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Abstract

This work addresses 2D gas and wind distribution mapping with a mobile robot for real-time applications. Our pro-
posal seeks to estimate how gases released in the environment are distributed from a set of sparse and uncertain gas-
concentration and wind-flow measurements; such that by exploiting the high correlation between these two magnitudes
we may extrapolate their value for unexplored areas. Furthermore, because the air currents are completely conditioned
by the environment, we assume a priori knowledge of static elements such as walls and obstacles when estimating both
distribution maps. In particular, this joint estimation problem is modeled as a multivariate Gaussian Markov random
field (GMRF), combining gas and wind observations under a common maximum a posteriori estimation problem. It
considers two lattices of cells (a scalar gas-concentration field and a wind vector field) which are correlated following
the physical laws of gas dispersal and fluid dynamics. Finally, we report various experiments in which our proposal
is compared to other stochastic gas and gas-wind modeling methods under simulation, to evaluate their performance
against a computer fluid-dynamics generated ground-truth, as well as under real and uncontrolled conditions.

Keywords: Gas distribution mapping, Wind flow modeling, Fluid mechanics, Machine olfaction, Gaussian Markov
random field, Mobile robotics

1. Introduction

Gas distribution modeling (GDM) is the process by
which the shape of a gas distribution in a given environ-
ment is estimated from a set of sparse measurements [1].
These are usually composed of gas observations (e.g. gath-
ered by e-noses [2, 3]) and, in some cases, may also include
wind data from an anemometer [4]. So far, multiple GDM
approaches have been proposed for sensor networks [5, 6],
mobile robots [7, 8] or even swarm of robots [9, 10], in-
tended to accelerate the sampling process and in turn pro-
vide an accurate estimation of the gas distribution in the
shortest possible time.

Being able to provide a fast estimate is paramount for
applications where decision making is heavily reliant on in-
formation about the gas distribution. For example, when
dealing with toxic substances in human environments, such
as smoke during indoor fire-fighting, or accidental gas-
leaks in industrial facilities. Yet, the main constraint of
GDM in this regard is the need for multiple measurements
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that are conveniently distributed along the work area, in
order to accurately predict the gas distribution. This re-
quirement notably hinders the applicability of GDM for
use-cases that are under time constrains or where not all
areas are accessible.

In this work, we propose a novel approach that seeks to
reduce the time and effort needed to provide an accurate
estimation of the gas distribution by exploiting the corre-
lation between gas dispersion and wind flow. To do so, we
propose to model the gas concentration and wind flow in
a joint distribution. Thus, we won’t limit our approach
to exploit wind measurements locally (as in previous ap-
proaches [11]), but present a method that estimates the
wind currents in the whole work environment as a means
of providing reasonable assumptions about the gas con-
centration at unexplored locations. This brings two impor-
tant advantages: on the one hand, it boosts the estimation
of the GDM itself, reducing the number of measurements
when compared to previous methods, and on the other
hand, it provides additional data for the posterior deci-
sion making process, as a wind map of the environment
can be of great value when assessing the situation status.

Concretely, given an indoor environment where a gas is
leaking at some unknown location, our goal is to provide
an accurate estimate of the gas distribution in the whole
environment in the shortest possible time. For this we
consider the following assumptions:
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• The gas concentration and the 2D wind vector can be
measured at multiple locations in the environment, for
example with a fixed network of sensors, or with one
or multiple mobile robots. In this work we will con-
sider, without lack of generality, a single mobile robot
equipped with an electronic nose and a 2D anemome-
ter [12].

• A floor-plan of the work environment is available. It
is exploited by our method to extract physical con-
strains on the wind currents, and in turn, the gas
distribution.

• The gas distribution to be estimated is composed of
a single target gas, i.e. we do not consider here mix-
tures of gases nor the simultaneous mapping of mul-
tiple odors. This could however be easily achieved
by first introducing a gas classification step and then
performing GDM over the resulting gas classes [13].

We model this estimation problem as a Gaussian
Markov random field (GMRF) that combines gas and wind
in joint probability distribution over two 2D lattices of
cells, namely a gas-concentration map and wind vector
map, inter-correlated attending to the physical laws of gas
dispersal and fluid dynamics explained in Section 3. Thus,
given a set of gas and wind observations, this formulation
leads to a maximum a posteriori (MAP) problem whose so-
lution is the most likely value of both magnitudes in the en-
vironment. Furthermore, because we assume all variables
to be Gaussian, we can further derive the problem into a
sparse least-squares formulation as detailed in Section 4.
This has not only the advantage of being computable if
real-time, but also allows us to retrieve the uncertainty of
the estimated maps which, as will be discussed for the ex-
periments in Section 5, provides useful information about
their reliability.

2. Related Work

Distribution maps, understood as maps that display the
spatial distribution of an attribute or phenomenon, are an
active research topic in different disciplines. By integrat-
ing geo-spacial data they provide valuable information for
analysis and a convenient way to determine physical loca-
tions of interest for the subject at hand. In this section,
we review the most relevant works in the areas of wind
flow and gas distribution mapping, with special interest
in those works that combine both magnitudes to improve
their estimations in a synergistic way.

2.1. Wind Flow Maps

Estimation of the wind flow maps over large geograph-
ical areas has been deeply studied in the fields of mete-
orology and oceanography where this topic is referred as
wind field retrieval. Proposed methods commonly address

the problem with satellite radar-data [14], sometimes com-
bined with fixed weather stations and buoys [15], to in-
vert the geophysical model function that relates the radar-
backscatter measurements with the wind speed and direc-
tion on the planet’s surface [16]. These approaches rely
on atmospheric models to estimate the wind field [17, 18],
which cannot be applied to indoor environments.

In a smaller scale domain, diverse works have tackled
the problem of wind modeling by using trace gases [19], or
the more complex and nowadays extended use of sophis-
ticated computational fluid dynamics (CFD) tools [20].
Nevertheless, CFD-based techniques requires a complete
knowledge of the boundary conditions of the environment
(rarely available) as well as very high computational re-
sources (beyond the capabilities of mobile platforms).

In this sense, data-driven approaches represent an in-
teresting option for mobile robotics. The goal is to model
the average wind flow from a set of measurements that the
robot acquires while exploring the environment, or part of
it. We can highlight works like [21], where a simple rule-
based algorithm was applied to compute the wind flow
patterns from a set of wind measurements, or [22] where
the authors presented a wind field estimation algorithm
for flying robots that considered a statistical distribution
to fit their data (only wind speed). Later, in [23] the au-
thors addressed the problem of building a spatial model
of turbulent air flow in a joint orientation-speed space. A
novel extrapolation method was presented to model the air
flow as a linear combination of laminar and turbulent com-
ponents. Two are the main differences with the proposal
presented in this work: (i) we do model the effect that
obstacles (e.g. walls, doors, etc) have over the wind map,
while the former does not, and (ii) we can provide estima-
tions of the wind flow from a low number of measurements,
while the former requires large amount of data points to
properly model the probabilistic distributions used for ex-
trapolation.

Finally, we must highlight the work presented in [4]
where a probabilistic framework based on GMRF was pro-
posed to fast estimation of the 2D average wind flow at any
location in an indoor environment. This work can be con-
sidered a simplified version of the current proposal, since
only wind flow data was estimated and a detailed knowl-
edge of the environment (i.e. boundary conditions) was
assumed.

