations. After
this, Section 4 outlines the implementation details and Section 5 presents an illustrative
experiment in an office like environment to validate the proposal. We conclude this work
in Section 6 with a discussion of the results and an analysis of future steps to improve
the gas source localization process.

2. Related Work

The interest in estimating the location of gas sources by means of mobile robots endowed
with olfactory capacities is not new, as shown by the diverse strategies proposed over
the last two decades. The first works to appear were based on the concept of chemotaxis
or orientation-reaction in response to a chemical stimulus. Examples are the works pro-
posed by Rozas [19] using a single mobile robot, and by Genovese [6] or Buscemi [4]
for the case of multiple robots. Also, bio-inspired methods were proposed relying on
how moths search for their partners [12, 18], how lobsters seek food [8], or how bacteria
Escherichia-coli locates nutrients [21], among others.

Exploiting the fact that the wind flow is the main factor in the dispersion of gases,
different proposals were presented making use, not only of the gas concentration mea-
surements, but also of the wind flow direction and strength [10, 13]. These works fall
into the category of fluxotaxis, or orientation in response to the gas flow.

More recently, cognitive algorithms for solving the source location problem have
gained importance in the scientific community. Their main contribution is the integration
of probabilistic frameworks to estimate the source location. Examples are Infotaxis [26],
a search method that proposes to move the robot in the direction of the places where more
information exists in order to minimize the entropy of the source location and not directly
to it, or [27], where expectation maximization is employed to determine the parameters
of a probabilistic model based on unobservable variables.

However, most of these works have been designed and validated considering very
simple laboratory environments (usually a room free of obstacles with laminar and con-
stant wind flow), which limits their applicability to more realistic and complex environ-
ments where the presence of obstacles and the consideration of different rooms violate
the assumptions they rely on. A notable exception are the methods based on the prob-
abilistic modeling of the gas distribution [14, 3]. The main goal of these methods is to
estimate a map of the gas dispersion from the set of observations, which can later be
used to infer the source location. Yet, the main limitation of these algorithms is their low
temporal efficiency, requiring many observations distributed throughout the environment
in order to correctly estimate the source location.

The interested reader can find a more detailed review of different gas source search
strategies with a mobile robot in [11, 9, 1].
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3. Probabilistic Estimation of the Gas Source Location

The problem addressed in this work is the probabilistic estimation of a gas source lo-
cation within a structured environment characterized by the presence of multiple rooms
and obstacles, and where analytical models of the gas dispersion are not suitable. Specif-
ically, our focus is on employing a mobile robot equipped with an electronic nose and
an anemometer to enable the location of the gas source from a set of spatially distributed
measurements of the gas concentration and wind vector in the environment.

Our approach stands on two main pillars: (i) the use of numerical methods to solve
the dispersion of gases in the challenging conditions imposed by real, indoor scenarios,
and (ii) a probabilistic modeling of the problem that accounts for the spatially distributed
measurements gathered by the mobile robot during the search process. For the former
pillar we rely on two different tools (see Fig. 2(a)), a computational fluid dynamics (CFD)
platform to estimate the 3D wind flow conditions in the environment based on a set
of contour conditions, and a gas dispersal simulator based on the filament dispersion
theory (GADEN [15]) to derive the gas concentration (C) in the scenario. Given that
numerical methods for gas dispersion simulation are computationally intensive and time
consuming, we simplify the problem by assuming that there is a finite set of possible
static wind flow conditions that can occur in the environment (W ), as well as a set of
candidate gas source locations (S) (e.g. cells of a grid-based map). Therefore, for each
possible wind flow condition (w) and gas source location (s), we numerically estimate
the gas concentration probability p(c|s,w) as a multidimensional Gaussian distribution
defined over the concentration grid map,

p(c|s,w)∼N (µc,Σc), µ
c = [µc

n ]n=1:N , (1)

where the mean vector µc contains the average gas concentration values for each of the
N cells of the map and the N×N matrix Σc is the covariance matrix.

