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ABSTRACT
In this paper we propose a solution to endow a mobile robot with
the ability to approach humans in a safe and socially acceptable way.
Our proposal focuses on real world indoor environments where the
usual presence of multiple humans and obstacles notably rise the
complexity of the approach action. We first deal with the problem of
accurately estimating the 3D poses of all humans in the work space
(positions and orientations), to then focus on the estimation of
the most appropriate navigation goal from which the robot should
start the interaction with the user. For the latter, we define a cost
function that, accounting for multiple proxemic parameters and
complying with the restrictions inherent of a robot navigating in
a human environment, enables ascertaining an optimal solution.
Different experiments are presented to demonstrate the feasibility
of our proposal to work under real world conditions.
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1 INTRODUCTION
Human-Robot Interaction (HRI) is a multidisciplinary field which
has been developed during years, achieving excellent results in
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many domains [5]. Recent growth in personal robots and their co-
habitation with humans encourage researchers to focus on new ap-
plications like assisting in the location of lost or odorous objects [17,
18, 22], or the integration of social behaviours into them [3]. Char-
acteristic human skills like understanding daily or spontaneous
conversations, or being able to interpret facial expressions of emo-
tion (nonverbal communication) are key tasks for robots in order
to achieve a friendly and "social" behaviour while interacting with
people. Several projects have implemented successfully some of
these aspects, for instance, initiating a conversation with a person,
understanding human gestures or following people [4, 25].

The physical presence of a service robot among humans, jointly
with the necessity of establishing communication with them leads
to tackle the problem of how robots may approach humans as
other people would do. This problem involves two major tasks:
(i) the detection and pose estimation of the humans present in
the environment, and (ii) the planning of the navigation path to
approach the target user in a socially acceptable way, both for the
target user as well as for the rest of humans that may be present in
the scene.

The first of these tasks, human identification, is a fundamen-
tal step in order to approach a person successfully. Human body
complexity and diversity of motions provoke that both detection
and pose estimation become difficult tasks to solve, specially un-
der the challenging conditions a social mobile robot must operate:
limited on-board resources, real-time constraints and real-world
environments. In this context, we find works that have addressed
this problem from different perspectives and considering a wide
variety of sensors. Multiple works have addressed human detec-
tion employing only RGB images (see [24] for a review), obtaining
excellent results with the introduction of deep neural networks.
To list a few, works like [19] propose efficient solutions able to
overtake the complexity associated with human movements and
partial occlusions in the scene. Exploiting the depth information
provided by modern RGB-D cameras, recent works started to com-
bine colour images with depth data to increase the accuracy of the
human detection [21].

Nevertheless, the aforementioned works do not compute the
actual human pose in the 3D space (something mandatory to our
problem), but focus on detecting people in the image frame. Infer-
ring the 3D human pose is not a straightforward problem given that
the complexity of the human body generates a high-dimensional
probabilistic tracking problem, computationally expensive to solve.
Notwithstanding, tentative solutions have been proposed based
on monocular images, multi-camera setups to infer depth data, or
3D range sensors [1, 23]. The main limitation when bringing these
solutions to a service mobile robot is the limited number of sensors
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Figure 1: Flow diagram of the human detection process. For
every captured image a real-time multi-person system de-
tects, locates and processes all humans in the image frame.
Then, exploiting depth information, the 3D poses of the
users are estimated.

and computational resources on-board, as well as the real-time con-
straint to be socially acceptable. In this work we propose a minimal
solution that only requires a RGB-D camera, implementing a detec-
tion model based on neural networks to identify humans in the RGB
image, and estimating their 3D poses (position and orientation) by
exploiting the depth data.

Once the humans in the environment have been detected and
their poses have been estimated, we need to face the problem of
social navigation and user approach. Due to the different types of
human-related interactions and their social background, this task
is far from trivial. Particularly, the study of human use of space
and its effect on behaviour, communication, and social interaction
-known as proxemic [6]- provides several "rules" to model this social
behaviour, e.g. how far apart individuals engaged in conversation
stand depending on the degree of intimacy between them, or what
is the minimum distance to a person that must be respected when
passing close to him/her without intention to establish a conversa-
tion. Study and application of proxemic distances during human-
robot interaction has been studied previously, e.g. [15], proposing
algorithms that, for instance, allow robots to move around people
in a "natural" and safe way, to deliver objects to the users from an
appropriate distance or to approach people in order to initiate a
conversation without intimidating them [3, 11]. Yet, most of these
works focus on simplified scenarios where either the detection
of the user is simulated or given by an external detection system
(i.e. a distributed sensor network), or they consider working envi-
ronments with wide open areas where the robot is free to move
complying with the proxemic restrictions (e.g. a mall).