2.2. Gas Distribution Modeling

GDM is the process of creating a representation of how
gases spread in an environment from a set of spatially
and temporally distributed measurements of relevant vari-
ables [24]. It is the task of a GDM algorithm to extrapolate
sparse measurements in order to obtain an estimation of
the gas dispersal at non-visited locations.

As was the case for wind flow modeling (WFM), many
gas distribution models were developed back in the early
90s to tackle the problems of atmospheric dispersion [25].
Yet, such models are neither suitable for local scales, nor
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are designed to capture all the relevant aspects of gas prop-
agation with a sufficient level of detail. In this sense, the
robotics community has proposed several alternatives to
face this problem.

Works over the last decade include [26], where a Gaus-
sian process mixture model was proposed, treating GDM
as a regression problem using Expectation Maximization,
or [27], where authors treated the gas distribution model-
ing as a density estimation problem, carrying out two par-
allel estimation processes: one for the mean and another
for the variance of the map. Following this line, Blanco et
al. [24] proposed a different approach to also estimate the
average and variance of the gas distribution by employing
a sparsified Kalman filter. More recently, exploiting the
availability of other sensors onboard the robot (e.g. lasers
and RGB-D cameras), the authors in [1] considered, for
the first time, the presence of obstacles during the esti-
mation of the gas distribution. The work presented here
builds upon this work, aiming to improve the results in
the estimation of the gas distribution by also considering
wind measurements provided by an anemometer.

Special mention requires those works that account for
the wind conditions when modeling the gas dispersion.
For instance, in [28] the authors illustrated how the wind
vector, measured with an ultrasonic anemometer onboard
the robot, notably improved the posterior gas distribution
mapping. Similarly, and although not directly applicable
to indoor environments, the work of Neumann et al. [8]
employed a micro drone equipped with gas sensor and
anemometer to estimate the gas distribution outdoor. Also
interesting is the work of Li et al. [29] where the authors
considered an historical record of wind flow measurements
to predict the gas distribution. However, applying this
work to indoor scenarios is not straightforward as the as-
sumption of homogeneous wind flow does not hold in most
cases.

Finally, it must be stressed that all proposed GDM ap-
proaches that take into consideration wind information
during the estimation process, only account for local mea-
surements. Given the important impact that obstacles in
the environment yields over the wind flow and its turbu-
lent behavior, the spatial propagation of the wind mea-
surements over the map might be quite unrealistic. There-
fore, as proposed in this work, it becomes mandatory to
not only account for the local wind measurements, but to
enhance the GDM estimation capabilities by including a
comprehensive wind model over the work area.

3. Formulation of the Problem

We introduce in this section the basis for the joint esti-
mation of the wind and gas-distribution maps over a 2D
lattice of cells using GMRFs. We will first elaborate on
our problem to formulate it as a Markov random field
(MRF) that describes all relevant state variables as Gaus-
sian (hence the name GMRF). Afterward, we will intro-
duce its factor-graph representation to help us define the

relationships and interactions between neighboring cells,
and finally, we will derive an algebraic formulation of the
underlying probability distribution from which a maxi-
mum a posteriori (MAP) estimate is developed.

3.1. Formulation as a Markov Random Field

The complexity of the problem at hand makes analytical
solutions intractable. Thus, as in many other domains, we
simplify the problem by considering a grid map. A notice-
able particularity of such representation is that neighbor
cells are not independent among them, and then they can
be modeled as a discrete MRF. This way we preserve the
underlying probabilistic nature of GDM and WFM, yet at-
tain a computationally efficient solution for real-time ap-
plications. Naturally, this approach comes at the expense
of accuracy and generality.

All the variables of interest that comprise the ensuing
MRF can be grouped into two categories: unobserved and
observed (i.e. unknowns and input data), although we will
further divide the latter for convenience. Thus we end up
with (i) the hidden variables representing the unknown gas
and wind values (denoted as m for map), (ii) the measure-
ments that the robot takes along the sampling process (z),
and (iii) prior knowledge about the environment and ob-
stacles within it (o). Then, we define the joint probability
distribution of our problem as p(m, z,o), and the poste-
rior as p(m | z,o), which we will maximize in Section 4
to obtain the most likely gas and wind fields given all the
available data.

Next we analyze in detail each of those variables, pro-
viding a formal formulation of the problem.

3.1.1. Hidden Variables

We treat hidden variables (i.e gas concentration and
wind vector) as a random field over a rectangular lattice
m = {mi}Ni=1, where mi = (gi,wi) is a multivariate ran-
dom variable that stands for the gas concentration gi and
wind vector wi = (wx, wy) at each cell i. Fig. 1a shows
an illustration of this grid-map, where each cell is repre-
sented by its coordinates (x, y)i and where N = NX×NY

denotes the dimensions of the map in terms of the number
of cells, for a total of 3N unknowns as depicted in Fig. 1b.
It must be stressed out that the random variables within a
given cell are considered independent, but correlated with
its neighbor cells.

3.1.2. Gas and Wind Measurements

To represent the sensor observations, our MRF accounts
for the set of measurements z = {zg, zw}, as can be
seen in Fig. 1c. This set is comprised of Mg gas mea-

surements zg = {zgk}
Mg

k=1 and Mw wind measurements

zw = {zwk
}Mw

k=1, each one taken at a specific position
(x, y)k and uniquely associated to the closest cell in the
map. Also, each measurement has a time-stamp tk set-
ting the moment when it was acquired, so that we may
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(a) Environment represented as a grid-map (b) Hidden variables of the MRF (c) Observed variables of the MRF

Figure 1: For any given location (xi, yi) at time t, figure (a) shows the gas intensity and wind at the discretized cell (x, y). By continuing this
idea, we may assign the three random variables gx,y , wxx,y and wyx,y to each cell as shown in (b). The observed variables, such information
about the presence of obstacles between cells o or gas and wind observations z (assigned to the nearest cell) are depicted in (c).

also record how the environment changes over time [1].
Notice that this formulation allows for the possibility of
more than one measurement falling onto the same cell mi,
while also permitting the most general case of cells having
no associated measurement.

3.1.3. Obstacle Information

To account for the physical distribution of obstacles in
the work environment, the MRF also includes prior in-
formation capturing the correlation between neighboring
cells. Assuming that there is some sort of map of the envi-
ronment, either a deterministic floor plan or a occupancy
grid map generated by the robot (i.e. each cell stores the
probability of being occupied by an obstacle), we derive a
cell-connectivity map [30] that indicates whether adjacent
cells are separated by an obstacle that blocks the air-flow
(see Fig. 1c). To keep the notation as clear as possible,
we will refer to the latter as o = {oi,j}, where a value of
oi,j = 0.0 denotes that there is no obstacle between the
adjacent cells i and j, oi,j = 1.0 stands for the presence of
an obstacle (e.g. a wall), and intermediate values indicate
different degrees of certainty between both extremes (not
applicable for a deterministic floor plan).

3.2. Formulation as a Factor Graph

The Hammersley–Clifford theorem [31] shows that some
probabilistic models, such as Markov networks, can be rep-
resented as factor graphs, which are frequently used when
performing inference of belief propagation in the networks.
For the problem addressed here, this entails that the joint
probability distribution p(m, z,o) we are interested in can
be factored as the product of potential functions ϕ(·) along
the set of all its maximal cliques (Cm) [32]:

p(m, z,o) =
1

ζ

∏
C∈Cm

ϕC(vC) (1)

where the proportionality constant ζ (called the partition
function) is not relevant in our maximization problem, C
denotes the different cliques, and vC the set of variables
(m, z,o) in each of these cliques. Each potential function

is thus an equation that relates a subset of variables from
the MRF, defined over a single clique.

