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Abstract. This paper proposes a method to enhance video object de-
tection for indoor environments in robotics. Concretely, it exploits knowl-
edge about the camera motion between frames to propagate previously
detected objects to successive frames. The proposal is rooted in the con-
cepts of planar homography to propose regions of interest where to find
objects, and recursive Bayesian filtering to integrate observations over
time. The proposal is evaluated on six virtual, indoor environments, ac-
counting for the detection of nine object classes over a total of ∼7k
frames. Results show that our proposal improves the recall and the F1-
score by a factor of 1.41 and 1.27, respectively, as well as it achieves a
significant reduction of the object categorization entropy (58.8%) when
compared to a two-stage video object detection method used as baseline,
at the cost of small time overheads (120ms) and precision loss (0.92).

1 Introduction

The detection of the objects appearing in a sequence of images (i.e. a video)
is of paramount importance for many applications, such as those involving mo-
bile robots [4, 8, 17]. For this particular problem, the exploitation of the spatio-
temporal information inherent in the sequence of images, is considered an im-
portant factor to boost the object detection performance [2, 3, 15].

Previous works have proposed the use of Spatio-Temporal Networks (STNs)
such as tubelets-based [19, 10, 11] or memory-based approaches [20, 1]. Yet, these
techniques share a common drawback: they either use a fixed-length temporal
window or apply a post-processing phase to the whole video sequence to integrate
the observations over time. The latter prevents their use in real-time applications,
like the ones relying on a mobile robot, as they require to take decisions upon
the detected objects.

Multiple contributions have addressed these handicaps by including motion-
guided propagation (MGP) algorithms such as object tracking networks [15, 5] or
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optical flow [12, 10, 21, 22]. However, relying on visual information alone is prone
to failures under challenging conditions like frames with motion blur, occlusions
or appearance changes [10].

In this paper we propose an alternative method that, assuming knowledge
about the camera motion between successive frames, leverages this information
to enhance the detection of objects in a sequence of images. Concretely, we con-
sider a typical two-stage object detection method consisting of a Region Proposal
Network (RPN) that yields regions of interest where an object can be found, fol-
lowed by an Object Classifier Network (OCN) that processes each region and
returns a probability distribution over a given set of object classes for each one.
Thus, the method outcome after processing each frame is a set of observations,
each one corresponding to a region in the image, and their associated probabil-
ity distributions. To provide temporal and spatial coherence to these results, our
method introduces a motion-guided propagation model based on planar homog-
raphy, obtained from the camera motion, to propagate previous observations to
the frame being processed. Next, we perform a correspondence step that try to
match the regions provided by the RPN in the frame t with the previous prop-
agated observations from t− 1. In the case that an object observation becomes
orphaned in the matching process (i.e. a detected object in frame t − 1 is not
proposed by the RPN in frame t), we propose it as a new region of interest.
This results in an enhanced set of regions to be classified by the OCN. Finally,
to provide further temporal coherence, the probability distributions of matched
observations are integrated through a recursive Bayesian filter.

In order to evaluate the benefits of our proposals we have conducted multiple
experiments over the robotic dataset Robot@VirtualHome [7]. We show that our
combined method boosts video object detection by significantly increasing the
recall (i.e. the number of unnoticed objects) while presenting a minor reduction
of the precision and a very small time overhead.

2 Method Overview

Given a sequence of frames F0, ...,Ft−1,Ft, we propose a spatio-temporal object
detection method that incorporates knowledge from frame Ft−1 to frame Ft.
Specifically, for each new frame Ft, we employ a two-stage detection pipeline
(see Figure 1). In a first phase, we rely on a region proposal network (RPN) to
obtain regions of interest Bi

t, typically known as bounding boxes. These regions
are rectangular boxes in the image whose enclosed pixels form an image patch
πi
t where objects are expected to be found.

In a second phase, all image patches are evaluated by an object classifier,
which yields a discrete probabilistic distribution P (Ct|πi

t) over the considered
set of objects class labels C = {C1, ..., CN}.

It must be noticed that RPNs tend to predict multiple bounding boxes with
different shapes and sizes for the same object. Thus, in this work we filter out
redundant candidates by selecting the most appropriate one for each object.
For this purpose, we employ a Non-Maximum Suppression (NMS) algorithm
for bounding boxes. Similarly, related to the classification probabilities of each
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Fig. 1. Diagram showing the proposed method pipeline. Bounding boxes of the de-
tected objects in frame Ft−1 (in red) are projected to the next frame Ft (in blue)
through a planar homography. Next, projected bounding boxes are matched with the
new proposed bounding boxes given by the RPN. Black dashed line represents the
feedback for the next iteration. The knowledge from both is temporally integrated to
improve object detections in videos.

image patch, we filter out candidates whose highest probability of belonging to
an object class is lower than a given threshold, reducing false detections.