In this paper we seek to provide a mobile service robot with the
ability to approach a human in a safe and socially acceptable way.
This involves estimating the pose (position and orientation) of the
different humans in the environment and the planning of a safe,
optimum and socially acceptable path toward the target user in
order to start the HRI. Our goal is to achieve this behaviour relying
only on a 2D laser rangefinder (just for navigation purposes [8])
and a 3D RGB-D camera, both mounted on the service robot. Fur-
thermore, we are interested in practical situations where the robot
has to work under the challenging conditions of real-word environ-
ments, e.g.with the presence of obstacles as tables, desks, chairs,
etc, the presence of other humans, or the inherent complexity of
multi-room scenarios.

2 HUMAN POSE ESTIMATION
A fundamental skill to endow a service robot with the ability to
interact with humans is that of user detection and robust pose
estimation. The objective is not only to estimate the pose of the

Human #1

Human #2
Certainty: 0.783

Certainty: 0.835

Figure 2: Image captured by the robot and illustration of
the detected body joints and links, as well as the overall cer-
tainty score for each detected human.

target user (the onewe are interested in starting an interactionwith),
but the pose of all humans in the scenario that may influence the
navigation path. In this work we propose a human pose estimation
algorithm that, relying only on the rich information provided by a
RGB-D camera, estimates the poses of all humans in the scene by
considering two consecutive stages (see Figure 1).

2.1 Image-based Human Identification
Human 2D pose estimation is an extensively studied problem. Dif-
ferent and varied approaches have been proposed to estimate the lo-
cation and orientation withing the image frame of multiple users [1].
Exceptionally relevant are the recent techniques that address this
identification task by deploying sophisticated and efficient convo-
lutional neuronal networks (CNN) [2, 26]. CNN are able to identify
multiple users on a single colour image in a real time basis even un-
der real world conditions (i.e. considering cluttered environments
and the presence of multiple textures in the background).

In this work we employ OpenPose [2], an efficient method for
multi-person 2D pose estimation. Concretely, we work with the
version trained with the COCO data set [12] and depth-wise con-
volution1. OpenPose efficiently infers the human poses in the input
image, returning a set of keypoints or "body parts" (composing a
"skeleton"), along with an individual score for each keypoint de-
tected. With the only purpose of improving the performance of
this phase we migrate the model, originally implemented in the
Caffe deep learning framework [9], to TensorFlow2, an open source
software library for high performance numerical computation.

Then, to strengthen the identification and remove false positives,
we post-process the output -skeletons- by estimating an overall
certainty value Γ ∈ [0, 1] for each detected human in the image.
Figure 2 shows an example of this process by superimposing to the
original RGB image the human "skeleton" provided by OpenPose
together with the computed certainty value. The latter is computed
by averaging the different individual scores for each body part. This
parameter allows purging poor identifications by setting a mini-
mum threshold (currently a parameter set empirically to Γ = 0.5). Γ
is of special interest for the case of mobile robots where this human

1https://github.com/ildoonet/tf-pose-estimation
2https://www.tensorflow.org
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Figure 3: Illustration of false-positive human detection
when relying only on RGB data. In both scenes a human is
detected and its body parts are estimated: (left) Image of a
real human standing in front of the robot, (right) Image cap-
tured by the robot of a human picture on a TV. Our depth-
based filter efficiently removes these false-positives.

detection process needs to be executed with the limited resources
on-board. Γ helps to select the N best detected candidates in the
image, notably reducing the computational cost of the subsequent
processing stages (see Section 2.2).

2.2 3D Pose Estimation
To compute the 3D poses of the humans referring to the world
reference frame we fuse the skeletons detected in the colour image
with the depth information from the RGB-D camera (in the form of
a dense point cloud of the scene). The objective is to estimate the
location and orientation of the different humans -constituted by a
set of 3D points (X ,Y ,Z ) known as 3D body parts-. The following
sections describe in detail the depth computation and the orienta-
tion estimation, as well as additional filtering processes to avoid
false positives not detected in the previous stages.

