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ViMantic , a Distributed Robotic Architecture for Semantic Mapping in Indoor

aMachine Percep (IBIMA).
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s augment traditional representations of robot workspaces, typically based on their geometry and/or topol
ion about the properties, relations and functionalities of their composing elements. A piece of such informat
appliances typically found in kitchens and employed to keep food in good condition. Thereby, semantic m

ion of high-level robotic tasks in an efficient way, e.g. “Hey robot, Store the leftover salad”. This paper
ovel semantic mapping architecture for the building and maintenance of such maps, which brings together
demanded by modern mobile robotic systems, including: i) a formal model, based on ontologies, which d
e problem at hand and establishes mechanisms for its manipulation; ii) techniques for processing sensory inf

ally populating maps with, for example, objects detected by cutting-edge CNNs; iii) distributed execution ca
nt-server design, making the knowledge in the maps accessible and extendable to other robots/agents; i
allows for the visualization and interaction with relevant parts of the maps through a virtual environment;
nce being ready to use in robotic platforms. The suitability of ViMantic has been assessed using Robot@
of data collected by a robot in different houses. The experiments carried out consider different scenarios w

s, from where we have extracted satisfactory results regarding automatic population, execution times, and
y of the resultant semantic maps.

emantic maps, Robotic Architecture, Mobile Robots, Unity 3D, ROS, Object detection, Detectron2, Robot@

on

ots are progressively landing in human environ-
tels, hospitals, offices, homes, etc., carrying out
ks as caregivers, security guards or house clean-
thers [1, 2]. A key aspect for their success-
in those applications is the ability to model and
nformation relevant to the tasks to be accom-
suppose a scenario where a robot is commanded
eal. For addressing such a task the robot must
world elements could be used to warm up the
es, microwaves, ovens, etc.), where they can be
w to interact with them. This high-level infor-
world is also called semantic knowledge, since it
-information about the elements in the environ-
g their relations, characteristics, and functional-
ir semantics [3, 4]. An example of this knowl-
that stoves are appliances, typically placed in

can warm up food. When semantic knowledge
nce the traditionally available information about
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the robot workspace, e.g. geometric and/or topologic20

objects detected in the environment, etc., this results
mantic map [5, 6].

In this way, in the scope of mobile robotics, seman
are models that include information about spatial
(rooms, objects, etc.) augmented with the semantics25

for an efficient robot operation (see Figure 1). Th
empower the cognitive capabilities of robots, enabl
to carry out high-level queries (e.g. to retrieve the ob
are suitable to perform a given a tasks and where the
found), or to infer new knowledge (e.g. the type of a30

cording to the objects detected inside) [7–9].
In order to be operative in modern mobile robotic s

semantic map has to exhibit certain features as well
anisms for its management, which are provided by
mapping architectures. They include:35

• A well defined model representation. A key co
is a formalized and clear model for accommod
semantic information, also including mechanism
manipulation, i.e. insertion, modification or query

• Model population. The chosen model has to be40

ically populated with information coming from
ronment at hand. For that, they are needed met

d to Knowledge-Based Systems J

Jo
ur

na
l P

re
-p

ro
of



Figure 1: Exampl the domain
at hand as well as ormation to
the user.

transform
for exam

• Distribu45

ran in m
strained r
nisms to
externaliz
enabling50

complete
utilizatio
sharing th

• Suitable
with peop55

interact w
retrieve h

• Quality c
ment of t
ful the ar60

This also
methodol

• Public av
use”, me
easily int65

Although th
ing some of th
best of our kn
them.

In this pape70

ping architectu
dedicated com
platforms. Th
the common i
tomatic popul75

face, quality c
tic has been de

emergent
er, which
ice (e.g. a
p, among
semantic

support
ns on the
e in dif-

detecting
and shar-
ion of the
lling and
b reposi-

represent
relevant

rarchical
the prob-
d accord-
subclass

ese struc-
map. To

vides the
compar-
ontology
lemented
nent of it
allows us
ments of
f friendly
ith them.
obot Op-
s off-the-
hering of
require-

onent for

Journal Pre-proof
Data property assertions:
‘Tv1’ rotation “(90.0,310.0,0.0)”
‘Tv1’ size “(0.3, 0.2, 0.2)”
‘Tv1’ nDetections “3”
‘Tv1’ position “(0.1, 1.2, 0.5)”
‘Tv1’ score “0.8925956”

Data property assertions:
‘Bed1’ rotation “(90.0,120.0,0.0)”
‘Bed1’ size “(1.3, 0.5, 0.8)”
‘Bed1’ nDetections “5”
‘Bed1’ position “(-0.2, 0.5, 0.3)”
‘Bed1’ score “0.8273445”

Tv2

Tv3

Bed1

Bed2

Bed3

Tv1

e of a simple semantic map built by ViMantic . It includes a conceptual hierarchy modeling the properties of the elements appearing in
their relations, instances of those elements and their observed features, and a screenshot of the GUI designed to show part of that inf

robot sensory data into high level information,
ple images into recognized objects [5, 12, 13].