At this point, we define an observation Zi
t by the pair formed by a bound-

ing box and the probability distribution resulting from the classification of its
respective image patch: Zi

t = {Bi
t, P (Ct|πi

t)}. Then, after obtaining the obser-
vations corresponding to the current frame Ft, we compute the projections Ẑt

of previous observations Zt−1 to propagate previous knowledge into the current
frame (see Section 2.1). Subsequently, we carry out a correspondence step be-
tween projected observations Ẑt and new observations Zt (see Section 2.2), and
finally, we integrate both by applying a recursive Bayesian filter (see Section 2.3).

2.1 Motion-Guided Propagation Model

A MGP model allows us to propagate observations between frames by projecting
the bounding box of each observation from one frame Bi

t−1 to the next B̂i
t

(see Figure 1). In this work, we propose to transform the corner points which
define each bounding box by means of a planar homography:

pt = Hpt−1 (1)

where pt and pt−1 are the homogeneous coordinates of the bounding box corners
in two consecutive frames. The planar homography matrix H is computed from
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the camera motion [9] as:

H = K

(
R− tnT

d

)
K−1 (2)

where R and t are the rotation matrix and the translation vector of the camera
between the two frames, and K is the intrinsic camera matrix. n and d are the
normal vector and the distance, respectively, to the 3D plane where the bounding
box lies in the scene.

It must be emphasized that applying this planar homography transformation
to the bounding boxes of the observations does not transform the objects them-
selves, because objects are not in a plane. However this transformation can be
considered an approximate projection of the object observations. Moreover, for
the specific case of mobile robotics, given that most robots are non-holonomic
(i.e. their translation is only along the z-axis t = [0, 0, tz]), we can consider
that the camera translation between frames w.r.t. the distance to objects d is
sufficient small, thus tz/d ' 0. Thus, H is approximated as follows:

H = KRK−1 (3)

Upon projecting the bounding boxes of all previous observations, we disre-
gard those that fall outside the image plane.

2.2 Correspondence Step and Region Proposal

For each new frame Ft, we have a set of new observations Zt = {Z1
t , ..., Z

J
t }

which we desire to integrate with previous observations Zt−1 = {Z1
t−1, ..., Z

I
t−1}.

To this end, the MGP model (see Section 2.1) projects previous observations
Zt−1 into the current frame Ẑt = {Ẑ1

t , ..., Ẑ
I
t }, where Ẑi

t = {B̂i
t, P (Ct|πi

t−1)}.
In this step, we perform a correspondence between Zt and Ẑt to determine

three possible outcomes: (i) an observation in Zt refers to a possible new object,
(ii) an observation in Zt refers to a previously detected one; or (iii) a projected
observation in Ẑt has not been detected in the current frame. To do so, we
measure the similarity sij between each pair of observations (Ẑi

t , Z
j
t ) as follows:

sij(Z
j
t , Ẑ

i
t) = IoU(Bj

t , B̂
i
t) (4)

where IoU(·,·) is the intersection over union function [16].
For each projected observation Ẑi

t , we select the pair (Zj
t , Ẑ

i
t) that maximizes

the similarity function. Then, if the similarity is greater than a threshold T , we
integrate both observations by choosing the most recent bounding box Bj

t and
updating the probability distributions through a recursive Bayesian filter (see
Section 2.3).

However, since observations in t− 1 may not be proposed again by the RPN
in t (e.g. due to motion blur), projected observations Ẑt may be left alone,
not matching with any new observation Zj

t . It must be noticed that the latter
does not implies that the object is not in the current frame, just that it is not
proposed. To address this fact, we classify the image patch π̂i

t associated to the
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projection of the previous bounding box B̂i
t into the current frame Ft, obtaining

a new probability distribution P (Ct|π̂i
t). Next, we update the detection Ẑi

t to
Zj
t , defining it with B̂i

t and updating the probability distribution P (Ct−1|πi
t−1)

to P (Ct|π̂i
t) through a recursive Bayesian filter.