2.2.1 Position Estimation. To estimate the entire 3D human
body position we compute the different 3D body parts which com-
posed it. We map the pixels of the colour image with the indices
of the dense point cloud (registration), directly enabling the com-
putation of the 3D body parts from the previously computed 2D
ones. Furthermore, the 3D centre of the human body is computed
by averaging the detected body parts, and the variance among
the corresponding depth values is calculated. The latter is used
to discriminate if the detected human is indeed a real human or,
on the contrary, it’s a human photography, a picture, a painting,
or an image on the TV, among other likely scenarios to be faced
by a service robot [20]. It must be noticed that image-based so-
lutions (Section 2.1) incorrectly identifies those cases as humans
as exemplified in Figure 3. This discrimination (filtering stage) is
easily achieved by forcing a minimum value on the depth-variance
associated to each candidate human.

2.2.2 Orientation Estimation. The last stage for obtaining the
3D pose of the humans in the scene is the estimation of their orien-
tations. This is a crucial step for conveniently enabling a robot to
approach a user. Only a correct estimation of the user’s orientation
allows the robot to approach the human in a social acceptable way,

and furthermore, to look towards him/her prior starting the interac-
tion. Different approaches have been proposed to estimate the user
orientation e.g. focusing on the detection of the users’ shoulders [1].
Yet, either the high computational requirements of some solutions
or the unreliability of the others due to the common occlusions
of body parts in the image, lead to most of these solutions not be
feasible in practical applications.

In this workwe opt for simplifying this estimation by considering
only four possible human orientations: looking right, looking toward
the robot, looking left and looking backward, referring always to the
robot reference system. To do so, we employ the representative
features of the human head, namely, eyes and ears. In particular,
we work with 4 body parts from the set of keypoints which are
returned by the human detector. Human orientation is inferred
attending to the presence or not of these body-parts in the image,
e.g. if just the left ear is detected, we can assume that the right one
is hidden -usually behind the head- implying the human is heading
left. Importantly, if none of the 4 key features appear within the
image, but a human has been detected (getting through the different
filters previously described), we conclude that this particular human
is heading backward to the robot.

3 PATH PLANNING
The second task to be executed when approaching a user (once the
3D poses of all humans in the environment have been estimated), is
to generate an optimum, socially acceptable and safe path toward
the target human. In this work we assume that the robot is able
to identify the target human from all other possible people in the
work space, focusing on the definition of the proxemic areas and
the estimation of the navigation goal to approach it.

According to Hall [6], during a normal conversation, humans
maintain a distance between 46 cm to 120 cm (aka "personal and
social spaces") which depends on social factors such as gender, cul-
ture, or degree of friendship among other factors. Closer distances
are considered "intimate space" to be always avoided, while farther
ones fall in the so called "public space" where we can assume the
user perceives no intention to start an interaction. Exploiting this
valuable information we tune the parameters of the multi-layered
costmaps approach [13] to define a proxemic area (cost function
used for navigation) for each detected human as a 2D symmetric
Gaussian function centred around the user location. This Gaussian
spreads up to a maximum distance of 120cm, entailing that a robot
will try to avoid invading the proxemic areas (aka personal and
social spaces) of all users in the environment except for the one
it wants to interact with. One of the advantages of employing the
layered costmaps approach is that semantically-separated layers are
combined into a master layer to be used in the robot path plan-
ning phase. Each particular layer tracks one type of obstacle or
constraint. In this work, we stack four different layers accounting
for the floor-plan of the environment, the obstacles detected by the
robot’s on-board sensors, their inflations and the above described
proxemic layer.

Last, but not least, we need to determine the navigation goal
for the robot to fulfil the approach. This navigation goal must fall
within the proxemic distances associated to human interaction, that
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Figure 4: (left) Implementation of the human proxemic ar-
eas as a 2D Gaussian function centred at the user location.
(right) Top view of the human proxemic area and detail of
the regions defined when calculating the most convenient
navigation goal to approach that user (light and dark green).

is, between 46 to 120 cm from the target user. Furthermore, to es-
tablish a comfortable interaction, it is desirable that this navigation
goal falls within the field of view (FOV) of the target human [16],
avoiding shocks or turns that may negatively influence the poste-
rior interaction. Taking this into account, the restrictions that apply
(from a proxemic point of view) when determining the navigation
goal are depicted in Figure 4, considering a human FOV of approxi-
mately 120° [10]. It must be stressed that, in real environments, it
might be the case where no valid goal can be set within the FOV of
the target user, in such cases we restrict even more the admissible
area by rising the minimum distance to the user from 46 to 70 cm.

To get the optimal navigation goal pд = (xд ,yд ,θд) with respect
the target human pose pt = (xt ,yt ,θt ), we define the cost function
Ψ ∈ R accounting for four different variables:

• d(pд ,pt ) ∈ R, the Euclidean distance from the target hu-
man pose pt to the goal robot position pд , favouring those
navigation goals that get closer to the user.