The probabilistic model from which to estimate the gas source location is depicted
by the Bayesian network in Fig. 2(b). As can be seen, the hidden random variables are
the source location S, the wind flow W and the gas concentration C, while two are the
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Figure 2. (a) Simulation process to obtain the gas dispersion in indoor environments. It is formed by two
steps: first a Computational Fluid Dynamic tool (CFD) is used to get the wind flow from boundary conditions
and then, with the use of gas dispersal simulation tool GADEN and a set of source positions we obtain the
gas concentration in the search scenario. (b) Bayesian network of the gas source localization problem. Shaded
nodes denote hidden random variables while white nodes represent observable ones.
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observable variables: Zc and Zw, representing the gas concentration and wind vector
measurements taken by the robot, respectively. From this model we first derive the source
location probability of each candidate accounting only for the most current observation,
and then, we introduce a Bayesian filter to improve robustness by integrating all the
observations taken at different instants of time.

3.1. Estimation from a Single Observation

In this section we infer the source location probability by accounting only for the most
current observation, that is, the current gas concentration and the wind velocity and direc-
tion vector taken at the corresponding robot location at instant of time k. We model both
measurements as their respective current values (denoted here as ck and wk), corrupted
by an additive Gaussian noise of variance σ2

zc and Σzw , respectively:

zc
k = ck + ec, ec ∼N (0,σ2

zc), (2)

zw
k = wk + ew, ew ∼N (0,Σzw). (3)

From the Bayes network depicting our problem (see Fig. 2(b)) we can easily factor
the joint probability given in Eq. (4), where p(s) and p(w) represent the prior knowl-
edge about a gas source location and wind flow condition, p(zc

k|c) = N (zc
k;ck,σzc) and

p(zw
k |w) = N (zw

k ;w,Σzw) are the gas and wind observation models, respectively, and
p(c|s,w) is the gas dispersion model which, in this work, is estimated by numerical
methods as previously mentioned.

p(s,w,c,zc
k,z

w
k ) = p(s)p(w)p(c|s,w)p(zc

k|c)p(zw
k |w). (4)

From this equation, we derive the source probability of each gas source candidate s
given the observations collected by robot at the current instant of time (p(s|zc

k,z
w
k )), as:

p(s|zc
k,z

w
k ) = ∑

w
p(s,w|zc

k,z
w
k ) =

1
p(zc

k,z
w
k )

∑
w

p(s,w,zc
k,z

w
k ), (5)

where in the first step we applied the marginal probability theorem to include the discrete
random variable representing the wind flow conditions, and then the conditional proba-
bility theorem to express it as a function of a joint probability. The term p(zc

k,z
w
k ) repre-

sents the prior knowledge about observations and can be extracted from the summation
since it does not depend on w. Applying once again the marginal probability theorem,
we include the continuous random variable c representing the gas concentration in the
joint probability as:

p(s|zc
k,z

w
k ) =

1
p(zc

k,z
w
k )

∑
w

∫
c

p(s,w,c,zc
k,z

w
k )dc, (6)

where we can now substitute Eq. (4) and extract from the integral the terms that do not
depend on c:
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p(s|zc
k,z

w
k ) =

p(s)
p(zc

k,z
w
k )

∑
w

p(w)p(zw
k |w)

∫
c

p(c|s,w)p(zc
k|c)dc. (7)

Given that the gas measurement zc
k depends only to the ck cell (i.e. the e-nose is a

point sampling device), we can factorize the above integral in N integrals corresponding
to each cell in the gas concentration map:

p(s|zc
k,z

w
k ) =

p(s)
p(zc

k,z
w
k )

∑
w

p(w)p(zw
k |w)

∫
c1

...
∫
cN

p(cn|s,w)p(zc
k|cn)dc1...dcN . (8)

Taking into consideration that the integrals for cn 6= ck simplify to 1 (i.e. integral of a
probability density function), we can express the source probability of candidate s as:

p(s|zc
k,z

w
k ) =

p(s)
p(zc

k,z
w
k )

∑
w

p(w)p(zw
k |w)