Potentials are restricted to be strictly positive by defini-
tion (ϕ(·) > 0), therefore, for convenience in future calcu-
lations we express them as exponential functions3, that is,
ϕC = e−EC(vC), where we define E(·) as an energy function
over each of the maximal cliques. Following this notation,
the joint probability becomes:

p(m, z,o) ∝
∏
C∈Cm

exp {−EC(vC)} = exp

{
−
∑
C∈Cm

EC(vC)

}
(2)

Moreover, we will assume that all the potentials in-
volved in our problem can be reasonably modeled as Gaus-
sians functions (becoming the underlying graphical model
a Gaussian Markov Random Field (GMRF)). This as-
sumption works well in practice as demonstrated experi-
mentally, and has the advantage of leading to a convenient
least squares formulation of the problem. We can therefore
establish a direct analogy between the energy functions
EC(vC) and the normal distribution N (µ, σ) = k er

2/2σ2

;
where k is a normalization constant that is not relevant
for our optimization problem, r is the residual of the dis-
tribution with regard to its mean µ, and σ is the standard
deviation. Taking this assumption into consideration, the
joint probability becomes a weighted sum of squared resid-
uals:

p(m, z,o) ∝ exp

{
−
∑
C∈Cm

EC(vC)

}
= exp

{
−
∑
C∈Cm

r2
C

2σ2
C

}
(3)

At this point, all that is left to mathematically define
our problem is to formulate each of the energy functions
EC(vC) that encode the relationship between the hidden
variables (the map m) and the observable ones (observa-
tions z and obstacles o).

3.3. Formulation of the Energy Functions
The energy functions for all the factors and their associ-

ated cliques can be grouped according to their nature into

3Exponentials are monotonous growing functions and therefore
do not change the locus of the maxima in our optimization problem.
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(a) Gas observation (b) Gas regularization (c) Wind observation (d) Wind regularization

(e) Wind-mass conservation (f) Wind obstacle (g) Gas-wind mutual-influence (h) Boundary

Figure 2: Factor graph representation of the involved energy equations, showing which random variables from the GMRF formulation are
affected by them. The hidden variables (gas and wind) are shown in red, the observed variables (observations and obstacle information) in
blue, and the factors in black. Note that the green line denote that the connected variables are part of a given factor type, all of which repeat
are repeated for the whole lattice.

eight different types, namely:

• Energies derived from the gas and wind observations,
Egz and Ewz respectively.

• Energies related to how these observations extrapo-
late to neighbor cells in the grid, referred to as regu-
larization terms Egr and Ewr.

• The energies involved in modeling the wind flow, ac-
counting for both the presence of obstacles Ewo and
the law of mass conservation Ewc.

• The energy that accounts for the interaction between
gas and wind at any given cell, Egw.

• The energy term that defines the default distribution
when no observations has been gathered, Egw.

Next, we derive the exact formulation of these energy
terms individually. For each, we briefly reason how their
physical meaning can expressed as a Gaussian, then pro-
vide an illustrative example of the underlying clique as a
factor graph, and finally, formulate the energies as weighed
squared residuals.

3.3.1. Energy of the Gas Observations (Egz)

This energy encompasses the cliques that establish the
relationship between the observed gas intensity zg and the
estimated gas concentration g in the environment. To
model this energy, we assume that each observation is cor-
rupted by two additive Gaussian errors: one from the in-
herent sensor noise (ωgzk ∼ N (0, σ2

gz)), and another, time-

dependent, that models the loss of information as the ob-
servation gets old (ζgzk ∼ N (0, σ2

ζgz
∆tgzk)). The latter

models the potential changes that may have occurred in
the gas concentration since the sensing at time tgzk by con-
sidering an increasing uncertainty over time [1]. Adding
these terms to the ideal (noiseless) sensor model h(g), we
get:

zgk
= h(g) + ωgzk + ζgzk = gik + ωgzk + ζgzk , (4)

where in the last step we considered that every measure-
ment is associated to one single cell i, the one on which
the robot e-nose is sniffing.

Under a probabilistic point of view, each gas-observation
factor in the graphical model stands for the conditional
probability density function (PDF):

p(zgk
|g) = p(zgk

|gik) = N (gik , σ
2
gz + σ2

ζgz∆tgzk) (5)

where, following the local Markov property4, zgk
is condi-

tionally independent of all other variables given the con-
centration gik (i.e. a gas-measurement only depends on
the instantaneous intensity of the gas at the cell it is mea-
sured on). This leads to the gas observation factors (see
Fig. 2a) to be expressed as energy functions in the form
of:

Egz =
1

2

Mgz∑
k=1

(gik − zgk
)2

σ2
gz + σ2

ζgz
∆tgzk

(6)

where Mgz represents the total number of gas observations
gathered since the beginning of the mapping process.

4A variable in a Markov random field is conditionally independent
of all other variables given all its neighbors.
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3.3.2. Energy of the Gas Regularization (Egr)

The regularization energy is meant to represent how
gases spread spatially. That is, this term models the corre-
lation between the gas concentrations of neighboring cells,
enabling the estimation of the gas concentration at cells
that were not subject to direct sampling. It represents an
important term in our GDM approach, as it allows us to
reconstruct a coarse approximation of the whole gas dis-
tribution from even a reduced set of sparse measurements.

Particularly, we model this spatial correlation by means
of a function that penalizes the difference of gas concen-
tration (di,i′) between pairs of adjacent cells:

di,j = gi − gj (7)

where gi and gj are the gas concentrations at adjacent cells
with lattice indices i and j, respectively. In terms of prob-
ability, this correlation can be modeled with a Gaussian
probability distribution such as:

p(di,j) = N (0, σ2
gr) (8)

with σ2
gr a fixed tolerance parameter that controls the

strength of such correlation. Low values of σ2
gr will en-

force neighbor cells to have a very similar gas concentra-
tion, while a more relaxed value of it will allow a greater
tolerance among the gas concentration values.

It must be noticed that this formulation does not yet
take into account the presence of obstacles in the environ-
ment, setting the same correlation between all neighbors
cells in the grid. This can be easily solved by condition-
ing the latter probability to the cell connectivity map (see
Fig. 3) as:

p(di,j) ≈ N

(
0,

σ2
gr

(1− oi,j)2

)
(9)

For instance, if we are sure there is no obstacle between
cells i and j (i.e. oi,j = 0), then the gas correlation remains
active, that is p(di,j | oi,j = 0) = N (0, σ2

gr), whereas if
there is an obstacle that obstructs the gas dispersion be-
tween these cells (i.e. oi,j → 1), it is reasonable to state
that the difference of gas concentration can take any value
with equal probability, that is, that p(di,j | oi,j = 1) fol-
lows a uniform distribution. Since mixing normal and uni-
form distributions would prevent the formulation of the es-
timator as a least-squares problem, we have approximated
the latter as a Gaussian distribution with an infinite vari-
ance which not only matches the above assumptions per-
fectly, but also provides a smooth transition for unexplored
areas where oi,j is close to 0.5.

Finally, we derive the energy function related to the gas
regularization factors (see Fig. 2b) as:

Egr =
1

2

Nr∑
k=1

(gik − gjk)2

σ2
gr/(1− oik,jk)2

(10)

being Nr the number of pairwise cliques of cell nodes in
the GMRF, and ik, jk the adjacent cells for each of such
cliques.