• α(pд ,pt ) ∈ R, the angle between the robot final pose heading
θд and the human heading θt , promoting those goals that
fall in front of the user.

• c(p0,pд) ∈ R, the overall travelled distance by the robot to
reach the goal pose pд from its initial pose p0 = (x0,y0,θ0),
preferring short distances in order to lessen the navigation
time.

• Φ(pд ,pt ) ∈ {0, 1}, a boolean stating if pд falls withing the
FOV of the target human, penalising those poses which do
not fulfil this condition.

Likewise, we define four free parameters (wd ,wα ,wpath ,wf ov ) ∈

R to weight the aforementioned variables, and which allow us to
determine the value of Ψ for a candidate goal pose pд as follows:

Ψ = wdd(pд ,pt ) +wαα(pд ,pt ) +wpathc(p0,pд) +wf ovΦ(pд ,pt )

According to the specific values of (wd ,wα ,wpath ,wf ov ) (see
Section 4 for a detailed description of the influence of each parame-
ter on the estimation of the navigation goal), we search for the pose
pi = (xi ,yi ,θi ) that minimises Ψ. It is important to notice that in
this optimisation problem we take into account the following con-
straints: (i) the goal must be free of obstacles, (ii) it must be reachable
by the robot, that is, a valid navigation path must exists from the
current robot pose to the target goal, (iii) the goal must fall within
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Figure 5: Average errors in the user’s pose estimation (aver-
aging more than 200 repetitions) for different relative poses
between the robot (situated at (0,0)) and the human.

the user’s personal or social spaces (d(pд ,pt ) ∈ [46, 120](cm)) and
(iv), when feasible, it is preferable to approach the user within its
FOV.

4 EXPERIMENTS AND RESULTS
In this section we present three experiments designed to validate
the proposed approach. The first one is designed to measure the
error in the user’s pose estimation, both position and orientation,
while the second experiment seeks to assess the behaviour of the
system under challenging conditions (e.g.when the target user is
sitting behind a table or heading towards a wall) and to analyse
in detail the influence of the model parameters when calculating
the most convenient navigation goal to approach an user. Finally,
the last experiment, aimed to demonstrate the system feasibility
to work in real world scenarios, is carried out in an office-like
environment with a Giraff mobile robot [14].

4.1 Pose Error Estimation
The errors associated to the user’s detected pose can be separated
into position and orientation (see Section 2.2). The former accounts
for the post-processing of the depth data while the latter is related
to the accuracy in the human body detection in the RGB image.
Figure 5 shows average values of both errors for different relative
poses between the user and the robot. Moreover, two light condi-
tions have been tested to measure the influence of this important
parameter. As can be seen, position errors increase with distance
and are relatively affected by light conditions, showing more er-
ror when working under highly illuminated environments. This is
related to the infrared pattern projected by RGB-D cameras when
estimating depth, which is affected by distance and natural light.

Estimation of the user’s orientation is performed only with RGB
data and its based on the detected human body-parts. Close dis-
tances lead to less body parts being detected (as the user doesn’t fit
in the camera FOV), while too far distances reduce the human size in
the image frame, degrading the orientation estimation. Finally, and
in contrast to position estimation, natural light does not interfere
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Figure 6: Navigation paths computed in four different scenes with multiple humans present and distinct initial poses of the
robot. The robot navigation goal varies withing the same scene depending on the parameters configuration
in the orientation process but improves the image quality, yielding
slightly better results. Yet, orientation errors are considerably high,
suggesting that more elaborated methods must be considered, for
example by also accounting for depth data.

4.2 Validation Experiment
In this experiment we test our approach in a multi-room environ-
ment endowed with the usual office furniture (e.g. tables, chairs,
bookshelves, etc) and the presence of multiple humans. The ob-
jective is to analyse how the different parameters of the proposed
cost function Ψ influence the selection of the navigation goal when
approaching the user. Therefore, in this experiment we simulate the
user detection, manually setting the user location and orientation
in order to evaluate only the path planning component. Concretely,
we evaluate three different parameter configurations: (A) empha-
sising the importance to get close to the user, that is, rising the
distance weight parameterwd , (B) minimising the angle constraint
to promote goals that fall in front of the user (increasing the value
ofwα ), and (C) favouring short navigation paths by enhancing the
wpath factor. In all cases, we consider a constant value for the cost
associated to the user’s FOV,wf ov = 0.4.