ted execution. As these architectures are to be
obile robots, which usually exhibit heavily con-
esources, a valuable feature is to provide mecha-
operate in a distributed fashion. This permits the
ation of the building/management of the map,
a robot to retrieve just the information needed to
its tasks from a centralized device, as well as the

n of the map by other agents or intelligent devices
e same workspace [14–16].

interfaces. Additionally, for robots collaborating
le, the architecture must provide an interface to
ith humans in different ways, e.g. to show and

igh-level information from the map [17, 18].

ontrol. Another desirable feature is the measure-
he quality of the resultant maps, i.e. how success-
chitecture is when building these representations.
enables a comparison of different state-of-the-art
ogies for semantic mapping [19, 20].

ailability. The architecture should be “ready to
aning that its implementation has to be public and
egrable in most robotic platforms.

ere are numerous works in the literature provid-
ese features and mechanisms [15, 21, 22], to the
owledge, there is no a solution providing all of

r, we contribute a comprehensive semantic map-
re including both, state-of-the-art techniques and
ponents, ready to be integrated in mobile robotic
e proposed solution, coined ViMantic , satisfies

ssues previously posed, i.e. model definition, au-
ation, distributed execution, human-robot inter-
ontrol, and public availability. For that, ViMan-
signed as a client-server architecture that can run

in different devices, then ready to be adapted to the
paradigm of edge computing [23]. Briefly, the serv
could operate on the own robot or on an external dev80

tablet, a smartphone, a personal computer, or a lapto
others), is in charge of building and managing the
map, while providing a virtual representation of it to
a friendly user interaction. The client, in its turn, ru
robot itself (multiple clients can run at the same tim85

ferent robots) and aims at sensing the environment,
elements of interest in it (e.g. objects, rooms, etc.)
ing such information with the server. An implementat
contributed architecture, along with directions for insta
using it, has been made publicly available as a GitHu90

tory1.
On the one hand, the server resorts to ontologies to

the model that accommodates the semantic information
to the problem at hand [24–26]. Ontologies are hie
representations that formally define the elements in95

lem as concepts with properties, which are structure
ing to a subsumption ordering, e.g. microwaves are a
of appliances that have a box-shape (see Figure 1). Th
tures contain all the knowledge of a collected semantic
measure the quality of a semantic map, ViMantic pro100

functionality for computing a number of metrics when
ing two ontologies, where one of them could be an
codifying ground truth information. The server is imp
on Unity 3D [27], being the previous model a compo
(see Figure 2). Unity 3D is a video game engine that105

to build a 3D virtual environment incorporating the ele
the semantic map, which can be visualized by means o
graphical user interfaces that also enable interaction w

On the other hand, the client side relies on the R
erating System (ROS) framework [28], which provide110

shelf solutions for navigation, metric map building, gat
sensory data, etc. To address the automatic population
ment, the client incorporates an object detection comp

1https://github.com/DavidFernandezChaves/

ViMantic-Unity3DNode
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identifying the elements in the robot workspace, with a Convo-
lutional Neural Network (CNN) at its heart [7, 29], although it115
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ced or complemented by any other tool extract-
formation from sensory data. Detected objects

ith their location in the robot frame and shared
r, which is in charge of their processing and inte-
e semantic map.
validate our proposal, we carried out different
ith the Robot@Home dataset [30]. This repos-
cted by a robot during a number of raids in dif-
including data from sensors typically found in
ms like laser scanners and RGB-D cameras. In
ataset provides reconstructions of such environ-
orm of point clouds, which helps us to improve
on of different outputs from the proposed archi-
calization of the detected objects, assigned cat-
This contributes to further validate the ViMan-

or the building and managing of semantic maps.
ibe two use cases showing different ways to ex-

ation provided by these maps.
ng section puts our work into context with the
re. Then, Section 3 generally describes the se-
odel adopted in this work. Section 4 explains the
mponents on the server side, while Section 5 de-
n the client side. We introduce the experiments
ection 6, along with a discussion on the obtained
o use cases exploiting semantic maps. Finally,
ides the main conclusions and achievements of
nted in the paper.

ork

st decades, a menagerie of proposals for the
tilization of semantic maps have appeared in the
see Table 1). Galindo et al. [10] presented one of
d most influential works in this respect, in which

a multi-hierarchical representation that relates
ncluded in an ontology with spatial elements ob-
ensors. Such a representation was adopted and
osteriors works, like in Galindo et al. [6] for
or in Galindo and Saffiotti [31] for autonomous
n. Later, this approach was extended by Ruiz-
al. [9], who presented the multiversal semantic

In that novel model, each universe is a com-
ssible links between the aforementioned hierar-

takes into account the uncertainty coming from
lved in the map building (e.g. object detection or
zation). The work by Zender et al. [32], contem-
one by Galindo et al. [10], proposed a similar
a single hierarchy. Such a representation cod-

ed on sensors’ data and conceptual abstractions
dor”, “Kitchen” or “Coffee Machine”. The cod-

ne into an ontology by means of the Web Ontol-
(OWL). In such work, they resorted to a SIFT-

ecognition system to automatically populate the
is regard, other works proposed alternative meth-
lassifiers using Convolutional Neural Networks

human intervention during the process.
A significant number of papers in the literature h

oned on ontologies as formal models to encode semant
edge exploitable by robots. For instance, Tenorth et al.
posed a system called KnowRob-map that employs175

