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Abstract

Object recognition is a cornerstone task in autonomous and/or assistance systems like robots, autonomous vehicles, or those
assisting to visually impaired, aiming to achieve a certain level of understanding of their surroundings. Probabilistic models,
such as Conditional Random Fields (CRFs), have been successfully applied to this end given their ability to exploit contextual
and situation information, e.g. a bowl is typically found in a cabinet and not in a night-stand. In this work we propose to evolve
CREFs into Ontology-based Conditional Random Fields (obCRFs ), which define a multi-level structure where each level assigns a
category with different granularity to the same set of objects. For example, a level could assign to an object the category appliance or
furniture, while the next one could categorize it into the #v, microwave, cabinet, or table types. In this way, general categorizations
can guide the classification into more specialized ones (and vice versa), improving recognition success, and mitigating the CRFs
limitations when modeling a high number of object categories (shared, in general, by Machine Learning techniques). To set
the categories in each level we propose to mimic the hierarchical structure of ontologies, where categories are naturally codified
following a subsumption ordering. This leads us to the second advantage of obCRFs: the multi-labeling of objects provides a
richer understanding of the scene, which can be leveraged for accomplishing high-level tasks (e.g. object search or scheduling).
Our approach has been tested with scenes from two state-of-the-art datasets: Robot@ Home and Cornell-RGBD, outperforming the

results provided by standard CRFs.
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1. INTRODUCTION

For a proper operation, autonomous and/or assistance sys-
tems providing services in human environments like houses,
offices, stores, etc., need to recognize the objects in their
surroundings. Examples of these systems could be mobile
robots, autonomous vehicles, or vision-based wearables for
impaired people, to name a few. Recent general purpose
object recognition systems based on intensity (RGB) images
rely on Convolutional Neuronal Networks (CNNs) [1, 2], like
Faster R-CNN [3], SSD [4], or R-FCN [5], while Probabilis-
tic Graphical Models [6, 7], as Markov or Conditional Ran-
dom Fields [8, 9], are commonly used to process RGB-D (RGB
plus depth) or point cloud representations of the environment.
There are also works that explore the combination of both tech-
niques [2, 10, 11], like the DeepLab v2 [12] model. These ap-
proaches achieve a high recognition success in datasets with
a moderated number of objects’ categories, like the PASCAL
VOC 2012 Classification dataset [13] with 20 categories from
both indoors and outdoors (e.g. person, bird, airplane, bottle,
etc.).

Nevertheless, the recognition of objects by an autonomous
system in human-like environments has some peculiarities to
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take into account, including i) a typically large number of object
categories relevant to the system operation, or ii) the availabil-
ity of additional information like the physical system location or
the relations among perceived objects [14]. To illustrate the first
point, we can highlight the Robot@Home dataset [15], a collec-
tion of data from homes containing objects from 157 different
categories, the Cornell-RGBD repository [16], with informa-
tion from offices and homes containing 129 labelled types, or
the NYUv2 dataset [17], which spans over a variety of facilities
and includes 894 object categories, figures that are consider-
ably higher than those employed by general purpose systems
in the literature [2]. Although there are CNNs that have been
designed to work with large datasets and a high number of cat-
egories, their recognition successes notably decrease (e.g. the
CNN in [3] achieves a mean averaged precision of 21.9% with
the +80 categories of the COCO dataset [18] for a 75.9% with
PASCAL) hence affecting the proper system operation. How-
ever, these cutting-edge models are not mutually exclusive with
the ideas proposed here since, as we will discuss, they could be
incorporated into modern CNNGs.

Regarding the additional information available for recogni-
tion, like the autonomous system location in the environment
or the spatial relations among the perceived objects, it can be
of great utility for disambiguation to incorporate contextual
awareness in the recognition process: e.g.a toothbrush inside
a white cylindrical object helps to categorize it as a toothbrush
holder and not as a mug. In this way, Conditional Random
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Figure 1: Example illustrating the ideas behind an 0bCRF : a) scene capturing part of a kitchen with the observed objects labeled (xi, ..
.,y4) as objects. ¢) obCRF graph of the scene in a) with two levels, indicating on the right the object

graph built from that scene, including as many nodes (yy, . .
categories considered at each level from an ontology.
Fields (CRFs) [7], a particular type of Probabilistic Graphical
model, have stood out as a powerful tool for context-based ob-
ject recognition [19, 10, 11, 8]. CRFs codify each object cat-
egory through a number of parameters associated to the fea-
tures used to describe them (size, shape, color, etc.), as well as
to the features characterizing their spatial contextual relations
(proximity, difference in height, perpendicularity, etc.) [7]. The
higher the number of object categories, the higher the number
of needed parameters, resulting in more complex models that
require a more challenging design and training phases. Further-
more, a higher number of categories usually entails a harder
discrimination among them, i.e. objects belonging to different
types can show similar features. These factors, likewise work-
ing with general purpose Machine Learning models, directly
affect the CRFs recognition success [20, 8].