2.3 Bayesian Filtering over Object Class Labels
Seeking to capitalize on the temporal correlation inherent in the posterior dis-
tributions of matched observations along a sequence of images, we resort to
a recursive Bayesian filter to estimate the accumulated belief over the object
classes Bel(Ct) = P (Ct|π1:t):

Bel(Ct) ∝ P (πt|Ct,C1:t−1)

N∑
n=1

P (Ct|Cn
1:t−1)Bel(Cn

t−1) (5)

where P (πt|Ct,C1:t−1) is the conditional density at time t, N is the number of
object classes, and P (Ct|C1:t−1) is the transition probability. Assuming first or-
der Markov properties, i.e. independence between object classes and between
observations, we have P (Ct|C1:t−1) = P (Ct|Ct−1) and P (πt|Ct,C1:t−1) =
P (πt|Ct). Thus, our accumulated belief is simplified to:

Bel(Ct) ∝ P (πt|Ct)

N∑
n=1

P (Ct|Cn
t−1)Bel(Cn

t−1) (6)

The transition probability function P (Ct|Ct−1) is the function that controls
how the object classes evolve over time. We expressed this function as follows:

P (Ct|Ct−1) =


pc sij if Ct = Ct−1

1− pc sij
N − 1

otherwise
(7)

where sij is the similarity score between the bounding boxes of both observations
and pc is the probability that given two consecutive observations, the object class
with maximum probability of both observations is the same. The latter value
should be set with a higher probability in order to model the fact that in a video,
two observations (with similar position, shape and size) from two consecutive
frames have a high likelihood to be from the same object class.

Finally, note that the Bayesian filter requires the conditional density P (πt|Ct),
but the object classifier yields the posterior probability P (Ct|πt). However, both
probabilities are related through Bayes theorem as follows:

P (πt|Ct) ∝
P (Ct|πt)
P (Ct)

(8)

where P (Ct) is the marginal class probability. This probability encodes the prob-
ability of finding each object class in an environment, hence it is a prior that can
be learned from experimental data. For example, in a household, objects such as
chairs that are found in most rooms must have a greater probability than less
common objects such as microwaves that are only typically found in kitchens.
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3 Experiments

This section covers a set of comparative experiments aimed to evaluate the per-
formance of the proposed method, and the contribution of each of its stages.
Concretely, we present a comparison of the following incremental methods: i) B:
baseline, ii) B + BF: including Bayesian filter, iii) B + BF + P: adding prop-
agation without homography and iv) Our method: improving the previous one
by using the motion-guided propagation model with homography.

3.1 Experimental Setup

To assess the performance of the proposed method we have conducted experi-
ments with data from the state-of-the-art Robot@VirtualHome dataset [7]. This
is a robotic dataset that includes sequences of images taken by a mobile robot
while navigating through different virtual environments. In addition, the dataset
provides the camera motion between frames and segmentation masks for the ob-
jects in the images.

We conducted experiments on six indoor environments from the dataset,
which are composed by a total of 6, 929 frames with a resolution of 640×480 px.
All images were captured by a frontal camera placed on the robot at a height of
1.59m and 10◦ rotation in the pitch-axis.

3.2 Evaluation Metrics

To measure the performance of the competing methods we resort to three com-
monly used metrics: average precision (AP), recall (R) and F1-score [14]. More-
over, we consider an observation as right (i.e. a true positive) when its top-1 clas-
sification probability is greater than 0.5 and its associated object class matches
the ground-truth label provided by the dataset. In addition, to evaluate tempo-
ral coherence, we compute the entropy of the probability distribution associated
with each observation as a measure of uncertainty.

3.3 Implementation Details

The implementation of the proposed method has been carried out according to
the following aspects:

• For the region proposal network, we rely on the DeepMask architecture with
the weights from [13].
• To filter out multiple bounding boxes candidates for each object, we apply

the NMS algorithm from [6].
• For the object classification stage, we used the state-of-the-art EfficientNet

CNN with the pretrained model EfficientNet-Lite4 [18]. This classifier yields
a discrete probability distribution over the object classes from the ImageNet
dataset, from which we considered 9 relevant indoor object types: toilet,
chair, bed, table, microwave, washbasin, closet, washer and burner.

• Regarding the parameters of the proposed method, we set empirically the
threshold T as 0.3 and pc as 0.6, which control when there is a match between
two bounding boxes and the transition probability of the Bayesian filter,
respectively.
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Table 1. Averaged metric results for each evaluated method over the 6 indoor envi-
ronments. B: Baseline, BF: Bayesian Filter and P: Propagation (without homography).
Our method is composed by the baseline, the bayesian filter and the motion-guided
propagation model based on planar homography.