Logic Networks (BLNs) to predict object types acc
their description in an ontology (e.g. a flat surface w
legs, located in a kitchen, is probably a table). Pan
al. [34] explored the building of semantic maps of kit
ing an ontology to classify different types of furniture a180

to their physical characteristics. Interestingly, this w
into account the handles observed in such pieces of
for their categorization, for example, a tall planar sur
two long handles is likely to be a refrigerator. Günther
also categorized furniture according to its description185

tology. In contrast to other works, the authors focus
flat regions of the furniture and their relations. For ex
horizontal plane could be part of a chair or of table, b
related with a vertical one, the chair hypothesis gains
Another example is the research by Reinaldo et al. [3190

they proposed an intelligent navigation system base
ognized objects and their semantics. This system per
bile robots to assume different behaviors according to
ognized objects and their properties. Other proposals
those by Pronobis and Jensfelt [11] or Qi et al. [36],195

ontologies with topological maps, enabling them to
sify areas in the environment according to their type (e
kitchen, corridor, etc.).

Less attention, however, has been given to the c
tive/distributed building and management of semantic200

this regard, Prestes et al. [14] proposed a centralized
where different robots or other intelligent agents could
neously add or query semantic information. As a cons
the knowledge of an environment was available to ev
operating within it, avoiding the maintenance of dupli205

Subsequently, Riazuelo et al. [15] expanded this con
porting an architecture called RoboEarth Semantic
that uses a cloud ontology to encode semantic knowled
a Simultaneous Localization and Mapping (SLAM) a
is employed to build geometric maps. In this architect210

agents can access the data in the cloud in order to retr
vant information to complete their tasks. At this point i
mentioning the comprehensive review conducted by K
and Gasteratos [22], where the authors surveyed ava
mantic mapping approaches for dealing with mobil215

tasks.
As far as Human-Robot Interaction (HRI) is concer

posals such as that of Cosgun and Christensen [37], o
viously mentioned one by Zender et al. [32], consid
assistance during the semantic mapping. According220

this allows us to avoid the utilization of object categ
algorithms, given the many challenges they entail. An
ample including humans in the loop is the work by Bas
al. [21], subsequently extended in Gemignani et al. [3
authors describe an interactive semantic mapping appr225
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Table 1: List of most relevant semantic mapping models/architectures proposed in the literature and the features they provide.

] ]

Vi
M

an
tic

(o
ur

s)

F X
Automat X
Distribu X

X
Public im X

considers a pe
ever, they the
proved by me
rization techni

Recently, v230

promising too
liminary work
one by Navar
ronments to p
that, the autho235

tual space usi
Users can inte
ronment, eithe
vice to immer
et al. [17] is a240

interface with
also adding th
neously in the

As discusse
semantic map245

and ways to e
niques must e
bly integrated
Our proposal,
ing on a client250

for accommod
tomatic popul
tures, and a v
licly available
it.255

3. Grounding

As comme
the robot wor
els of abstrac
e.g. images, po260

elations).
such in-

ign deci-
aps [22].
ing of: i)
at hand,

ments in
e compo-
tating the
rom such

its com-
to i), the
concepts
d knowl-
; the vir-
gathered
The fol-
built and

n compo-
lient pre-
cture has
ioned is-
s: model
xecution,

nging in-

: i) defin-
roviding

ests from
the inter-
map with
hich can
ponents

Journal Pre-proof
Proposal G
al

in
do

et
al

.[
10

]

R
ui

z-
Sa

rm
ie

nt
o

et
al

.[
9]

G
al

in
do

et
al

.[
6]

G
al

in
do

an
d

Sa
ffi

ot
ti

[3
1]

Z
en

de
re

ta
l.

[3
2]

N
üc
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ormal model X X X X X X X X X X X X X
ic population X X X X X X X X X X X X X X X
ted execution X X X

HRI X X X X
plementation

rson guiding the robot by voice commands. How-
mselves maintain that their proposal can be im-
ans of the integration of state-of-the-art catego-
ques.
irtual environments have been uncovered as

ls for HRI. In this sense, there are appearing pre-
s exploring their possibilities in robotics, as the
ro et al. [18]. This work proposes virtual envi-
erform an immersive teleoperation of robots. For
rs reconstruct the robot’s 3D environment in a vir-
ng point clouds obtained from RGB-D cameras.
ract and control the robot from the virtual envi-
r through a screen or using a virtual reality de-

se themselves in the virtual environment. Roldán
nother example in this line, where the operation
the robot takes place in a virtual environment,

e possibility that different robots operate simulta-
same workspace.
d, there is a large body of literature proposing

ping models, architectures for their management,
xploit them. However, semantic mapping tech-
xhibit a number of features in order to be flexi-
in modern mobile robotic systems (see Table 1).
coined ViMantic , satisfies such needs by rely-