To deal with these peculiarities, in this work we propose
a new approach called Ontology-based Conditional Random
Fields (0bCRFs ), whose modeling is inspired by the subsump-
tion ordering of ontologies [21]. Ontologies are by nature hier-
archical representations of the elements of a domain, codified
by a set of concepts structured according to a subsumption or-
dering. Such ordering ranges from general to specialized con-
cepts (see Fig. 1), e.g. the concept Thing could subsume the
Object one, Object subsumes Appliance, and Appliance
subsumes the Microwave concept. Intuitively, it is easier to
categorize objects in general types sharing some properties
(e.g. structural surface, furniture, appliance, etc.) than in more
specialized ones (e.g. wall, window, door, chair, couch, etc.).
obCRFs leverage this for building a graph representation with
multiple levels, where each level assigns a category with dif-
ferent granularity to each object in the scene. For example, the
bottom level could assign the category Microwave to an object,
the next one Appliance, and so on.

One of the advantages of this model is that the categoriza-
tion into more general levels guides the recognition of special-
ized ones —and vice versa— in a principled way. This provides
a high system performance, also mitigating the decrease in the
recognition success when recognizing objects from a growing

., X4). b) Standard CRF

number of categories. To set the categories considered in each
level we employ the hierarchy of concepts defined in an ontol-
ogy. It is important to remark that, usually, general concepts
within ontologies group together specialized ones that share
some property, like their functionality, despite their physical at-
tributes. However, in the context of human-like settings like
a home or an office, general concepts referring to object cate-
gories can be defined in such a way that they also share phys-
ical properties that are useful for recognition: e.g. structural
surfaces are typically large, flat planes. Another advantage of
this approach is that the multiple categorizations of each ob-
ject provide rich information exploitable for high-level tasks,
e.g. object search [22, 23], scheduling [24, 25], etc.

To evaluate 0bCRFs we have employed the aforementioned
Robot@Home and Cornell-RGBD datasets. Robot@Home is
a challenging repository, collected by a mobile robot, which
contains data from 83 sequences of RGB-D images surveying
home environments, including objects from 157 different cate-
gories. Cornell-RGBD contains scenes from office and home
environments, reconstructed from 550 RGB-D observations,
with 2,5k objects therein belonging to 129 categories. A bat-
tery of tests has been carried out considering sets of object
types with different size and measuring the performance of stan-
dard CRFs and obCRFs, obtaining promising results. The effi-
ciency of obCRFs has been also assessed analyzing their train-
ing/inference execution times.

To summarize, our proposal consists of:

o A new CRF-based model with multiple levels that assigns
to each scene object a number of categories with different
granularity, giving consistency to them.

e A set of categories considered at each level borrowed from
an ontology (or any taxonomy) ranging from specialized to
general types.

¢ A multiple categorization for each object that can be ex-
ploited for carrying out high-level tasks.

e A detailed evaluation of the proposed method with



Draft Version. Final version published in Knowledge-Based Systems

two state-of-the-art datasets: Robot@Home and
Cornell-RGBD, reporting a high performance.

After a review of related works in Sec. 2, Sec. 3 introduces
Conditional Random Fields (CRFs) and their application to
scene object recognition. Then, Sec. 4 describes ontologies
and their subsumption ordering, while Sec. 5 formally defines
the ontology-based CRFs (obCRFs ), and gives some directions
for their jointly utilization with Convolutional Neuronal Net-
works. Finally, Sec. 6 validates our proposal resorting to the
Robot@Home and Cornell-RGBD datasets, and Sec. 7 con-
cludes the paper by discussing the work done and future steps.

2. RELATED WORK

This section puts our paper in the context of other related
works in the literature. For that, Sec. 2.1 reviews relevant
works addressing the object recognition problem, including
general purpose ones, as well as techniques based on Convolu-
tional Neuronal Networks and Probabilistic Graphical models.
Then, Sec. 2.2 shifts the review to recognition models employ-
ing multi-level Conditional Random Fields in different ways,
clearly stating how our proposal differs from them.

2.1. Object Recognition

General purpose object recognition methods have reached a
reasonable success relying on the local appearance and/or ge-
ometry of objects for their categorization. Examples of these
methods are the veteran and widely-used cascade classifier by
Viola and Jones [26], or those capturing the appearance of ob-
jects through features like Scale-Invariant Feature Transform
(SIFT) [27] or Speeded Up Robust Features (SURF) [28], and
their exploitation by means of some Machine Learning clas-
sifier like Bag-of-Words (BoWs) [29] or Support Vector Ma-
chines (SVMs) [30] based ones. A comprehensive review of
methods following this pipeline can be found in the work by
Zhang et al. [31]. Another well-known approach is such of De-
formable Part Models (DPM) [32] and its variants, which are
especially suitable for representing and detecting highly vari-
able object classes. The recent trend, promoted by the develop-
ments in high-performance GPUs and the availability of pub-
lic, large datasets (like Pascal VOC [13], COCO [18], or Im-
ageNet [33]), is towards approaches relying on Convolutional
Neuronal Networks [1], like the aforementioned Faster Region-
based Convolutional Neural Network (Faster R-CNN) [3], Sin-
gle Shot Detector (SSD) [4], and Region-based Fully Convo-
lutional Network (R-FCN) [5], or the also popular models You
Only Look Once v2 (YOLOvV2) [34] and Neural Architecture
Search Net (NASNet) [35].