Figure 3: Illustration of how the physical disposition of obstacles,
such as doors or walls, affect the correlation between hidden variables
in the GMRF. In this particular example the left door is presumed
to be closed, and thus, the gas and wind values inside the room are
independent of the rest of the environment. Walls are denoted in
black, doors in red, and the GMRF over the underlying grid-map is
represented by the nodes and edges.

3.3.3. Energy of the Wind Observations (Ewz)

This energy term establishes the relationship between
the estimated value of the wind vector at any cell wi and
its measured values zw with an anemometer. The logic
behind it is analogous to that of the gas measurements:
to account for sensor noise and age-based uncertainty of
the gathered samples. Thus, the wind observation factors
shown in Fig. 2c can be modeled by the energy function:

Ewz =
1

2

Mwz∑
k=1

|| wik − zwk
||2

σ2
wz + σ2

ζwz
∆tgzk

, (11)

with Mwz the total number of wind samples gathered since
the beginning of the sampling process, and accounting for
the two-dimensional nature of the wind vector.

3.3.4. Energy of the Wind Regularization (Ewr)

Employing the same reasoning for the wind flow as we
did for the regularization of the gas concentration, we can
condition the difference of two (vertically or horizontally)
adjacent cells of w to a Gaussian function that depends
on the cell connectivity map o. This leads to factors in to
be formulated with energy functions:

Ewr =
1

2

Nr∑
k=1

|| wik −wjk ||2

σ2
wr/(1− oik,jk)2

(12)

where σ2
wr controls the likelihood that two adjacent cells

have different wind vectors (wx, wy), and k ∈ Nr stands
for all the pairs of adjacent cells.

3.3.5. Energy Derived from the Conservation of Wind
Mass (Ewc)

The wind flow is subject to additional constrains that
have not equivalence in the gas concentration model. Such
is the case of the mass-conservation law which states that
the total mass of air in the environment should not change
assuming the air is treated as an in-compressible gas. This
is particularly applicable to indoor environments where
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low wind speeds are to be expected (ambient air can be
treated as an in-compressible fluid at slow wind-speeds
(below 100 m/s) [33, 34]).

This constraint imposes that the divergence of the 2D
wind-vector at any cell in the grid should be zero [35], that
is, the amount of air entering a cell should be equal to the
amount of air leaving it, which can be expressed as:

∆µ =
N∑
i=1

∇ ·wi = 0 (13)

where ∆µ stands for the total change of air mass in the
environment and wi the wind vector at the i’th lattice cell.

To account for real world phenomena such as changes
in the ambient pressure, or the presence of obstacles that
may be modeled as solid but in reality can let the air to
pass through, we model this constraint as Gaussian ran-
dom variable, then allowing deviations from the zero diver-
gence criteria: ∆µk ∼ N (0, σ2

wc). Thus, the corresponding
energy term becomes:

Ewc =
1

2

N∑
i=1

(∇ ·wi)
2

σ2
wc

(14)

The divergence on a discrete vector field might is imple-
mented here as the variation of wind flow among a set of
four adjacent cells in a 2x2 pattern as depicted in Fig. 2e.
Its formula reads:

∇ ·wi = wx,(xi,yi) − wx,(xi+1,yi)

+ wx,(xi,yi+1) − wx,(xi+1,yi+1)

+ wy,(xi,yi) + wy,(xi+1,yi)

− wy,(xi,yi+1) − wy,(xi+1,yi+1)

(15)

3.3.6. Energy Related to the Influence of Obstacles in the
Wind Vector (Ewo)

With this energy term we further restrict the wind vec-
tor by conditioning it on the surrounding objects. Con-
cretely, we penalize any wind component that is perpen-
dicular to an obstacle (i.e. an occupied cell), allowing tan-
gential wind vectors but not perpendicular ones. For any
cell i, this constraint is expressed as:

wi ⊥ o = wᵀ
i · noi

= 0 (16)

where noi
denotes the normal vector to the obstacle sur-

face encoded in the obstacle map o around the cell perime-
ter.

Similar to the wind-mass conservation, this constraint
may not always hold in practice as the robot might mis-
judge the obstacles around a cell. This energy term is thus
modeled as four Gaussian distributions, one for each side
of the cell i as shown in Fig. 2f, to allow for some degree

of tolerance handled by σ2
wo:

Ewo =
1

2

N∑
i=1

[
(wx,(xi,yi) o(xi+1,yi))

2

σ2
wo

+

(wx,(xi,yi) o(xi−1,yi))
2

σ2
wo

+

(wy,(xi,yi) o(xi,yi+1))
2

σ2
wo

+

(wy,(xi,yi) o(xi,yi−1))
2

σ2
wo

]
(17)

3.3.7. Energy Derived from the Correlation Between Gas
Concentration and Wind Flow (Egw)

All previous factors and their associated energies have
been defined on either the gas or the wind maps sepa-
rately, with no flow of information from one to the other.
With this energy term we want to model the mutual in-
fluence among these two magnitudes standing for how the
gas distribution gets shaped into plumes by the wind flow,
or equitably, how the presence of a gas plume reveals in-
formation about the general direction of the wind in the
area.

Modeling the correlation that exists between gas and
wind flow is not a trivial task as it depends on many pa-
rameters such as the turbulence index, temperature, or the
nature of the gas being released, among others. Notwith-
standing, from the analysis of several and varied experi-
ments related to gas dispersion (see for example those of
Meroney [37], Chov et al. [38] or Heist et al. [39], we have
extracted a simple, yet relevant, connection between both
magnitudes. Because gas plumes get stretched by wind,
their gas concentration gradient is, on average, perpendic-
ular to the main wind direction as illustrated in Fig. 4.

(a) Wind (b) Gas gradient

Figure 4: Closeup of an indoor environment near the wind exit point
showing a CFD wind simulation with Open Foam [36] (black ar-
rows), and a GADEN simulation [20] of a released gas distribution
(blue intensity cloud). As can be observed, the gradient of the gas
distribution in (b) is mostly perpendicular to the wind direction (a)
along the whole plume excluding some noise due to concentration
fluctuations.
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But gas gradients may also be the result of diffusion, so
we also need to consider the case of absence of wind flow.
Put together, we get that for any given location, either the
wind speed is zero, or the angle θ between the wind vector
and the gas concentration gradient tends to 90o. Hence,
we derive an energy function to account for this correlation
as:

Egw =
1

2

N∑
i=1

(∇gi ·wi)
2

σ2
gw

(18)

where the gradient ∇gi is computed by comparing the gas
concentration of cell i with the ones that are above and
to the right of it (see Fig. 2g), and σ2

gw is the tolerance
parameter that controls the impact of this energy term.

3.3.8. Energy to Set a Default Value (Ed)

To ensure the convergence of our approach in areas
where observations have not yet been gathered (preventing
the problem from being ill-defined), it is necessary to set a
default value for the gas concentration and the wind vec-
tor. This may be the case of physically isolated areas (i.e.
completely surrounded by obstacles), or cells too far away
from the locations where observations have been taken and
therefore not under the influence of other energies.