-server architecture that includes a formal model
ating semantic knowledge, techniques for the au-
ation of such model, distributed execution fea-
irtual environment-based HRI. ViMantic is pub-
, hence any interested researcher can benefit from

the Semantic Map concept

nted, a semantic map is a representation of
kspace containing information at different lev-
tion, ranging from the low-level (sensory data,
int clouds, etc.), to the high-level (concepts such

as Table, Chair, etc., as well as their properties and r
Multiple proposals exist to accommodate and manage
formation, although most of them make similar des
sions regarding the critical components of semantic m
In this way, we adopt here a consensus model consist265

a formal representation of the concepts in the domain
and ii) the linking of those concepts with spatial ele
the robot environment. Additionally, we augment thes
nents with: iii) a virtual model of the environment s
(raw and/or processed) sensory information gathered f270

world elements.
Figure 1 yields a toy example of a semantic map and

ponents, where: the conceptual hierarchy corresponds
formal representation of the concepts; instances of
are linked to spatial elements, also including acquire275

edge like their position or size, hence modeling ii)
tual environment implementing iii) incorporates the
and processed information from the spatial elements.
lowing sections describe how these semantic maps are
managed in ViMantic , which is divided into two mai280

nents: the server, described in Section 4, and the c
sented in Section 5. Remark that the proposed archite
been carefully designed to cope with the aforement
sues demanded to modern semantic mapping technique
definition, automatic model population, distributed e285

human-robot interface, and public availability.

4. Server side: representing, managing and excha
formation

The components on the server side are in charge of
ing the formal model behind the semantic map, ii) p290

services for modifying/querying it according to requ
clients, iii) offering a visual representation supporting
action with the user and iv) comparing the semantic
another previously built or ground truth information, w
be used to measure its quality. To develop those com295
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Object Manager Virtual Enviroment

Ontology Manager

+ Plugins

Robot@Home plugin

U
se

rs

Report Manager

ew of the proposed server side of the architecture showing
ents and their interconnections. The white boxes stand for
blue one represents the 3D virtual environment and the grey
l plugins that add extra functionalities.

ted to Unity 3D, a popular video game engine.
features, Unity 3D offers tools to handle multi-
form connections, work with three-dimensional
sign visually appealing interfaces [17, 18]. We
his game development engine because, in addi-
ntioned features, it has a smooth learning curve
unity that supports it is overwhelmingly large,
me development, but also in other application ar-
telligent agents [27]. Moreover, this framework

ository of ready-to-use plugins implementing dif-
ms, e.g. encapsulating Artificial Intelligence (AI)
r agents, or managing collisions between virtual
can be helpful in robotic applications.

s made up of a number of components, as shown
hich implement different functionalities and are
exchange information among them. Briefly, its
ents are: i) the General Manager, which is in
aging the flow of data by creating connections
ents, and also handles the system configuration
.1), ii) the Object Manager that processes the ob-
coming from the robot workspace and creates or
s in a virtual environment (also called virtual ob-
4.2), iii) the Ontology Manager, which handles

ifying the semantic information and provides ac-
xample, to accommodate the information coming
ous component (see Section 4.3), iv) the Graph-
face (Section 4.4) that supports human-robot in-
gh buttons, messages, input fields, etc. and v) the
er (Section 4.5) which generates reports compar-
tic map obtained at the end of a run with another
given. The WebSocket standard [40] is used to

the components on the server side with those in
bots and agents). Next sections give more details
odules and the information they exchange.
entioned virtual environment deserves further
it is at the core of Unity 3D (see the blue box

This environment contains all the needed infor-
ually represent the world being modeled. In our
udes representations of the knowledge acquired
by the robots (e.g. gathered images, laser scans,
c maps, detected objects, etc.), as well as seman-

works under the assumption that the world is static.
there are many objects such as toilets, beds, sinks, et340

are not usually moved, others such as chairs or flower
change their location. In this architecture, these chang
managed through user supervision and the graphical i

The chosen modular design allows for the additio
components or plugins in a straightforward way. The345

velopers can make use of this mechanism to access
mation in the semantic map and implement more com
efficient behaviors for robots/agents. We provide mo
mation about this feature in Section 4.6.

4.1. General Manager350

This component deals with general tasks in the v
vironment such as loading or saving configuration
(e.g. path to the ontology file, semantic map identifi
ent parameters for dealing with object detections, etc.
dling the display/occlusion of the different menus in355

face (e.g. main view, settings window, or new connec
dow). Additionally, the General Manager also establi
nections between physical robots (or agents) and the
demanded by the user.

To accomplish that, it is just needed to introduce the360

address. Then, the General Manager instantiates an a
that robot in the virtual environment (also called virtu
The virtual robot is set up according to its associated
ration settings (see Table 2), and a WebSocket connect
tablished linking it with its respective physical robot. F365

point onwards, all the messages received from that IP
will be associated with this avatar, unambiguously id
it and enabling the existence of multiple, simultaneou
working within the same semantic map.

4.2. Object Manager370

The Object manager is the component in charge of
ing the object detections originated from clients. The
tions come in the form of messages, which can con
or multiple detections, and that encapsulate: the obje
gories as predicted by the recognition system (see Sec375

their associated confidence scores, and their boundi
(defined by their spatial extensions and poses with r
the robot).