Despite their virtues, these methods can provide ambiguous
results while recognizing objects which features fit well with
different categories. For example, they could experience prob-
lems while recognizing a white cylindrical object as a mug or
a toothbrush holder. Contextual information can help to disam-
biguate this: if a toothbrush is recognized inside it, the tooth-
brush holder option should be the right one [36, 37, 38, 39, 40].
This is why there is a tendency towards recognition methods

that exploit information of such nature, being the framework of
Probabilistic Graphical Models (PGMs) [7] widely used to this
end.

One of the most popular works resorting to PGMs is the one
by Anand et al. [41], where a model isomorphic to a Markov
Random Field (MRF) was used to recognize objects within of-
fice and home scenes. The same tool was employed in Xi-
aofeng et al. [42] for the recognition of objects in more gen-
eral indoor environments. More recently, Conditional Ran-
dom Fields (CRFs), the discriminative counterpart of MRFs,
are increasingly being used with this aim, as evidenced by the
works by Husain et al. [43] where contextual relations are cod-
ified and exploited in both indoor and outdoor scenes, Wolf
et al.[19], which employs parallelization techniques for the
fast segmentation and classification of 3D point clouds using
CRFs, or Xiong and Huber [44] where they classify objects
into coarse categories like clutter, wall, floor or ceiling. Ruiz-
Sarmiento et al. also employed CRFs in combination with Se-
mantic Knowledge to improve their performance in different
ways [24, 25, 45].

It is also worth mentioning the recent arrival of studies to-
wards the combination of CRFs with different types of Neu-
ronal Networks for semantic scene segmentation (assign to each
pixel in an image a category) [2, 10, 11], given the groundbreak-
ing performance of the latter. A known issue of these para-
metric approaches is the performance decrease when modeling
problems in complex domains with a high number of object
types [20, 8]. The proposed model palliates this problem with
the utilization of multi-level Conditional Random Fields mim-
icking the subsumption ordering of ontologies.

2.2. Multi-level Conditional Random Fields

The concept of multi-level or multi-layer CRF was previ-
ously used in the literature, but with a different meaning from
the one given here. For example, Kosov et al. [46] introduced
a two-layer CRF for the classification of partially occluded ob-
jects, where one level modeled the class of the occluded object
and the second one that for the occluding one. The same num-
ber of levels was used for simultaneous classification of land
cover and land use in images, given their interrelation [47]. A
two-layer CRF is also provided in the work by Sulimowicz et
al. [48] to address the semantic segmentation problem.

The term hierarchical CRF was employed in the paper by
Huang et al. [49], referring to a two-stage CRF model where
the first stage obtains initial pixel labels for a given image,
while a CRF trained with similar images refines the labeling
in a second stage. The same denomination is used in the work
by Reynolds and Murphy [50]. In that case, a segmentation
algorithm returns a set of super pixels at different scales that
form a tree-structured model, and a classifier assigns a category
to them resorting to PGM inference for giving consistency. A
similar idea was explored by Yang and Fostner [51], where each
level operates over a different clustering of an image yielded by
a multi-scale mean shift segmentation algorithm, so that the hi-
erarchy relates coarse segments with finer ones. Wu et al. [23]
explored the concept of hierarchical semantic label for the se-
mantic segmentation problem, assigning categories from a se-
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mantic hierarchy to an image with different clustering. Unlike
these approaches, in this work we adopt the term multi-level re-
ferring to a structure where each level assigns a category with a
different granularity to the same set of objects, ranging from
general to specialized ones. This approach achieves an en-
hanced performance w.r.t. standard CRFs, and produces rich
information towards scene understanding and a proper execu-
tion of high-level tasks.

3. BACKGROUND ON CONDITIONAL RANDOM
FIELDS FOR SCENE OBJECT RECOGNITION

The problem of scene object recognition is such of assign-
ing a type or label, e.g. table, chair, laptop, bottle, picture, etc.,
from a known set £ = {[;,...,[;} to a number of portions of a
scenario. Let us introduce the following definitions in order to
state the problem from a probabilistic stance:

e Letx = [x,...,x,] be the vector containing the obser-
vations of the n objects in the scene, where each one
is characterized through a vector of m features f,, =
[fxurs - - » fxu, ] (e.g. size, orientation, color, shape, etc.).

e Definey = [y, -+ ,¥,] as a vector of random variables
modeling the types of the objects in x and taking values
from the set L.