Furthermore, we test the behaviour of the system under four
challenging conditions:

(1) Scene 1: The target user is sitting behind a rectangular table.
(2) Scene 2: The target user is sitting behind a L-shape table,

being more restrictive the available navigation goals.
(3) Scene 3: The target user is facing a wall (e.g. the common

case where a person is sitting in front of a table which is
besides a wall that delimits the room).

(4) Scene 4: The target user is in a free-space room but two
other people maintaining a conversation are also present in

it. In this case, we consider two different initial poses of the
robot to illustrate the robustness of the proposed solution.

Figure 6 depicts the approaching-path followed by the robot
attending to the different scenes and parameter configurations.
For each case, we indicate the initial robot pose, the location and
orientation of the users simulated in the environment (with their
corresponding proxemic areas), the navigation goal selected after
evaluating the cost function Ψ and the path planned by the robot to
reach it. As can be noticed, different parameter configurations lead
to completely different goal poses, particularly on those scenes with
presence of obstacles inside the proxemic area of the user. These
results illustrate the importance of properly setting the weight
parameters according to the user’s social background and, although
less important, according to the environment configuration. For
example, configuration (A) favours goal poses which are closer to
the user even if other possibilities would have allowed the robot to
start the interaction from inside the user’s FOV (e.g. scenes 1-A and
4-A). On the other hand, putting too much emphasis on those poses
in front of the user, as in configuration (B), may lead to erroneous
approaches like the one shown in scene 3-B where the robot set the
navigation goal in a different room. The latter can be easily amended
by rising the weight associated to the navigation distance wpath
(see scene 3-C for example). Finally, it must be noticed the capacity
of the proposed system to deal with the presence of multiple people
in the work space, complyingwith the proxemic areas of all detected
humans when navigating toward the target user.

4.3 Real Experiment
Finally, to evaluate the complete system (from user detection to
path planning toward the selected navigation goal) and to test
the performance under real world conditions, we carry out a real
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experiment. In this case we use a Giraff mobile robot [14], equipped
with an Orbbec Astra RGB-D camera for people pose estimation,
and a 2DHokuyo URG laser rangefinder for navigation purposes [7].
Additionally, a Nvidia Jetson-TX2 board has been mounted on the
Giraff robot to achieve real-time computation.

The experiment flow is as follows: (i) The robot is initially com-
manded to navigate to a random position within the work space,
(ii) then it starts turning on itself in order to ascertain the presence
of humans around it (stopping as soon as a positive detection is
obtained). (iii) Then it evaluates the cost function to determine the
most appropriate navigation goal, and (iv) executes it. Results of
this experiment can be seen in a compilation video hosted in:

http://mapir.uma.es/work/appro_user.

This video shows multiple scenes where the robot approaches users
in diverse circumstances, that is, varying the initial pose of the
robot as well a the number of humans and obstacles present. We
demonstrate that our approach is able to adapt to these challenging
situations and successfully complete the approaching action.

5 CONCLUSIONS AND FUTUREWORK
In this work we have revised the problem of social navigation by
a mobile robot and focus on the critical task of approaching the
user safely and in a socially acceptable way in order to start an
interaction. Specifically, our proposal have been designed for real
world environments where the presence of obstacles (both static
and dynamic) have an important impact in the final navigation
path.

We have analysed the two main tasks involved in the social
approach process, namely, user pose estimation and assessment
of the most convenient navigation goal. For the former we have
employed a solution based on convolutional neuronal networks
and improve it by fusing depth information to both, filter-out false
positive identifications and to properly estimate the user 3D pose
(position and orientation). Then, we have proposed a cost function
that, attending to a set of parameters related to the user proxemic
areas, allows the declaration of the optimal navigation goal to
approach a target user.

The system has been experimentally evaluated, making strong
emphasis on the influence of themodel parameters when estimating
the navigation goal, as well as to assess the performance when
dealing with complex situations as users sitting behind tables or
surrounded by other humans. Furthermore, a compilation video is
provided with several scenes where a real mobile robot approaches
a human in an office-like environment with the usual furniture and
multi-room configuration of these environments.

As future work we envisage two different lines of action. On
the one hand, to improve the human detection accuracy (and 3D
pose estimation) by introducing a motion model of the people in-
volved which may allow us to track them and to infer next moves.
On the other hand, related to the navigation goal to approach the
user, to analyse how the four free parameters of our optimisation
algorithm vary according to social features such as culture, tradi-
tions or human gender among others. In this sense, an extensive
experiment needs to be carried out in order to allow the robot learn
the preferences of different users.
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