Once a new message carrying object detections is
the Object Manager transforms the local coordinates o380

jects’ poses, which are relative to robot poses, to the
coordinates in the reference system of the virtual envi
This is done by composing the pose OR of each objec
pose RV of its associated robot avatar in global coordi
sulting in the global object pose OV , that is OV =385

Once properly positioned, they are inserted in the vir
ronment as 3D bounding boxes with their respective
green boxes in Figure 8). These boxes are also calle
objects.

In order to group detections belonging to the same390

object, we have exploited the physics provided by U
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to detect when any of these virtual objects is close to another
(as set by a given distance threshold) or even in contact. In
case of collisio
egory, we mer395

object that en
confidence sco
merged (equiv
physical objec

Once the m400

cessed, the res
jects is sent to
way, each vir
instance of its
jects and insta405

unequivocally

4.3. Ontology
As previous

has to provid
mantic inform410

to ontologies
of the knowle
a number of
tion usually ta
according to415

the is-a pre
Object, Appl
predicate is us
and is-a(App

instances of th420

resent abstrac
ment. For ex
of the concep
stance can be
which are par425

cates could be
ject (e.g. size
ifies the certai
(e.g. score(T

To deal with430

RDFSharp2. T
lows us to ma
Language (OW
the representa
edge through t435

stances, and p
means of RDF
a family of sp
tium (W3C) t
exchange in th440

Sharp.
In this way

number of ob

2https://ww
3https://ww
4https://ww

found in human-like environments as offices or houses (see
Figure 3). These concepts, their properties and relations are445

ough hu-
d seman-
jects de-
d object,
.g. TV-1,
e associ-
tifier,
ce score)
ct it rep-
when an

perties of
ingly up-
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ed to the

dge, and
and pro-
through

ines like
ble tasks
an check
r new in-
igh-level
ood con-

echanism
ollabora-
Interface

windows,
e virtual
ns out to
rage and

at are set
ed to fix
re two of
introduce
h a phys-
showing
hitecture
etection,
ng to the

es differ-
field, the
laced by
architec-
e map to
ow them,
ts/agents,
Besides,

de of the

Journal Pre-proof
n, if they additionally share the same object cat-
ge their information giving rise to a virtual parent
capsulates: the object category and the average
re, the number of virtual objects that have been
alent to the number of detections of the same
t), and the union of the children bounding boxes.
essage containing such object detections is pro-
ulting information about new/updated virtual ob-
the Ontology manager (see Section 4.3). In this

tual object is represented in the ontology as an
associated category or concept. Both, virtual ob-
nces, incorporate an unique identifier in order to
identify them during this information exchange.

Manager
ly mentioned, a semantic mapping architecture
e a formal model that accommodates the se-
ation. For addressing this, we have resorted
[41]. An ontology is a formal representation
dge concerning a domain of discourse through
predicates O = {P1, . . . ,Pn}. This representa-
kes the form of a hierarchy of concepts sorted
a subsumption ordering, which is built using
dicate. Examples of those concepts could be
iance or Microwave, and the aforementioned
ed to establish that is-a(Object,Appliance)
liance,Microwave). Ontologies also include
ose concepts, also called individuals, which rep-

t or physical elements within a certain environ-
ample, when a new TV is detected, an instance
t TV is created and named TV-1. Such an in-
further characterized through custom predicates,
ticular to each application. Examples of predi-
size, which expresses the dimensions of an ob-
(TV-1,[0.2,0.2,0.3]), or score, which cod-
nty of the neural network about the TV detection
V-1,0.9)).

ontologies within Unity 3D we have resorted to
his is an open source C# framework which al-

nage ontologies coded using the Web Ontology
L3). OWL is a language that aims to facilitate

tion and processing of rich and complex knowl-
he previously mentioned resources (concepts, in-
roperties). OWL ontologies can be codified by
4, acronym for Resource Description Framework,
ecifications from the World Wide Web Consor-
hat standardizes the data coding for information
e semantic web, and that is supported by RDF-

, we have designed an ontology containing a
ject categories/concepts of interest that can be

w.w3.org/2001/sw/wiki/RDFSharp

w.w3.org/TR/owl-features/

w.w3.org

also called prior knowledge, and has been acquired thr
man elicitation [9]. The construction of the propose
tic map involves populating this model with the ob
tected in the environment. For that, for each detecte
an instance of its respective concept is generated, e450

Microwave-3, Table-2, etc. These instances hav
ated properties specified by means of predicates: iden
position, orientation, size, score (its confiden
and nDetections (the number of times that the obje
resents has been detected). It should be noted that,455

object previously perceived is detected again, the pro
its corresponding instance in the ontology are accord
dated (recall Section 4.2). In its turn, for having a
detections, each one is introduced as an instance link
first one by means of the is-part-of predicate.460

Thereby, the ontology contains both, prior knowle
information acquired from the robot perception system
cessed by the Object Manager . This model, codified
RDF, enables the execution of logical reasoning eng
Pellet [42] or FaCT++ [43] that can perform profita465

for an efficient robot operation. For example, they c
the consistency of the codified information [31], infe
formation that is not explicitly provided, or perform h
queries, e.g. finding an appliance able to keep food in g
dition [9].470

4.4. Graphical User Interface

The proposed architecture also contemplates a m
for human robot interaction, aiming to enhance their c
tion. For that, it has been designed a Graphical User
(GUI) consisting of three main elements: i) floating475

ii) the main interface, and iii) the visualization of th
environment. The combination of these elements tur
be a powerful tool for user interaction, allowing the sto
display of information within the semantic map.