CRFs model the recognition problem through the definition
of the probability distribution P(y|x), which yields the proba-
bility of each possible assignment to the random variables in
y conditioned on the object observations in x [7]. The goal
of the recognition process is to find the assignment to y with
the highest probability. Since the full definition of P(y|x) is
unfeasible due to its high dimensionality, CRFs rely on inde-
pendence assumptions among the random variables in order
to break it down into smaller pieces. Thus, a graph structure
G = (V, ) is built, where YV is a set of nodes representing the
random variables in y, and & contains the edges linking related
variables/nodes' (see Fig. 1-a and b). This graph permits the ef-
ficient codification and exploitation of the contextual relations
among the scene objects.

In this way, the probability P(y|x) is codified in the graph G
employing the notion of factors. A factor can be interpreted as
a function defining a piece of P(y|x) over a part of the graph. In
this work, we have employed unary factors U(-), defined over
nodes, and pairwise factors 7 (:), codified over edges. Both of
them are expressed by means of log-linear models as follows:

Ui, %1, ) = Y 60 = Deorf e
leL
I(yi,yj, Xis Xj, 0) = Z Z oy = ll)é(yj = 12)011,lzfx,»x,p 2
lLielL LeL

where 6(y; = ) is the Kronecker delta function, f,, is the afore-
mentioned vector of object features, f, . , is the vector of pair-
wise features characterizing the relation between the objects

'In the case of the object recognition problem, two nodes are related if their
associated observations are close to each other in the scene.

x; and x;, and w and @ are vectors of weights learned during
the CRF training. According to the Hammersley-Clifford theo-
rem [7], the probability P(y|x) can be factorized over the graph
G by means of these factors:

1
P - _f(y,X, w, 0)
Olv,.60) = 7 e 3)
€3, %, @,0) = > Ui xi, @)+ Y 100,y %,%,0)  (4)
icV (i.))€E

where Z(-) is known as the partition function, so
2en POlx,w,0) = 1, being &(y) a possible assignment
to the variables in y, and €(-) is the so-called energy function.

As already mentioned, once the graph G for a given scene has
been built, the object recognition results are provided through
the finding of the most probable assignment y to the variables
in y, that is:

y =argmax P (y|x, w, 0) 5)
¥

To perform such inference we have applied the Loopy Be-
lief Propagation (LBP) algorithm [52], an approximate method
with a good trade-off between recognition success and compu-
tational times [8].

4. ONTOLOGIES AND THEIR STRUCTURE

An ontology O is a formal representation of the knowledge
within a domain of discourse codified through a set of predi-
cates O = {P1,...,P,} [21]. This representation usually has
the form of a hierarchy of concepts arranged according to a
subsumption ordering. For example, in the home domain, con-
cepts stating objects’ categories could be Microwave, Vase,
or Pillow. Thereby, this structure results in more general
concepts at the higher levels of the hierarchy, and in sub-
sumed, more specific ones at the lower levels. Such struc-
ture forms a taxonomy ordered by is-a predicates, like the
is-a(Microwave,Appliance) one which codifies that a mi-
crowave is an appliance. Another useful predicate is such of
instance-of, which permits us to link factual data from the
workspace (like a perceived object) with the defined concepts.
For example, if it is perceived an unknown object identified as
obj-3, the predicate instance-of (obj-3,Microwave) says
that it has been classified as a microwave. Although this pred-
icate is not necessary for the current work, it could be use-
ful for formally codifying the results of the proposed object
recognition method and their posterior exploitation in high-
level tasks [24, 22, 23].

The is-a and instance-of predicates are common to most
ontologies, but additional ones could be needed to fully de-
fine the concepts of a domain. The reader is referred to [53]
to see examples of predicates used to define the typical visual
and geometric features of objects commonly found at homes
(e.g. has-size or has-height), with the goal of carrying out
object recognition, or to [54] to identify the predicates explored
for having a mobile robot operating and interacting with people
in a mall.
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h=3

Abstract concept subsuming
all the defined concepts

General object concept subsuming
all the objects’ categories

h=2

h=1

Appliance

Common_object

Figure 2: Simplified version of the ontology used in this work, which has two levels describing objects with a different granularity.

As firstly described in [21], the formal definition of an on-
tology of a certain domain consists of two steps. On the one
hand, the domain of interest has to be analyzed to capture the
relevant concepts, predicates and relations. For this step, dif-
ferent techniques can be used like web-mining, knowledge ac-
quisition systems, or the one followed in this paper: expert
elicitation [24]. On the other hand, the resultant ontology is
coded to explicitly represent the conceptualization of the do-
main by means of a formal language. One of the most ex-
tended languages to accomplish this is the Web Ontology Lan-
guage (OWL [55]), which is resorted in this work through the
Protége tool [56]. Once defined, the ontology can be employed
for different purposes. For example, a query language like
SPARQL [57] can be used to retrieve codified knowledge, or
a logical reasoner as Pellet [58] or FaCT++ [59] to infer new
information [60] or classify instances into concepts [61].