∫
ck

p(ck|s,w)p(zc
k|ck)dck. (9)

where p(ck|s,w)p(zc
k|ck) corresponds to the product of two Gaussian distributions which

outcome is also a Gaussian function given by:

N (ck; µ
c
k ,σ

c
k )N (zc

k;ck,σzc) = ηN

(
µc

k σ2
zc + ckσ c

k
2

σ c
k

2 +σ2
zc

,
σ c

k
2σ2

zc

σ c
k

2 +σ2
zc

)
, (10)

where η is the scale factor that relates it to a normal distribution and can be obtain as in
[5] as:

η =
1√

2π(σ c
k

2 +σ2
zc)

exp
(
−

(µc
k − ck)

2

2(σ c
k

2 +σ2
zc)

)
. (11)

3.2. Accounting for Multiple Observations: Bayes Filtering

To estimate a more robust posterior taking into account all the observations gathered by
the robot since the search began, we formulate the recursive version of the Bayes filter
which defines the posterior or belief at the current instant of time Belk(s) = p(s|z1:k)
as a function of the belief at the previous instant of time Belk−1(s) and the most recent
observation zk:

Belk(s) = p(s|z1:k) =
p(zk|s,z1:k−1) p(s|z1:k−1)

p(zk|z1:k−1)
=

p(zk|s) p(s|z1:k−1)

p(zk|z1:k−1)

=
p(s|zk) p(zk)p(s|z1:k−1)

p(s) p(zk|z1:k−1)
, (12)

where we assumed zk |= z1:k−1 given the gas source location s.
To get rid of the terms that do not depend on s we apply log-odds [25], obtaining an

alternative expression of the filter that simplifies the update process when we take a new
observation:
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lodk(s) = log
(

Belk(s)
Belk(¬s)

)
= log

(
p(s|zk)

p(¬s|zk)

)
+ log

(
p(¬s)
p(s)

)
+ log

(
p(s|z1:k−1)

p(¬s|z1:k−1)

)
.

(13)

Three terms compose the resulting expression: the first one makes reference to
the posterior given the current observation (calculation is detailed in Section 3.1).
The second term corresponds to the log-odds at instant of time 0 (lod0(s)). In this
work we assume that there is no a priori knowledge about the source location, that is
p(s) = 1/(range(S)). Finally, the last term refers to the log-odds at an instant of time
k−1, which allows us to obtain the recursive equation of the filter:

lodk(s) = log
(

p(s|zk)

1− p(s|zk)

)
+ lod0(s)+ lodk−1(s). (14)

Lastly, to recover the gas source probability of each candidate s at a given instant of
time k the following expression can be employed:

p(s|z1:k) = 1−
(

elodk(s)
)−1

. (15)

4. Implementation Details

This section describes a direct and intuitive implementation of the proposed probabilis-
tic framework, constituted by the phases illustrated in Fig. 3: (i) the collection of a new
observation, (ii) the estimation of the posterior source probability given the current ob-
servation, (iii) the update of the Bayes filter, and (iv) an evaluation phase to determine
whether the source has been found or not. The latter leads, if successful, to (v) the source
declaration, or else, to (vi) the navigation of the robot to a different location to gather a
new observation.

The first three phases correspond to the estimation of the source posterior proba-
bility as depicted in the previous section. In particular, the estimation process starts by
gathering a new observation at instant of time k (zk = {zc

k,z
w
k }), then, the probabilistic

weighing is performed for each of the source candidates s given this new observation
(recall Section 3.1), and finally we update our belief about the source probability by in-
tegrating all the observations gathered so far (see Section 3.2). To illustrate these phases,
we provide in Algorithm 1 the pseudo code of the estimation procedure.