The first of these elements encapsulates options th480

just one or a few times by the user, so there is no ne
its visualization in the main screen. Currently there a
these windows: a first one that permits the user to
the information needed to establish a connection wit
ical robot (recall Section 4.1), and a second window485

a number of advanced configuration options of the arc
(e.g. confidence score threshold to process an object d
distance threshold to consider that two detections belo
same object, etc., see left part of Figure 4).

The main interface consists of a side bar that provid490

ent functionalities. First, it displays, in an editable text
name of the current semantic map. If this name is rep
one belonging to an existing map, it is loaded in the
ture/GUI. Two more buttons enable the user to save th
disk and to open a new robot connection window. Bell495

it is shown a list with the currently connected robo
also permitting the user to cancel those connections.
a small button is also displayed on the upper right si
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Figure 3: Left, ex ide a green
box).

Figure 4: Graphic nment with
different mechani

GUI, providin
tion window.500

As for the i
the visualizati
workspace, an
example, Figu
ously built poi505

virtual object
and a label. T
from both the
tion 4.3), thus
it. Regarding510

score of the r
a glance relev
workspace.

the qual-
manager

compares
different

ies popu-
informa-
aring on-
This en-
w.r.t. the
reviously
g general
bjects in
umber of
s. Notice
object in
there has
ntic map

Journal Pre-proof
cerpt of the proposed ontology exhibiting a hierarchy of concepts. Right, properties associated with instances of those concepts (ins

al User Interface designed to support human-robot interaction including buttons, text fields, and a visualization of the virtual enviro
sms for its modification. Down left, a screenshot of the floating window permitting an advanced configuration of the system.

g access to the aforementioned system configura-

nterface with the virtual environment, its permits
on of pieces of the knowledge acquired from the
d also enables some ways to interact with it. For
re 4-right shows virtual objects placed in a previ-
nt cloud representation of an environment. Each
is linked to a small floating panel with a button
he button permits the user to remove that object
virtual environment and the ontology (see Sec-
eliminating the robot’s knowledge associated to
the label, it shows the category and confidence

epresented object, helping the user to review at
ant parts of the knowledge acquired from the

4.5. Report Manager

Due to the lack of standard indicators to assess515

ity of a semantic map, ViMantic integrates a report
that carries out this task. Concretely, this module
the ontologies codifying the information within two
semantic maps (see Section 4.3). Since the ontolog
lated with ViMantic are formal representations of the520

tion contained in semantic maps, in this context comp
tologies is equivalent to comparing semantic maps.
ables the evaluation of the quality of a generated map
ground truth, or even its relative comparison with a p
built one. The reports generated supply the followin525

results: i) number of detections, ii) number of right o
the map, iii) number of wrong objects in the map, iv) n
detected objects, and v) number of undetected object
that iv) fuses possible multiple detections of the same
i). For an object prediction to be considered right,530

to be an object of the same type in the reference sema
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whose distance between the nearest points of their bounding
boxes is lower than a given threshold. In addition, in order to
provide furthe
each predicted535

and the distan
one.

4.6. Plugins

Plugins are
chitecture to e540

any instance o
additional plu
ticular applica

An exampl
could be the “545

information o
This informa
houses, which
graphically sh
acquired by t550

call Figure 4).
Another ex

Finder”. Let’s
a house receiv
a plugin could555

viously detect
one to the rob
cated approac
each object in
bottle [44]. If560

could also qu
horizontal sur
robot to visit t

It should be
to control robo565

For example,
making and ta
semantic know
one or more r
ple, a plugin570

mand into a n
(e.g. navigatio
multiple robo
robots accordi
tion 6.4.2).575

5. Client side

This section
on robots/agen
and actuation
For their deve580

Operating Sys
tion of tools,
of building co
fault choice in
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r debugging capabilities the report includes, for
object in the first semantic map, its properties

ce to the nearest same-type object in the second

optional components that can be added to the ar-
xploit and/or expand its functionality. In this way,
f ViMantic could include an arbitrary number of

gins, depending on the requirements of each par-
tion.
e of optional component adding extra features
Robot@Home plugin”, which permits us to load
f houses from the Robot@Home dataset [30].
tion includes point clouds representing those

are embedded in the virtual environment and
own, helping the user to understand the data

he robot through an immersive experience (re-

ample of useful plugin could be an “Object
suppose a scenario where a robot operating in

es the order “bring me a bottle”. In this context,
query the Ontology Manager the position of pre-
ed bottles, and send the location of the closest
ot in order to navigate there. A more sophisti-

h could employ the detection score associated to
stance to optimize the possibility to truly find a
no bottle appears in the semantic map, the plugin
ery their most likely positions (e.g. over planar,
faces like tables and counters) and command the
hose promising locations to find them [6].