To illustrate an already-built ontology, Fig. 2 shows a simpli-
fied version of the one used in this work, which defines a set of
concepts typically found in the home domain. The root concept
is Thing, an abstract concept that subsumes all the concepts
within the ontology. It has a child, Object?, which in its turn
subsumes the Building _structure, Furniture, Appliance
and Common_object concepts that set general objects’ types. In
turn, these concepts subsume more specific types, hence lead-
ing to a finer classification of objects. Notice that, according to
the subsumption ordering stated by the is-a predicate, a TV,
for example, is-a appliance, an appliance is-an object, and
an object is-a thing. The next section explains how this struc-
ture is exploited for the obCRF modeling.

5. ONTOLOGY-BASED CONDITIONAL RANDOM
FIELDS

An Ontology-based Conditional Random Field (0bCRF ) en-
hances standard CRFs (recall Sec. 3) with additional nodes and
relations according to a multi-level structure, where the cate-
gories considered in each level mimic the subsumption order-
ing of ontologies. To give an intuition about how this has been

2In a more complete ontology, siblings’ concepts of Object could have
been defined, for example the concept Room.

done, let’s consider the notion of height h of the ontology in
Fig. 2, so the root node has a height 4 = 3, while the leaf con-
cepts defining specialized types have 1 = 0 (see right part of
Fig. 2). Thus, the first (bottom) level in the 0bCRF structure
classifies the objects in the scene into the types defined by con-
cepts with height 0, while the second level considers those with
height 1 to classify the same objects. Notice that the number of
layers of an obCRF is not limited to 2, so more levels could be
added if needed.

5.1. Model definition

In this way, a general obCRF model is formally defined by
the following items at each level s:

e The
X = [xg1,..

same vector of  objects’  observations

., Xsn] used in standard CRFs.

o Aset Ly = {l,...,Ly} stating the objects’ types consid-
ered in such level, which corresponds to those with i = s
in the ontology (e.g. if s = 0, and according to Fig. 2, then
these types are cabinet, night-stand, tv, etc.).

e A vector of random variables y, = [y1,...,Ys] that as-
signs a value from L to the objects’ observations in x;.

Thus, in the graph representation G = (V,&) of an
obCRF with n; levels, the set of nodes is composed of the
objects’ nodes modeling the variables at each level, that is
V=V, =y,|s5€]0,...,n — 1]}, while the set of edges con-
tains both the edges between the nodes at each level, and the
edges between those at each level and the level above, i.e. & =
{(Es 1 5€]0,...,m =1} U{&E; | s€]0,...,n—2],r =5+ 1}.
As an example, Figure 1-c shows the obCRF built for the
scene in Fig. 1-a, including these nodes and edges. Notice that,
since two levels are considered in that example, each object
in such scene is now represented by two nodes, categorizing
it as belonging to two related types with different granularity
(e.g. appliance and microwave). The idea behind this is that
it is easier to classify objects into more general types sharing
some features, and that this can help when classifying them
into more specific ones. As these classifications are jointly per-
formed within the same 0obCRF, the result is a principled model
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with an increase in the performance w.r.t. traditional CRFs, also
becoming more robust against the negative effects behind the
addition of more types (see Sec. 6).

The proposed elements of G in an obCRF entail the uti-
lization of n; types of unary factors, one U,(-) per level, plus
ny + (n; — 1) pairwise factors: one 7 () per level and those
7 ;,(+) connecting nodes in consecutive levels. Therefore, the
definitions of U,(-) and Z4,(-) Vs € [0, ...,n;— 1] are analogous
to those in Eq.1 and Eq.2 respectively, while we introduce the
new 1 () factors, that is:

Ui X3t ) = D 605 = D1 f ©®)

leLy
Iss(ysia YVsjs Xsis Xsjs 0) =
D0 60w = 1000 = by 1 f ey (D

lLeLs heLy
[sr(y_vh Yrjs Xsis Xrjs 0) =
D060 = 106G = DB 1 epry B

LeLs LbeL,

In this work we have employed the same vector of features
describing the objects’ observations in the unary factors U,(-),
$O fru = Fru-Vi€[l,...,n]and r = s + 1, as well as the
same set to describe the contextual relations among nodes at the
different levels (f sy »)- Inturn, the feature used to describe the
relations between different types of nodes in 7, is a bias one,
i.e. a feature that always takes the same value, and its associated
weights in @ (learned during the obCRF tuning) are in charge
of stating the compatibility among them. These compatibilities
codify the hierarchical relations encoded in the ontology, for
example, that a microwave is an appliance and not a building
structure.