OBSERVATION PROBABILISTIC
WEIGHTING

BAYESIAN
FILTER

EVALUATION

MOVE

YES

NO

SOURCE
DECLARATION

zk p(s,w|z ) k p(s,w|z  ) 1:k

Figure 3. Diagram of the phases involved in the search and localization of the gas source.
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Algorithm 1 Estimation of Gas Source Location

1: procedure GSL(Bel0(S)) . Input:Prior of source location
2: while Source not declared do
3: k++
4: zk = {zc

w,z
w
k } . Take a new observation

5: for each s do
6: p(s|zk) . Probabilistic weighting

7: Belk(s) = p(s|z1:k) = 1−
(

elodk(s)
)−1

. Bayesian Filter

8: if Belk(s)≥ pth then . Evaluation
9: ts ++

10: else
11: ts = 0
12: if ts ≥ tth then
13: Source declaration . Source Declaration
14: Robot Movement . Move robot
15: return (p(S|Z))

Once the posterior probabilities of the gas source locations have been estimated,
we evaluate if the obtained solution converges to a particular s. For this, we empirically
set a threshold over the source probability (pth) that must be exceeded over a temporal
window of length (tth) in order to declare convergence, that is, we impose the condition
p(s|z1:k) ≥ pth for a period of time tth. When this condition is fulfilled, the source
is declared at location s. It is important to notice that our approach does not require
navigating to s in order to declare the source (i.e. our probabilistic approach is not a
plume tracking algorithm), but is able to declare the source from a distance.

Finally, until there is enough information to declare the source, the robot can move
within the environment to collect observations at different locations. There are diverse
movement strategies that can be implemented according to p(s|z1:k). In this work we
implement two different solutions, a passive strategy where the robot follows a prede-
fined path (as is the case with the patrolling robot), and an active search proposing a
displacement of the robot towards the most likely source location at each instant of time:

s∗ = argmax
s

p(s|z1:k). (16)

In the future we intend to implement more elaborate search strategies (e.g. Infotaxis[26])
and to analyze their impact on search performance.

4.1. Pre-computation of Wind and Gas Concentration Maps

Our approach can be considered a model-free method since we do not assume any par-
ticular dispersion model (which would reduce its applicability as discussed in Section 3).
Instead, we rely on CFD and gas dispersion simulation tools to derive p(ck|s,w), that is,
we need to carry out the gas dispersal simulation given the wind flow condition w and the
source location s. Since simulation is, in general, a time consuming process, we propose
to pre-compute all the wind and gas concentration maps, and store them in a look-up
table.
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Figure 4. (a) 3D geometric map of the office-like environment employed in the experiments. As can be seen,
it is a challenging scenario composed of multiple rooms and containing furniture (e.g. tables and cabinets) and
physical elements (e.g. walls, doors and windows) that affect the dispersion of gases. (b-c) Illustration of the
two wind flow conditions considered where the blue arrows depict the wind’s main flow.

In this work we make use of two different tools, the SimScale platform (https:
//www.simscale.com), and the gas dispersal simulator GADEN [15].

The former is used to simulate the wind flow conditions w in the 3D environment,
giving access to sophisticated fluid dynamics simulation capabilities, and enabling the
specification of parameters like the Reynolds number of the fluid flow, the selection of
laminar or turbulent models or the numeric solver to be employed. The resulting wind
maps approximate the wind vector in each cell of the environment, taking into account
the boundary conditions, the presence of obstacles and a series of restrictions based on
fluid mechanics. Notice that simpler tools can also be employed in this step as described
in [16] at the cost of accuracy. Finally, once the set of w maps has been simulated, we
obtain the gas concentration maps c with the GADEN gas dispersion simulator2.

5. Validation Experiments

This section present a set of illustrative experiments to evaluate and validate the proposed
approach. First we present a full trace of a gas source estimation to analyze how the pos-
terior probabilities vary over time, and how the source is finally declared without needing
to physically reach it. Then, we compare the passive and active search strategies, that is,
estimation of the source location by following a fixed path and by navigating towards the
most probable source, demonstrating the suitability of our estimation algorithm to both
approaches.