noted that Unity 3D can host complex systems
ts, hence turning them into mere task executors.
plugins could implement a high-level decision-
sk execution system, with access to the available
ledge and capable of controlling the actions of

obots [6]. Continuing with the previous exam-
could decompose the “bring me a bottle” com-
umber of simpler tasks affordable by the robot
n, fetch and carry, etc.) and, in applications with
ts, it could also optimally assign such tasks to
ng to their position, battery level, etc. (see Sec-

: robots sensing and acting

describes the side of the architecture to be run
ts, aiming to support and empower their sensing

skills. Its core components are shown in Figure 5.
lopment we have relied on the widely used Robot
tem (ROS) [28]. ROS is an open-source collec-
libraries and conventions that simplify the task
mplex and robust robotic behaviors, being the de-
the robotics community for software developing.

Object Recognition

Se
ns

or
y

In
fo

rm
at

io
n

W
eb

So
ck

et
Co

m
m

un
ic

at
io

n

Robot Localization

Object Info Packer

Actuation Skills

Figure 5: Overview of the proposed client side of the architecture
main components and their interconnections. White boxes are c
while the blue one represents sensors capturing data.

Briefly, the Object Recognition component is in c585

sensing the robot’s surroundings and detecting objects
(see Section 5.1). The output of this component feed
ject Information Packer one, which packs relevant inf
about each detected object (Section 5.2). Such inform
cludes: object category, size, 3D position w.r.t. the rob590

orientation, and confidence score. The resultant pac
sent to the server via WebSocket communication [40],
managed by the rosbridge suite package5. In its turn,
Localization component is responsible for localizing
within a previously built geometric map and sharing su595

mation with the server (see Section 5.3). Finally, and
ing on the capabilities of each robot/agent, the architec
considers an Actuation Skills component that permits i
out action orders as commanded by the server, e.g. n
to a given location in the map, fetch and carry an ob600

(Section 5.4). Next sections further describe these com
It is worth mentioning that, although in our disc

keep the spotlight on robots, the architecture is design
cept/provide information from/to any smart device con
the internet and instantiating a ViMantic client. This m605

any intelligent agent (running such a client) like smar
(e.g. IP cameras, presence or humidity sensors, etc.) o
like intelligent light bulbs, smart TVs, smartphones, o
could generate new information to be inserted in the
map, or perform queries about its content.610

To enable the implementation of this architecture in
cal way, we have created a library that implements
munication of many of the common message types
This library can also be used as a template for im
ing other custom messages needed in specific app615

The interested reader can find it at: https://gith

DavidFernandezChaves/ROSUnityCore

5.1. Object Recognition

The purpose of this component is the detection of o
the robot’s workspace from the information provided620

board sensors. Convolutional Neural Networks (CN
proved to be particularly useful for this purpose in

5http://wiki.ros.org/rosbridge_suite
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detections as reported by Detectron 2, part of the proposed
onent. On the left, the CNN recognized a dining table with
e of 0.702, a partially observed chair (0.935) and, even under
itions, a potted plant (0.745). On the right, it detected a par-
k as well as a toilet with 0.736 and 0.979 confidence scores,

n challenges, e.g. PASCAL [45] or COCO [46].
y due to their robustness against challenging
anging lighting conditions, occlusions, varying
high intraclass variability (objects belonging to
ory but exhibiting different shapes, colors, sizes,

s in object detection networks is vertiginous, ap-
designs every year improving the performance of
s. There are a number of well known networks
gh detection success, like YOLOv3 [47], Faster
or Mask R-CNN [49]. In this work we opted
2 [50], which integrates an improved version of
, and that achieved a notorious performance in our
rch [13, 16]. The input of this CNN is an inten-
GB), and the output is a set of detected objects.
detected object includes: the object category, a
containing the object, a mask over the pixels in
nging to the object, and a confidence score codi-
fident the network is about the detection. Figure 6
amples of these detections, illustrating the poten-
etwork for successfully recognizing objects. To
is CNN into ROS we have created a Detectron2
e, which is publicly available for any interested

be as modular as possible, the architecture has
in such a way that the neural network used by

ognition component can be replaced by any other
suming sensory information and producing a list
jects without affecting the other components.

formation Packer
nsert the detected objects in the semantic map, it
ansform the output from the CNN, expressed in
lane, into the robot three-dimensional coordinate
is transformation is done, the detected object can
e map as described in Section 4.2. The Object In-
ker is in charge of doing that by: i) retrieving the

thub.com/DavidFernandezChaves/Detectron2_ros

in the same frame, and iii) sending it to the server. T
ponent defines how and which information is forward
server, helping to the previously mentioned modularit