Finally, the energy function €(-) (recall Eq.4) of an obCRF
has the form (the vectors of weights w and 6 have been omitted
for clarity):

€y, x) = Z Z U(ysis xsi) +

VeV ieVy

Z Z T s (Vsis Vs js Xsis Xgj) +

E4s€E (i,))8ss

D 2 Tabuyxixy) ©)

E,€8 (i)

Like in the CRF case, we have resorted to the LBP algorithm
to perform inference over the resultant obCRF , achieving short
processing times (see Sec. 6).

5.2. Cooperation ways for obCRFs and CNNs

The ideas behind 0bCRFs could work in collaboration with,
or even be ported to, the framework that is the winning horse
in the last object recognition competitions: Convolutional Neu-
ronal Networks (CNNs) [1]. The most intuitive way to combine
them is to employ the output of CNNss, like Faster R-CNN [35],
NASNet [35], or Mask R-CNN [62], directly as unary factors in

the obCRF (recall Eq.6), that is, U(-) = [cy, .. ., cx] Where each
c; expresses the score for an object belonging to the category /;
as reported by the used CNN [63]. To mimic the obCRF struc-
ture, they must be used as many CNNs as levels in the 0bCRF
(each one trained with the object types to be considered in its
respective level), or a CNN able to provide multiple categories
to the same object (multi-labeling).

This approach could be extended by integrating the CNN
scores in the unary factors instead of replacing them, which
permits the CRF to model complementary higher-level features
not computed by CNNs while keeping its complexity low. This
promising idea was explored in [64, 65] in the context of object
recognition by a mobile robot, but using an off-the-shelf model
instead of a CNN.

Another relevant problem tightly related to object recogni-
tion is such of semantic segmentation, where the goal is to as-
sign to each pixel in an image a category from £ [2]. CNNs and
CREFs are actively collaborating for addressing this issue, as it
is shown by the two-phase methods that carry out a CRF re-
finement of the categories over the CNN results (e.g. LRR [66]
or DeepLab v2 [12]), or those that integrate the CRF inference
directly into the CNN structure (e.g. Higher Order CRF [63]
or Deep Gaussian CRF [67]). The obCRF concept could be
also ported to these networks by considering pixels with mul-
tiple categories of different granularity and using CRFs to give
consistency to them. These approaches open exciting research
lines for the future, although their evaluation is out of the scope
of this paper, which focuses on the validation of the obCRF
concept in itself.

6. EVALUATION

The performance of obCRFs has been tested within the
Robot@Home and Cornell-RGBD datasets, which are briefly
introduced in Sec. 6.1. Sec. 6.2 and Sec. 6.3 report the yielded
results in both cases and compare them with the outcome of
standard CRFs, while in Sec. 6.4 an analysis of the computa-
tional time required by these models is carried out.

6.1. Testbed

Robot@Home [15]. This dataset is a large repository of raw
and processed information from different domestic settings. It
was collected by a mobile robot endowed with a 4 RGB-D
cameras-rig and a laser scanner, and processed with the Object
Labeling Toolkit (OLT) [68]. The top row of Fig. 3 shows some
scenes from this dataset. Among all the provided data, in this
work we are interested in the RGB-D observations, so we have
employed those captured by one of the equipped cameras. The
dataset provides information from 47 rooms, containing more
than 1,900 instances of objects belonging to 157 types, from
which we have selected 36 (specialized) types with enough in-
stances for addressing the CRFs training phase with guarantees.
These types are further grouped into 5 general types, so that the
built obCRFs have two levels.

Cornell-RGBD [16]. This data repository contains three-
dimensional reconstructions from 24 office and 28 home
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Table 1: Recognition results yielded by CRF and obCRF models with different configurations within the Robot@Home dataset. The symbols in these configurations
mean: nodes for specialized types (V), edges between the previous nodes (Ey), nodes for general types (V,,), edges between nodes of the previous type (Eg,),

edges between the two types of nodes (Eyg).

Specialized types General types
Model  Configuration micro p./r. macrop. macror. micro p./r.  macrop. macror.
CRF Vi 62.63% 38.32%  35.71% - - -
Vs + Egs 71.64% 54.72%  46.77% - - -
YV, - - 72.79% 63.89%  62.09%
Vo +Ege - - 77.33% 68.01%  64.70%
obCRF  Vi+ YV, + &, 67.22% 43.23%  43.78% 78.17% 70.58%  69.30%
Vs +Egs + Vo + Egg 69.31% 42.55%  44.51% 82.61% 72.28%  73.52%
Vi+E5s+ Vg +E5+Eg,  76.99% 64.37%  53.92% 85.14% 77.93%  76.26%

scenes. The bottom row in Fig. 3 provides some examples
of these reconstructions. For consistency with the previous
dataset, we will work here with those from home environments,
which sum, in total, 129 object categories with 1,387 instances.
However, there are categories with a few (or even just one) in-
stances that must be discarded. Indeed, in the work present-
ing Cornell-RGBD, where the authors proposed a MRF-based
recognition model, this number was reduced to 17 types. Here
we will expand them up to 21 specialized types and 5 general
ones. In fact, as in the case of Robot@Home, this is the max-
imum number of specialized categories with enough instances
in the dataset for a reliable tuning of the models.