Precision Recall F1-score Entropy Time (s)

B 70.13% 19.66% 30.13% 0.51 0.55
B + BF 70.60% 19.72% 30.26% 0.31 0.56

B + BF + P 63.90% 25.66% 36.19% 0.31 0.61
Our method 64.73% 27.63% 38.16% 0.30 0.67

Table 2. Comparative results of propagating with/without planar homography facing
different camera rotations.

Rotation 10◦ Rotation 15◦

AP R F1 AP R F1

B + BF + P 62.87% 23.91% 34.27% 58.53% 25.60% 34.97%
Our method 67.60% 27.37% 38.44% 72.96% 32.31% 43.83%

• All experiments have been carried out using a computer with an Intel Core
i7-8750H processor at 2.20 GHz, a 16 GB DDR4 RAM memory at 1333 MHz,
and a graphic card NVIDIA GeForce GTX 1070 with 8 GB of memory.

3.4 Experimental Results

Table 1 presents the average performance of the evaluated methods over the six
tested environments. As can be seen, the baseline (first row) shows the second
best precision with a 70.13% and the lowest processing time per frame (0.55s).
However, this method achieves the lowest recall (19.66%) and F1-score (30.13%),
together with the maximum averaged entropy of the probability distributions
(0.51). The inclusion of the Bayesian filter (second row) considerably decreases
the averaged entropy a 58.8% w.r.t. the baseline, obtaining a value of 0.31, which
implies the reduction of the uncertainty associated to the predicted classes.

A considerable performance improvement is appreciated when including the
propagation (without planar homography) of previous observations (i.e. the po-
sition of bounding boxes in previous frames is preserved for next frames). In this
case, the method boosts both recall and F1-score by a factor of 1.31 and 1.20
respectively, while increasing the processing time by 60ms and reducing preci-
sion by 6.23% w.r.t. baseline. The recall-precision trade-off is represented by the
F1-score, which in this case shows an improvement of the performance.

Finally, the full pipeline where previous observations are propagated to next
frames through planar homography yield the best results in terms of recall
(27.63%), F1-score (38.16%) and average entropy (0.3). The recall enhancement
reveals that the full pipeline improves object detection by proposing a consider-
able number of observations from previous frames that where unnoticed by the
baseline, as shown in Figure 2.

However, as can be seen in Table 1, the results between propagating with
planar homography (Our method) and without (B + BF + P) is similar. This
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Fig. 2. Example frames where our method boost the video object detection perfor-
mance during a robot rotation movement. Solid-line bounding boxes are proposed by
the RPN. Dashed-line bounding boxes are projections of previous bounding boxes. The
effect of Bayesian filter can be highlighted from Ft+1 in advance. For the method B
+ BF + P can be seen how the bounding box is propagated inaccurately, so the toilet
class probability decreases. In contrast, our method propagates more accurately the
bounding box, so the observation of the toilet is kept and integrated over time. Note
that for simplicity, we show only the object class with maximum probability.

fact is due to the assumption made in the propagation model that only con-
siders the rotation of the camera, so that when the robot only translates, both
methods are equivalent. Since in our experiments only 12% of frames show im-
portant rotations, the planar homography effect is not highlighted. To analyze
the performance impact of the planar homography, we evaluated both methods
considering only consecutive frames exhibiting camera rotations larger than a
certain angle. The obtained results are shown in Table 2, where we can observe
that the higher rotations, the higher the benefit. For example, for 15◦ rota-
tions, our method outperforms the propagation without planar homography by
increasing a 14.43% precision, 6.81% recall and 8.86% F1-score.

Finally, Figure 3 illustrates the average F1-score and entropy results for each
considered object class. Note that there is an inverse correlation between entropy
and F1-score, as classes with higher entropy have lower F1-score, so their preci-
sion and recall are lower. This is mainly due to misclassification errors, such as
classifying chairs as tables. The interested reader can see the proposed method
in action in the following video: https://youtu.be/oNmGG3d0BM4.
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the 6 indoor environments, per object class and method. At the right, the global average
for all object classes. Note that, for all cases, we desire a high F1-score but a low entropy.