Assuming we have no prior information about the values
of the gas concentration or the wind speed, the most com-
mon approach is to resort to uniform distributions: [0,∞)
for gi and (−∞,∞) for both wxi and wyi , respectively.
But because we want all energy functions to be Gaussian
to ensure a least-squares solution, we assume that both
can be modeled as factors (Fig. 2h) with energy function:

Ed =
1

2

N∑
i=1

[
g2
i

σ2
d

+
|| wi ||2

σ2
d

]
(19)

where the value of σ2
d controls how close to zero should be

the default value. In practice, this parameter will be very
large to indicate that we are not enforcing any particular
default value.

4. Maximum a Posteriori Estimation

In this section we describe how to derive the MAP es-
timate from the joint probability distribution p(m, z,o),
and show how this MAP becomes a least-squares problem
given the proposed GMRF formulation. Moreover, present
how to retrieve the uncertainty associated to the estima-
tion, and then discuss the selection of the most important
parameters and their impact on the estimate.

4.1. Derivation

Obtaining the MAP estimate m̂ for our problem is
equivalent to say that we seek to maximize the posterior
probability p(m|z,o), that is, to obtain the most likely
value of the gas and wind maps m = {g,w} conditioned
to all available data, i.e. the measurements z and the oc-
cupancy information o.

Given we are only interested in the location of this
posterior’s maxima and not in its value, and since
p(m|z,o) ∝ p(m, z,o) we can establish a direct relation
between the MAP and the energy functions previously in-
troduced in Section 3.3.1. By taking the negative loga-
rithm over the joint, the complete energy function E(m)
becomes the well known least-squares form of a GMRF
inference problem [40], which in our case reads:

m̂ = arg max
m

p(m | z,o)

= arg min
m

E(m),
(20)

where the total energy is defined as:

E(m) = Egz + Egr + Ewz + Ewr

+ Ewc + Ewo + Egw + Ed.
(21)

Because all the energy terms in Eq. (21) are defined
as weighted quadratic errors (i.e. Ek = Λkr

2
k), we can

express the above equation as the sum of squared residuals
weighted by an information matrix,

E(m) =
1

2

M∑
k=1

Λkr
2
k =

1

2
rᵀΛr, (22)

where the vector r corresponds to the residuals of all the
M energies (i.e. their deviation from the expected values
of the underlying Gaussian distributions), and where Λ is
a diagonal matrix of size M ×M .

The minimum of the least-squares formulation in
Eq. (22) can then be found by solving the Gauss-Newton
method equations [41]:

(JᵀΛJ)︸ ︷︷ ︸
Hessian H

∆m = − JᵀΛr︸ ︷︷ ︸
Gradient d

(23)

where J = δr/δm is the Jacobian of the residual r with
respect to m.

As opposed to previous approaches that only accounted
for GDM[1] or WFM[4] and where a closed solution could
be found, introducing the energy term that correlates both
magnitudes Egw makes the problem non-linear with re-
spect to the map m. The latter entails that a numerical
approximation must be found by successive iterations us-
ing the Newton Method [42],

mi ←mi−1 + ∆mi, (24)

∆mi = −H−1
i di (25)

until the halting criterion ||∆mi|| < R is met for some ar-
bitrary chosen error bound R and starting condition m0.
Notice that this implies that the Hessian H and the gradi-
ent d must also be recomputed at each iteration, as they
are both functions of m.
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Figure 5: Virtual test scenarios employed to train the parameters for the GMRF estimator. All scenarios were generated in an indoor-like
environment, using computer fluid dynamics (CFD) to simulate the wind conditions (bottom images), and the filament-based particle simulator
GADEN for the gas distributions (top images). These account for different initial conditions (e.g. wind speed, gas-source location, amount
of released gas, etc.) to emulate realistic situations. Please note that this figures show an instantaneous snapshots, as the environments were
continuous-time simulations. The red circles denote the location of the simulated source, and the arrows the wind inlets and outlets.

4.2. Recovering the Uncertainty

To conveniently interpret the results of the estimated
map m̂ at any given time, it is necessary to pair the val-
ues estimated for the gas concentration and wind vector
with a confidence value or uncertainty measure. Obtaining
such measure on a GMRF model is achieved by computing
the inverse of the Hessian [43] and retrieving the diagonal
values, as each diagonal element in H−1(i, i) corresponds
to the standard error of the mean [41] of the variables in
the estimations of m̂, that is, ĝ, ŵx and ŵy.

Because the size of H increases quadratically with the
number of cells in the environment, it becomes very com-
putationally expensive to invert the whole matrix. If the
application only requires the uncertainty of the gas esti-
mate, but not the wind, it is possible to offset this cost
by carefully grouping the variables in the Jacobian from
Eq. (23) during implementation such that only the per-
taining submatrix in H has to be inverted.

4.3. Parameters of the Estimator

The resolution of the least-squares problem derived
in our proposal depends on eleven parameters, namely:
the cell size c of the grid map m, the time-dependant
information-loss parameters σζgz and σζwz

that codify how
observations lose importance as they get older, and the
eight Gaussian variances corresponding to the different en-
ergies introduced in Section 3.3). Next, we analyze each
of these parameters, focusing on their impact in the esti-
mation process.

• c : The cell size of the grid used to encode the map m
determines the resolution at which the different pre-
dictions are made. Its mayor impact is on the compu-
tational cost, rising considerably for large maps with
high resolution. Its optimal value is therefore a trade-
off between the size of the environment, the desired
resolution, and the computational power available.

• σζgz and σζwz : These two parameters control the
weight of gas and wind measurements over time. Low
values translate into observations being trusted for
long periods of time, while high values will quickly
disregard them in favor of newer ones. The selection
of these parameters is highly dependent on the desired
application. For example, if the goal is to obtain an
estimation that represents the average gas and wind
distributions, low values should be chosen to include
all past observations. Whereas, if the application re-
quires a dynamic estimation that represents the latest
state of the environment, high values should be chosen
instead to only account for the most recent data. For
the experiments presented in the next section, we con-
sider a linear increasing uncertainty limiting the influ-
ence of gathered observations to 10% of their original
weight after 10 minutes because the environments are
not prone to fast changes.

• σi ∀i in E : Each of the energy functions defined in
Eq. (21) is weighted by a variance parameter that con-
trols the contribution of its energy term to the global
estimation. The optimal value of these parameters is
not straightforward as many of them have not a direct
physical interpretation. For example, the weights for
the gas-sensor and anemometer measurement noise
can be set from the tolerance provided by the man-
ufacturer of the corresponding transducers, but the
weight of the regularization energies between neigh-
bor cells, or that that controls how much the wind
direction may deviate from a perfect tangent to ob-
stacles, are not so straightforward.

We present here the selection of these weights by re-
sorting on an iterative optimization process over sim-
ulated data. Concretely, we employ GADEN [20], a
finite-element computer fluids simulator (refer to Sec-
tion 5.2 for more information) to generate the training
environment shown in Fig. 5. This figure illustrates
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a generic indoor-like setting over which we considered
different setups and environmental conditions, rang-
ing from well formed gas-plumes to turbulent and un-
even gas distributions. Over the simulated data we
performed a balanced [44] stochastic gradient-descent
optimization that minimizes the mean squared error
(MSE) between prediction and ground-truth. The
values obtained from this optimization are depicted
in Table 1.

It must be stressed that, although this approach is
extremely slow given the high number of parameters
to optimize, in general, the results are quite stable to
some changes in the environmental set-up. This al-
lows applying the values presented in Table 1 in other
scenarios that are different from the training set. An
exception to this involves changes in the cell size as
this parameter has a notable influence in the others,
being advisable to re-optimize.