Metrics and Software. To provide the recognition results, a
leave-one-out cross-validation process has been followed. For
example, in the case of the Robot@Home dataset, the data from
one room were used for testing, while those from the remain-
ing 46 fed the training process. This procedure was repeated
47 times by changing the room used for testing, and the ob-
tained results from each one were averaged. These results are
expressed by means of the micro/macro precision/recall met-
rics [25].

The CRFs and 0bCRFs in this work were trained and tested
using the open-source Undirected Probabilistic Graphical Mod-
els in C++ library (UPGMpp) [69].

6.2. Results with Robot@Home

The obtained results for the considered CRF and obCRF
models with Robot@Home are shown in Tab. 1. Regarding the
CRFs, the first configuration in such table (first row) reports the
performance achieved by a graph only with nodes, that is, with-
out exploiting contextual relations, with a success (micro p./r.)
of ~ 62.5%. The inclusion of contextual information (second
row) considerably increases that figure by a ~ 9%, revealing
the benefits of its exploitation. Similarly, the third configura-
tion is a CRF that employs only nodes and classifies objects into
general types. This model achieved a success of ~ 72.5%, ten
percentage points higher than working with specialized types,
while the fourth row shows, again, the effect of including con-
text. Concerning the macro p./r. metrics, the addition of context
also increases them, although to different extents.

In turn, the configuration number five (fifth row) is the first
one employing obCRFs, and reports the results yielded by a
model considering nodes of both types and edges only among
nodes of different types. The reached success is of ~ 67% for
specialized types, substantially higher than using only that type
of nodes, and of ~ 78% for general types. The sixth row shows
the numbers reached including more contextual relations and,
finally, the last configuration incorporates all the relations pro-
posed in this work. The results yielded, in this case, achieved

Figure 3: Example scenes from the two considered datasets: Robot@Home (top row) and Cornell-RGBD (bottom row). The last image in the first row shows an
excerpt of a scene labeled with ground truth categories.
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a ~ T7% of success with specialized types and a ~ 85% with
general ones. Regarding micro p./r., this supposes more than
a ~ 5.5% increase when recognizing specialized types w.r.t.
the CRF configuration that exploits contextual relations, an in-
crease of ~ 9.5% considering macro precision, and of ~ 7% for
macro recall.

Despite the outstanding results obtained, they are a snapshot
of the performance achieved for a certain number of categories.
We have conducted an additional experiment in order to assess
the effect of the number of object types in the CRFs perfor-
mance. Its outcome is depicted in Fig. 4, reporting a clear de-
crease in the CRFs performance with the addition of objects’
types, measured with two metrics: their micro p./r., and their
F-measure (i.e. the harmonic mean of macro precision and re-
call [25]):

macro p. macror.

F — measure = 2 (10)

macro p. + macro r.

From that figure, we can conclude that the achievement of
the obCRF measured with the micro p./r. metric for 36 types
(~ 77%) is the same as using CRFs that recognize only ~ 21
specialized types, while the F-measure metric reveals similar
performance (~ 58.68%) between our approach for 36 types
and CRFs with only ~ 16 types, clearly supporting our pro-
posal.

6.3. Results with Cornell-RGBD

To further support the claimed high performance of 0bCRFs,
and to avoid jumping to conclusions based on the tests on a par-
ticular dataset, we have also evaluated our proposal with the
Cornell-RGBD repository. The obtained results are reported in
Tab. 2, being similar to the ones yielded with Robot@Home.
The first four rows show the outcome of standard CRFs: the
first one for graphs only containing nodes modeling specialized
object types, achieving a success (micro p./r.) of ~ 55.6%, the
second row includes contextual relations and increases that fig-
ure by ~ 10%, while the third and fourth rows report a success
percentage of ~ 63% categorizing objects into general types
and ~ 68.5% also considering context, respectively.

90 T T
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Figure 4: Evolution of the performance achieved by CRFs considering a differ-
ent number of specialized object types.

The performance yielded by obCRFs is reported in the next
three rows. The configuration in the fifth row employs nodes of
both, specialized and general categories, and edges only among
nodes of different types. It achieves a success percentage of ~
60% for specialized objects and ~ 69% for general ones, again
proving the mutual influence of their categorization. The next
row adds the contextual relations between specialized nodes to
the model, further increasing the success. Finally, the last row
integrates all the possible contextual relations, reaching the best
performance: a success percentage of ~ 70% and ~ 76.5% for
specialized and general types, respectively.

These figures provide an increment of ~ 4% in the micro p./r.
metric classifying specialized types, and of ~ 8% with general
ones. Regarding the reported macro precision and recall, while
categorizing specialized types, obCRFs achieve an increase of
~ 8% and ~ 7.5% respectively w.r.t. standard CRFs , and of
~ 6.5% and ~ 8% dealing with general ones. As a closing re-
mark, these figures are considerably higher than those reported
by CRFs using the initial set of 17 objects (see [8] for further
information).