4 Conclusions and Future Work

In this work, we have introduced a novel method to boost the detection of objects
in a sequence of images given knowledge of the camera motion. Particularly, we
have focused on the case of mobile robots operating in indoor environments. Our
method uses a MGP model based on planar homography to spatially propagate
observations from one frame to the next, allowing an efficient matching with
new observations. Finally, a Bayesian filter is introduced to temporally integrate
matched observations, yielding a posterior probability distribution or belief over
the object classes.

Experimental validation has demonstrated how our proposal improves video
object detection w.r.t. the baseline by increasing 8.03% F1-score and 7.97%
recall, which implies that our method detect more objects than the baseline.
Besides, our method reduces entropy by 58.8% on average, which proves the
effect of the Bayesian filter by reducing the uncertainty about object classes
over time. However, as drawbacks, the proposed method reduces the average
precision by a factor of 0.92 w.r.t. the baseline due to the fact that also wrong
detections are propagated over time.

In future work, we plan to extend this method to use a dynamic frame rate
object detection based on the robot motion. Thus, each new frame will be taken
after a certain robot movement, hence releasing resources such as the CPU and
GPU while the view has little changes. In this way, we will reduce the compu-
tational cost, which is highly limited in robotics.

Acknowledgements. This work was supported by the research projects
WISER (DPI2017-84827-R) and ARPEGGIO (PID2020-117057), the Spanish
grant program FPU19/00704 and the UG PHD scholarship program from the
University of Groningen.



10 D. Fernandez-Chaves and J.L. Matez-Bandera

References

1. Bertasius, G., Torresani, L., Shi, J.: Object detection in video with spatiotemporal
sampling networks. In: ECCV. pp. 331–346 (2018)

2. Bosquet, B., Mucientes, M., Brea, V.M.: Stdnet-st: Spatio-temporal convnet for
small object detection. Pattern Recognition 116, 107929 (2021)

3. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation
for video object detection. In: IEEE/CVF CVPR. pp. 10337–10346 (2020)

4. Erol, B.A., Majumdar, A., Lwowski, J., Benavidez, P., Rad, P., Jamshidi, M.:
Improved deep neural network object tracking system for applications in home
robotics. In: CIPR, pp. 369–395. Springer (2018)

5. Feichtenhofer, C., Pinz, A., Zisserman, A.: Detect to track and track to detect. In:
IEEE ICCV. pp. 3038–3046 (2017)

6. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE transactions on pattern
analysis and machine intelligence 32(9), 1627–1645 (2009)

7. Fernandez-Chaves, D., Ruiz-Sarmiento, J., Petkov, N., Gonzalez-Jimenez, J.:
Robot@virtualhome, an ecosystem of virtual environment tools for realistic indoor
robotic simulation (2021), submitted

8. Fernandez-Chaves, D., Ruiz-Sarmiento, J.R., Petkov, N., Gonzalez-Jimenez, J.:
From object detection to room categorization in robotics (jan 2020)

9. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2000)
10. Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z., Wang,

R., Wang, X., et al.: T-cnn: Tubelets with convolutional neural networks for object
detection from videos. IEEE TCSVT 28(10), 2896–2907 (2017)

11. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets
with convolutional neural networks. In: IEEE CVPR. pp. 817–825 (2016)

12. Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object
detection. In: IEEE/CVF ICCV. pp. 7274–7283 (2019)

13. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates.
In: NIPS (2015)

14. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. arXiv preprint arXiv:2010.16061 (2020)

15. Ray, K.S., Chakraborty, S.: Object detection by spatio-temporal analysis and track-
ing of the detected objects in a video with variable background. Journal of Visual
Communication and Image Representation 58, 662–674 (2019)

16. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: General-
ized intersection over union: A metric and a loss for bounding box regression. In:
IEEE/CVF CVPR. pp. 658–666 (2019)

17. Ruiz-Sarmiento, J.R., Guenther, M., Galindo, C., Gonzalez-Jimenez, J., Hertzberg,
J.: Online context-based object recognition for mobile robots. In: ICARSC (2017)

18. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML. pp. 6105–6114. PMLR (2019)

19. Tang, P., Wang, C., Wang, X., Liu, W., Zeng, W., Wang, J.: Object detection in
videos by high quality object linking. IEEE TPAMI 42(5), 1272–1278 (2019)

20. Xiao, F., Lee, Y.J.: Video object detection with an aligned spatial-temporal mem-
ory. In: ECCV. pp. 485–501 (2018)

21. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for
video object detection. In: IEEE ICCV. pp. 408–417 (2017)

22. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recog-
nition. In: IEEE CVPR. pp. 2349–2358 (2017)