5. Experiments and Discussion

This section covers multiple experiments, both simu-
lated and real, aimed to evaluate and compare the pro-
posed approach under different set-ups. We consider a
mobile robot equipped with an e-nose and an anemome-
ter [12] whose mission is to explore the environment and
provide an estimation of the gas distribution in the short-
est possible time.

To provide quantitative results, as well as to allow a
stringent comparison to other GDM methods, we first
present a set of simulated experiments where a ground-
truth is available to assess the exact accuracy of the es-
timated maps. Afterwards, we show the results of a real
experiment focusing on the consistency of the predictions
and the time employed to provide them. Finally, we alsom
provide a performance analysis that accounts for the the
sensors noise level, the computational cost and the influ-
ence of the number of observations.

Parameter gmrf-g kdm-vw gmrf-gw
cell size 0.1 m 0.1 m 0.1 m
σgz 0.1 - 0.1
σgr 1.128 - 1.128
σd 10000 - 10000
σζgz 0.012 - 0.012
σwz - - 0.1
σwr - - 0.825
σwc - - 0.048
σwo - - 0.22
σgw - - 0.12
σζwz

0.012 - 0.012
σ0 - 0.38 -
σΩ - 4.956 -
γ - 0.33 -

Table 1: Parameter values for the three tested GDM methods.

(a) Scenario I, 15m x 5m (simulation)

(b) Scenario II, 11m x 10m (simulation)

(c) Scenario III, 17m x 8m (real experiment)

Figure 6: Floor plan of the test scenarios. Scenario I (a) was simu-
lated in 2D, Scenario II (b) in 3D, and Scenario III (c) is the robot’s
navigation map of where we conducted the real experiment.

5.1. Experimental Setup

Both real and simulated experiments have been con-
ducted in the indoor scenarios shown in Fig. 6 where a
mobile robot is tasked to explore the environment, follow-
ing a predefined fixed path, to provide an estimation of the
gas distribution. We assume the robot has access to the
occupancy grid-map of the environment, which we con-
sider static (i.e. the occupancy probability is not updated
along the experiment), and where inlets and outlets at the
boundaries of the experimental area have been marked as
open (oi = 0). The latter allows the estimated wind to en-
ter or exit from any direction. In other words, we assume
all inlets/outlets could be open, and leave it to our GDM
method to figure out which wind currents make the most
sense given the input data.

For the environmental conditions of all three scenar-
ios, we consider wind currents of around 1 m/s (typical
of indoor scenarios [45]) and a single gas source releasing
ethanol at a fixed location (dependent on the scenario).
Our selection of ethanol is justified by it being heavier
than air and accumulating close to the floor, which in
turn makes it easier to detect for a wheeled ground robot.
Also, ethanol is safe to handle without special equipment
and can be easily removed by venting the environment for
a few minutes, which was particularly convenient for the
real experiments.

Lastly, in order to evaluate the advantages and disad-
vantages of the proposed method, from now on referred
as gas-wind GMRF distribution modeling (GW-GMRF),
we present a detailed comparison with two other state-of-
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Figure 7: Simulation of Scenario I for a quick exploration path along the main corridor, illustrating the GDM estimates at the beginning,
middle, and end of the exploration. The instantaneous ground-truths show in red the location of the gas source, the exploration path, and
the wind inlets and outlets. The scale for the gas and gas-uncertainty maps are limited to 1 gas unit and 1 gas unit−2 respectively, and
1 m/s for the wind map.

the-art GDM estimators, namely gas distribution model-
ing based on GMRF (G-GMRF) [1] and KDM+V/W [28].
The former stems from a previous work and can be re-
garded as a much simple version of our current approach
since it does not consider any wind information to esti-
mate the gas distribution, though it relies on a similar
GMRF formulation. The latter estimator, KDM+V/W, is
a kernel-based method that uses a multivariate Gaussian
weighting function to model the information provided by
the e-nose and the anemometer. Wind data is applied to
regulate the shape of the kernel, which in turn controls the
amount of extrapolation.

To quantify the performance of each GDM method we
compute the RMSE of the gas concentration estimates as
well as the negative logarithm of the maximum likelihood
(NLML), a more relevant magnitude that also accounts
for their associated uncertainty [46]. In this context, we
must note that KDM+V/W does not provide a statisti-
cally significant uncertainty margin for its predictions, but
a confidence interval α which ranges from 0 (not confident

at all) to 1 (highly confident). This entails a problem for
comparison since these magnitudes are not equivalent and
then, cannot be compared. This prevents us from com-
puting the NLML for KDM+V/W. However, to enable a
qualitative comparison in subsequent illustrations, we use
the formula ΣKDM = 1

α − 1 to map the provided confi-
dence value to the range [0, inf], and treat it akin to a
gas-estimate uncertainty.

5.2. Simulation Experiments

Two different scenarios have been considered for run-
ning the simulated experiments (see Fig. 6a and Fig. 6b).
Scenario-I is a long corridor with adjacent rooms intended
to study gas-plumes formed by strong wind currents in 2D,
whereas Scenario-II is an office-like environment meant
to test the GDM methods under generally slower but
more turbulent conditions in 3D. In both cases, we first
compute a ground-truth with OpenFOAM [47] for a reli-
able CFD simulation of the wind, and then simulate with
GADEN [20] a continuous gas-filament representation of
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Figure 8: Simulation of Scenario I at the beginning, middle, and end of a complete exploration of all rooms. The instantaneous 2D ground-
truths show in red the location of the gas source, the robot’s path, and the wind inlets and outlets. The scale for the gas and gas-uncertainty
maps are limited to 1 gas unit and 1 gas unit−2 respectively, and 1 m/s for the wind map.

the gas distribution [48]. The wind conditions were de-
termined by closing all doors and windows except two:
one that acts as a wind inlet at 1 m/s and another as
isobaric outlet. It must be stressed that simulations are
conducted in continuous time, that is, both gas and wind
may contain dynamic eddies or puffs. For this reason we do
not start the GDM experiment until the initial transient-
response has settled (usually 30 seconds after simulation
start) to ensure impartial conditions with respect to the
robot’s starting position, and normalize the concentration
for convenience. Lastly, we do not corrupt the sensor mea-
surements at this point, but discuss in Section 5.4 its effect
on the gas estimates. Gas and wind samples were taken
at a rate of 10 Hz and the robot moved at 0.5 m/s.

5.2.1. Scenario-I

Scenario I is a 2D indoor environment meant to experi-
ment with well formed and laminar gas plumes. We force
a wind flow from the bottom-left room towards the right
side of the corridor, and place the gas source in front of

the inlet window which leads to the plume seen in Fig. 7.
Because we want to test how much information is needed
to delimit the general shape of the distribution, we run
this experiment twice: the first time the robot is tasked
with a quick exploration of the main corridor (Fig. 7), and
the second time with a thorough exploration of all rooms
(Fig. 8). In this way we can test whether the additional
wind information allows for an accurate estimate with less
samples, and if so, how our method compares to the others.