All experiments are carried out in the simulated environment shown in Fig. 4(a), cor-
responding to an office-like environment with multiple rooms and the presence of furni-
ture. We consider two different wind flow conditions in the environment (see Fig. 4(b-c)),
and a total of 110 different source locations, corresponding to a grid of (1× 1)m over
such environment. A mobile robot is then commanded to inspect the environment and
locate the gas source location by estimating, on each new observation, the probability of
the considered source candidates.

2The current version of GADEN is not probabilistic, providing only a value for the gas concentration at each
cell of the specified grid map. In this work we consider a set of consecutive maps over time (assuming that a
semi-permanent state of the gas dispersion has been reached) to estimate the mean and variance concentration
of each cell.

https://www.simscale.com
https://www.simscale.com
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Figure 5. Illustration of the estimation process when locating a gas source in an indoor environment. (a) 3D
geometric map of the office-like environment depicting the path followed by the robot when actively searching
for the gas source location (blue line). (b-c) Estimated probabilities for each source candidate at different
instants of time (k). Objects in the environment are marked in black.

5.1. Experiment 1: Full Trace

The objective of this experiment is to validate and exemplify the probabilistic estimation
carried out by the proposed algorithm when locating a gas source. Fig. 5(a) depicts the
environment, the ground-truth gas source location, and the gas dispersal as a colored
point cloud, while Fig. 5(b-e) shows four different instants of time of the search process,
illustrating for each one the probabilities of all the gas source candidates considered.

The algorithm starts with an uniform prior where all the gas source candidates are
equally probable, and as the robot moves and gather new observations, this probability
converges towards the real gas source location. As can be seen, after just a few observa-
tions (k=8) the algorithm is able to discard all the source candidates in the left side of the
environment, focusing the search in a more narrowed area. Also, it is important to notice
that given the potential to estimate the source probability at far locations, the algorithm
is able to pinpoint the source location in the bottom-right room at step k=25.

5.2. Experiment 2: Passive and Active Search Strategies

In this experiment we compare two different search strategies, a passive one where the
robot is not driven by the results of the search process but it follows a predefined path
(e.g. performing another task not related with gas source localization), and an active
search strategy where the robot moves, at each instant of time, towards the most probable
location containing the gas source.

Fig. 6 shows the probability of the real gas source as estimated by our algorithm
at different instants of time, and compares how this probability varies according to the
new gathered observations. From these results we can conclude that our algorithm repre-
sents a very suitable solution for estimating the gas source location in a complex indoor
environment, even when the robot is not actively searching for the gas source.

6. Conclusions

In this work we have reviewed the problem of gas source localization with a mobile robot
endowed with the ability to measure gases. We have seen how model-based solutions
relying on the simplification of the dispersion model are not suitable for complex and
structured environments (e.g. indoor environments), and proposed a model-free proba-
bilistic approach. Specifically, we have derived the posterior probability of the gas source
location based on a single observation, and then, improved the robustness and efficiency
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Figure 6. Comparison between the passive and active search strategies when locating a gas source in an indoor
environment. The map shows the predefined robot path used in the passive search, and the source location for
four different instances (s1− s4). Each graph plots the source probability as estimated by both strategies for
two different wind conditions.

of the system by implementing a recursive Bayes filter to estimate the source posterior
probability according to all gathered observations since the search started.

We exploited this framework by implementing a search algorithm composed of six
different phases, ranging from the collection of new observations to the source decla-
ration, and validated it by presenting two experiments in an office-like simulated envi-
ronment composed of four rooms and with the presence of multiple obstacles. Results
demonstrated the suitability of the proposed method for locating gas sources in complex
indoor environments even when the estimation is carried out passively. Furthermore, we
have proved an interesting feature of our approach, its ability to declare the source loca-
tion from a distance without requiring to track the gas plume. The latter is fundamental
for indoor environments where tracking the gas plume is not always feasible due to the
obstacles.

As a natural continuation of this work, we plan on integrating further sources of
information that may contribute towards locating the gas source more efficiently, such as
vision or semantic information. Also, as discussed in this work, a study of different robot
movement strategies (e.g. moving in the direction of maximum information or in the
direction that minimizes entropy) is necessary in order to attain a functional and effective
search method.
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