6.4. Analysis of computational time

This section measures the effect that the inclusion of addi-
tional nodes and edges by 0bCRFs has on the training/LBP
inference efficiency. Unless otherwise indicated, the provided
measurements represent the average execution time from cross-
validation. On the one hand, working with Robot@Home,
the training process of the obCRF in the last configuration
(which has to be carried out only once in the model design
phase [8]) took 12 minutes, while the inference process took
4ms. with a maximum execution time of 49ms. The standard
CRF employed 3ms for inference, with a maximum of 17ms.
On the other hand, the same obCRF configuration considering
Cornell-RGBD needed ~ 3 minutes to complete the training,
while the inference processes took 4ms. with a maximum time
of 20ms. In this case, the standard CRF spent 2ms. on aver-
age for performing inference, with a maximum execution time
of 7ms. These numbers reveal that obCRFs also keep low in-
ference times. The experiments were run on a computer with
an Intel Core 17-3820 at 3.60GHz. microprocessor and a RAM
memory of 4x4GB. DDR3 at 1,600MHz. As introduced in the
following discussion, further efficiency gains could be achieved
by considering nodes only in certain obCRF levels, depending
on the goal of the application at hand.

7. CONCLUSIONS

In this work, we have proposed the utilization of Ontology-
based Conditional Random Fields (0bCRF) for the recogni-
tion of objects by autonomous and/or assistance systems, like
robots, autonomous vehicles, wearables for impaired people,
etc. For that, we have described how CRFs are applied to the
object recognition problem, as well as how ontologies structure
the information of a domain of discourse, which are the build-
ing blocks of the proposed model. 0bCRFs mimic the sub-
sumption ordering of ontologies, borrowing the idea of making
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Table 2: Recognition results yielded by CRF and obCRF models with different configurations within the Cornell-RGBD dataset. See Tab. 1 for a description of the

symbols in the Configuration column.

Specialized types General types
Model  Configuration micro p./r.  macrop. macror. micro p./r.  macrop. macror.
CRF Vi 55.64% 31.85%  30.64% - - -
Vs + Ess 65.97% 42.42%  39.07% - - -
YV, - - 62.93% 53.58%  53.57%
Vo + Egq - - 68.58% 62.99%  59.32%
obCRF  V,+V, + &, 60.31% 41.78%  39.10% 69.10% 62.47%  60.41%
Vs + Egs + Vg + Eg 68.83% 48.96%  45.79% 75.90% 68.03%  65.06%
Vi+E+ Voo +E5+Eg,  69.91% 50.45%  46.52% 76.75% 69.47%  67.19%

use of hierarchical structures were general concepts are defined
over more specialized ones. This permits the recognition model
to include nodes in the CRF graph representing coarse types of
objects sharing some attributes (e.g. furniture, building struc-
ture, appliance, etc.), which are easier to recognize, and employ
this subsumption relation to assist their joint classification into
more specialized types (e.g. cabinet, closet, floor, wall, oven,
etc.). By doing so, the performance of standard CRFs is im-
proved, and the information provided (multiple categorizations
with different granularity for each scene object) is richer and
exploitable for the execution of high-level tasks.

The suitability of the proposal has been assessed in different
ways. First, the recognition success of obCRFs have been com-
pared with those yielded by standard CRFs with two datasets:
Robot@Home and Cornell-RGBD, achieving the highest per-
formance when classifying objects into specialized (~ 71.5%
vs. ~ 77% and ~ 66% vs. ~ 70%, respectively) and more gen-
eral types (~ 73.3% vs. ~ 85.1% and ~ 69% vs. ~ 77%). Then,
we have analyzed the performance of CRFs working with a dif-
ferent number of categories and found that (dealing with the
Robot@Home dataset) obCRFs achieved the same results con-
sidering 36 specialized types than CRFs with only 16. Finally,
the computational time required by 0bCRFs has been studied,
concluding that the addition of additional edges and nodes does
not compromise the efficiency of the LBP method to perform
inference, keeping short execution times (4ms. on average for
both datasets).

In the future, we plan to exploit 0bCRFs for the efficient
execution of high-level robotic tasks, like the search of an ob-
ject of a certain type by the robot. In this scenario, obCRFs
could first perform inference in a top level with general types,
and then consider, in a bottom level with specialized ones, the
nodes that have a high probability of belonging to the searched
type, leading to an efficient and robust operation. Another op-
tion is, in scenarios where the searched object is not found, to
replace it with other detected object with similar functionality:
e.g. replace a mug by a glass (information that can be naturally
codified into the ontology). The utilization of obCRFs opens
interesting possibilities for addressing these issues in a novel
and promising way. Additionally, we also consider the utiliza-
tion of a CNN as a baseline detector and the refinement of its

results by an obCRF, also giving spatial and temporal consis-
tency to them.
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