For the exploration path that covers the corridor only,
all three gas estimates reach a similar RMSE with regard
to the ground-truth (Fig. 9, left column). However, GW-
GMRF is slightly faster (i.e. needs less data) than the oth-
ers to do so. Notice how in Fig. 7, after the robot crosses
the first door, our method predicts various possible wind-
paths that may carry gas towards all possible exits, but
discards the wrong ones as soon as it passes in front of the
other doors, allowing it to predict the general shape of the
plume without having actually measured it yet. In con-
trast, G-GMRF and KDM+V/W do not model the plume
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Figure 9: Comparison of the RMSE (top) and NLML (bottom) between the estimated gas maps and the ground-truth for the tested GDM
methods depending on the length of the exploration path. Note that NLML is not computed for KDM+V/W because it provides no
statistically meaningful uncertainty margin. For both metrics, lower values are better (i.e. better approximation of the ground-truth).
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Figure 10: Simulated exploration of Scenario II. The ground-truth shows a slice of the 3D gas and wind distributions at the height at which
the virtual robot carries its sensors, on top of which the location of the gas source, the robot’s path, and the wind inlets and outlets are
highlighted in red. The scale for the gas and uncertainty maps are limited to 1 gas unit and 1 gas unit−2, and 1 m/s for the wind map.

until the end when the robot drives through it on its return
path. Likewise, during the thorough exploration and after
entering the first room in Fig. 8, KDM+V/W and GW-
GMRF provide both good approximations of the head of
the plume, but whilst KDM+V/W is very conservative
and limits its prediction to the inspected area (notice its
uncertainty map), GW-GMRF can already extrapolate to

the middle section of the corridor (the wind has nowhere
else to go). The downside of this amount of extrapolation
is that the RMSE of GW-GMRF goes up in both cases
(Fig. 9) because it predicts gas around all possible exits
the wind could take, which as shown in the ground truth,
is wrong. But because it assigns very high uncertainty to
these locations, the prediction’s NLML does actually im-
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(a) Photo of Scenario III (b) Gas source and Giraff robot with sensors

Figure 11: Snapshot of the real experiment (a). Figure (b) shows the gas source, an ultrasonic scent-diffuser filled with ethanol, as well as
the location of the sensors on the Giraff mobile robot employed to gather the gas-wind data.

prove faster in both cases than that of G-GMRF. In fact,
when we compare the results between both paths, the ad-
ditional wind information allows GW-GMRF to achieve
a similar prediction in terms of RMSE and NLML after
exploring only 3 m of the corridor as G-GMRF after fol-
lowing the thorough path for 30 m. Which makes it suited
for quick response applications without sacrificing on ac-
curacy for longer explorations.

5.2.2. Scenario-II

This scenario is intended to represent realistic 3D gas
distributions as they may occur in indoor environments.
Our goal is to test the performance of our GDM method
when, as it is usually the case in practice, the robot car-
ries its sensors at a fixed height and can therefore not
detect the gases flowing under or over them. For this pur-
pose we have programmed the virtual robot to sample at
0.7 m from the floor, and because the output of the three
GDM methods are 2D only, compare the results against
the cross-section of the ground-truth at this same height.

As shown in Fig. 10, an exploration of the environment
provides very similar gas maps in all three cases. Their
peculiarities are however more apparent during interme-
diate stages of the experiment, as was already the case
for Scenario I. At the beginning and before any significant
gas concentration is detected, there is virtually no differ-
ence between them in terms of their RMSE (Fig. 9, right
column). But once the robot enters the lower half of Sce-
nario II, where the gas is accumulating (after about 30 m of
traveled path, GW-GMRF extrapolates with all the wind
information it has gathered so far the gas concentration in
the remainder of the map. As a result, its able to reduce
its NLML distance to the ground truth much faster than
G-GMRF (Fig. 9, right column), even though its RMSE
starts to fluctuate while getting close to the source before
settling at the same final value than G-GMRF. Hence, the
advantage of GW-GMRF in this type of situations is not
an improved accuracy of the gas maps, but (i) the ability
to make good predictions at a much earlier stage of the ex-
ploration, and (ii) to do so for a much wider surface area
as denoted by the uncertainties in Fig. 10.

5.3. Real Experiment

For the real experiment we chose Scenario III (Fig. 11a)
because it offers slow but consistent wind currents in the
range of 1 m/s. It is a short corridor that leads out-
side through the doors on both sides (see Fig. 6c) which
were open at the same time. As shown in Fig. 11b, the
gas source for the experiment was a scent diffuser filled
with about 75% water and 25% alcohol, and the robot
was an autonomous Giraff system [49] equipped with a
portable e-nose [2] and an anemometer. As for the sen-
sors, we placed the e-nose as close as possible to the bot-
tom because ethanol is heavier than air, but were forced
to mount the anemometer about 55 cm higher to avoid
wind-shadows caused by the robot’s shape. This mismatch
should however have no mayor impact on the results, as
we measured the wind-speed to be about the same at both
heights. Lastly, we must remark that the software on the
robot aided in a better response time for the e-nose [50]
and also compensated for the wind component caused by
the robot’s own motion using LIDAR-based odometry [51].
The robot’s speed was limited to 0.5 m/s, and samples
were taken at a rate of 10 Hz.

Because there is no ground-truth for his scenario, we
chose a reasonably simple setup. We placed the gas source
in the middle of the corridor such that the wind caused the
gas to accumulate only on one half of the map. Accord-
ingly, the experiment in Scenario III was meant to test if
our method could correctly determine that, if the robot
stars on the side with gas, there should be none once it
drives next to the source.

The exact path followed by the robot is shown on the
left-most column of Fig. 12. It starts on the bottom-left,
a location with little to no gas, then passes through the
gas plume and next to the source, and finally stops after
one meter after it. As shown in the same figure, the esti-
mated gas maps for all three methods are very similar in
shape and concentration. Their only major difference lies
in their associated uncertainties, where GW-GMRF stands
out because it covers a much wider surface area. In fact,
if we use the uncertainties as a mask and only plot the gas
estimates as in the last row of Fig. 12, we can appreciate
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Figure 12: Estimated gas maps for the real experiment. Although no exact ground truth is available, the location of the gas source (red
circle) and the dominant wind direction (red arrows) should cause the gas to accumulate only on the left side of the environment. The robot’s
explorations goes from left to right and ends after passing next to the source to test whether the estimated gas map can predict that there
should be no gas on the unexplored right side. The last row shows the GDM estimates using the uncertainty as a cell-wise mask with a
threshold of 1, gσ2≤1 = g � (σ2

g ≤ 1).

how our method extrapolates considerably more than the
other two for the same exploration path; which appears to
be correct given the direction of the wind and the position
of the gas source.

5.4. Performance and Resilience Experiments

Lastly, we have performed several experiments to an-
alyze GW-GMRF in terms resilience to sensor noise as
well as overall behavior, and again, compare it against the
other GDM methods for reference. We have reused for
this purpose the simulation setup from Section 5.2 for its
ground-truth, but to keep this section short only show the
results of Scenario II (which we deem more complex) be-
cause the results for Scenario I followed the same trend
and provided no additional information.

5.4.1. Tolerance to Sensor Noise

Given that GW-GMRF method relies heavily on extrap-
olation to predict the gas and wind fields within unvis-
ited rooms, sensor noise could potentially lead to unre-
alistic estimations. To test for this possibility we have
repeated the experiment from Scneario II, but added in-
creasing amounts of Gaussian noise to the gas-sensor and
the anemometer. First, we tried with the the original pa-
rameter selection from Table 1, but later also repeated
the experiment for a configuration meant to compensate
for the increased noise (e.g. decreasing weight on σgz and
σwz) As depicted in Fig. 13, the RMSE of all three meth-
ods degrades by a similar amount for small input noise, but
becomes more noticeable for GW-GMRF for higher noise
values. Likewise, the NLML does also degrade faster for
GW-GMRF than for G-GMRF, and even becomes worse
in extreme cases where the standard deviation of the noise

Initial parameters Compensated

R
M

S
E

N
L

M
L

Figure 13: Effect of different sensor-noise levels on the GDM esti-
mates of Scenario II, plotted for the initial parameter selection (left
column) and for a configuration meant to compensate for the noise
(right column). The shaded area around each line represents the
standard deviation over 25 iterations. Lower values are better.

is as high as the ground truth. As suspected, our new
method is less resilient to noise than the alternatives. Al-
though it is only of concern for applications with extreme
noise levels, and even then, it can be counteracted by read-
justing the parameters of the methods as shown for esti-
mation when the parameters are adjusted to compensate.
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Figure 14: Execution time of the GDM methods depending on the
total number of cells in the environment, separated into estimation of
the gas distribution, and computation of its associated uncertainty.
Please note that the vertical scale is logarithmic. The test was im-
plemented in Python 3 and run on an Intel Core i7-8700 with 16 GB
of RAM. Lower is better.

5.4.2. Computational Complexity

Although GW-GMRF can achieve a better estimate
than the other methods during the early stages of the
robot’s exploration, it is considerably slower to compute.
To compare their execution times, we run a series of experi-
ments with an environment of increasing size. As a generic
case, we used a square environment with obstacles around
the borders only and sampled along its diagonal to ensure
that the number of observations is linearly proportional to
its size. As expected and shown in Fig. 14, GW-GMRF
is a magnitude slower to compute than G-GMRF, and in-
creases with exponential complexity regarding the number
of cells rather than being linear like KDM+V/W. Depend-
ing on the application it might be possible to offset this
cost by reducing the rate at which the map is recalculated
or by lowering the map’s resolution, but GW-GMRF re-
mains prohibitive for small robots with limited on-board
computation-capabilities.

5.4.3. Accuracy Dependence on Available Data

Fig. 15 shows how the amount of sensor data affects the
accuracy of the predictions. For this test we have uni-
formly sampled Scenario II at random location in a Monte
Carlo-like approach, starting with 10 samples and gradu-
ally increasing to 5000. As can be observed in Fig. 15a, the
RMSE of all three methods follow a similar trend at the
beginning, but the prediction of KDM+V/W does not im-
prove once the environment is over-sampled (around 1000
to 1500 observations, as Scenario II has 1100 cells) whereas
the GMRF-based approaches benefit from additional ex-
ploration to obtain more data as the environment changes
over time. Both G-GMRF and GW-GMRF have a simi-
lar RMSE throughout, but GW-GMRF’s achieves a better
NLML with a fraction of the samples (e.g. 200 vs 1000).
This difference is most noticeable for little observations
where the ability of extrapolate with wind information is
most useful.

(a) RMSE vs. number of random samples

(b) NLML vs. number of random samples

Figure 15: RMSE and NLML in the estimation of the gas distribution
in Scenario II for increasing number of samples at random locations.
The experiment has been repeated 25 times to obtain a standard
deviation (indicated by the shaded area), but because was uniform
manner the variability is very low. Lower values are better.

6. Conclusions and Outlook

In this paper we presented GW-GMRF, a new GMRF-
based gas distribution model for real-time applications
that accounts for wind-flow modeling in the environment
to boost the estimation. That is, it models the law of gas
dispersion with simple but sensible rules that account for
the effect of obstacles and wind currents to extrapolate the
gas concentration at remote locations that were not sub-
ject to direct sampling. With this method, GW-GMRF
not only provides a gas map of the environment, but also
a statistically significant uncertainty for each position as
well as a wind estimation map.

Experimental results have demonstrated that GW-
GMRF works remarkably well in indoor environments with
the presence of wind flows, and outperforms other similar
methods in terms accuracy and reliability of the predic-
tion. However, our approach is considerably more costly
in terms of computational power when compared to meth-
ods like G-GMRF or KDM+V/W. This becomes especially
relevant for scenarios where there is little to no wind, and
consequently the ability of our method to extrapolate is
hindered, not providing substantial benefits over its pre-
decessor G-GMRF.

Moreover, GW-GMRF offers additional advantages that
were not further explored in this article, including:

• Adaptation to the dynamic nature of the occupancy
grid-map. The obstacle connectivity map o does not
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need to be static. Our formulation is meant to deal
with situation where the robot has not fully explore
the environment and the cells have an occupation
probability other than 0.0 or 1.0. Every time new
a prediction is made, GW-GMRF uses the latest sen-
sor data and obstacle information, for which error in
previous estimation are not carried into the next. For
example, the estimation can be updated with new in-
formation about the state of a door or window with
other sensors (e.g. computer vision) in favor of more
accurate extrapolations.

• GW-GMRF is compatible with multiple data input
sources as long as each individual gas or wind sam-
ple can be uniquely assigned to a single position and
carries it’s own time-stamp. This can be exploited to
further accelerate the map generation by using mul-
tiple sensors on separate robots, or to improve the
accuracy by monitoring key locations with dedicated
sensors while the robot explores the rest.

• If there a prior gas distribution of the work environ-
ment which could provide a good starting point for
G-GMRF, it can be entered as the mean value of the
Gaussian that comprise the default energy Ed. As a
result, the output of our estimator will tend towards
said prior while there is no data or it does not contra-
dict the observations, while retaining high uncertainty
until real evidence of its veracity becomes available.

Notwithstanding, we must remark that our method is
not designed to achieve accuracy comparable to the slower
but more precise CFD simulations. Being formulated as
a GMRF that, in turn, becomes an easy to solve least-
squares problem, all variables must necessarily be Gaus-
sian. This is a debatable assumption that favors computa-
tion speed, but also prevents GW-GMRF from including
other distributions that might be better suited to model
the environment. In fact, there is a caveat in the gas es-
timate because of this very reason: the physical gas con-
centration of a cell can only be zero (i.e. perfectly clean
air) or positive, yet a Gaussian’s tails imply that there
is always a chance for negative values as well. Arguably,
a Gamma or a Chi-squared distribution would have been
better choices for the gas variables if they could have been
implemented without subverting GW-GMRF’s efficiency.
Nevertheless, this assumption works exceedingly well in
practice, as evidenced in the experimental sections of this
work, and converges toward the ground-truth as more sen-
sor data becomes available.

Lastly, we would like to highlight that, at this point,
GW-GMRF is completely passive. It depends on the
robot’s exploration to acquire new data and, in turn, it
provides accurate estimates, but it does not tell the robot
where to explore. One possible solution would simply in-
volve sending the robot to the most uncertain location as
it should provide the most valuable data. Yet this naive
approach does not account for the energy and time costs of

the exploration, nor does it plan a path that goes purpose-
fully through other uncertain locations to avoid having to
explore them in the future. Hereof, one of our next steps
will focus on closing the GDM-robot exploration loop for
GW-GMRF in the most effective possible way.
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An alternative to the mahalanobis distance for determining op-
timal correspondences in data association, IEEE transactions
on robotics 28 (4) (2012) 980–986.

[47] H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial ap-
proach to computational continuum mechanics using object-
oriented techniques, Computers in physics 12 (6) (1998) 620–
631.

[48] J. A. Farrell, J. Murlis, X. Long, W. Li, R. T. Cardé, Filament-
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