To calculate the 3D pose and spatial extension of eac
the Object Information Packer transforms the masks665

received from the CNN into point clouds. For that w
sensory information coming from RGB-D cameras, w
vide depth information of the scene in addition to in
However, in cases where only intensity information is
novel techniques are appearing that estimate 3D point670

meshes of objects from such data [51]. Let’s define
dinates of a pixel in the intensity image belonging to
of a detected object as p = [u, v]. Then, the intrinsi
eters of the RGB-D camera can be used to obtain th
nates of its corresponding 3D point in the sensor fram675

PS = [XS ,YS ,ZS ] (see Zuñiga Noël et al. [52] for more
Once expressed in the sensor frame, such a point can
formed into the robot frame by means of the sensor
parameters, obtaining PR = [XR,YR,ZR] [53]. This p
repeated for each pixel in the mask, resulting in a po680

representing the object. Such point cloud is further pro
remove spurious points as well as erroneous points th
belong to the object, typically caused by objects with
inaccurate object masks. Thus, a filter is applied that
points not satisfying the condition: µ − 2 σ < ZR <685

where µ is the mean depth of the point cloud and σ its
deviation. The remaining points represent the space
by the object, and are used to retrieve the position of t
centroid in the robot frame, as well as to fit a 3D boun
delimiting its extension.690

Once the objects detected within an image have b
cessed, the Object Information Packer creates a pack
taining their categories, 3D poses, spatial extensions a
dence scores. This package is sent to the server in or
processed, hence fully incorporating the gathered inf695

into the semantic map (recall Section 4.2).

5.3. Robot Localization

Another type of information needed to properly bui
mantic map is such of the localization of the robot at e
instant. Such localization is expressed w.r.t. a given g700

map of the workspace, and permits the server to prope
the robot avatar in the virtual environment (recall Sec
as well as the detected objects (Section 4.2). The build
geometric map is out of the scope of this work, but it
mentioning that ROS offers tools for that, like gma705

ROS wrapper for OpenSlam’s Gmapping [54].
Robot localization is a widely researched topic in the

community, and ROS provides robust localization pac
ready built in. Concretely, we have resorted to the AM
age8, which implements a localization technique bas710

7http://wiki.ros.org/gmapping
8http://wiki.ros.org/amcl
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popular Adaptive Monte Carlo Localization method proposed
by Fox [55]. Such package relies on measurements from sen-
sors typically
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mounted on mobile robots: 2D laser scanners, to
t within a previously built geometric map. In this

ntext of the proposed architecture, laser scans are
uch package and the obtained robot locations are

ver through the WebSocket connection.

Skills

ous sections describe components where
ents play the role of sensors: they gather
information and send it to the server. However,
also perform actions in the environment, and
Skills component is in charge of encapsulating
tent of this component is agent-specific, since it

eir capabilities.
of mobile robots, their essential capability is to
hey could be also able to fetch and carry objects,
ther devices (e.g. pushing a button), play sounds
ds), etc. [24, 56]. For that they are needed motor-

obotic arms, speakers, etc., which can be present
en robotic platform. In this way, the Actuation

ent acts as a bridge between the server and the
tors.
e client side could incorporate components to en-
to perform tasks of certain complexity, in our

s left to the server side. The server, through the
d plugins, implements the needed logic so a robot
t the needed high-level tasks for the application

xample of this is the “Object Finder” plugin (re-
6), which sends navigation commands to the Ac-
component in order to find a given object. An-
could be a plugin in charge of gaining in confi-

ncertain object recognition results. Such a plugin
bout the low-scoring detections to the ontology,
gation commands to the robot in order to revisit
g at those objects from different points of view
o disambiguate the validity of their detections.

e of this section is to demonstrate the suitability
d architecture for the building of semantic maps.
ave carried out a number of experiments using

ome dataset as testbed (see Section 6.1). Such a
y permits us to consider one or multiple robots

from the same environment, hence enabling the
ti-agent scenarios. Section 6.2 describes how the
onents/parameters in ViMantic have been set up

ch experiments. In Section 6.3 we comment on
experiments as well as on the reported results.

n 6.4 discusses two possible use cases of seman-
with our architecture.

Figure 7: Mobile robot used to collect the Robot@Home dataset
some samples of the data it provides.

6.1. Dataset: Robot@Home

Robot@Home [30] is a publicly available repositor
and processed data collected by a mobile robot Giraff [
visiting cluttered houses (see left part of 7). For colle
dataset, Giraff was equipped with a rig of 4 RGB-D765

(model Asus XTion Pro Live) and a 2D laser scanne
Hokuyo URG-04LXUG01). Those sensors gathere
raw observations divided into 83 sequences (see centr
7). From them, we have selected the sequences where
fully visited four different houses, since they allow us770

test our proposal. Additionally, we only considered th
gathered by the RGB-D camera looking ahead, given
a more common configuration in robotic platforms. T
iment with realistic sequences of robot operation, we
vantage of the fact that the dataset sequences are also775

in the timestamped rosbag format, so by means of th
package 10 the sequences can be reproduced making
data available at the right time.

Regarding the processed data in the dataset, it inc
geometric maps and 3D reconstructions of the visite780

(see right part of 7), both annotated with ground truth c
of the objects appearing therein, as well as the categor
inspected rooms. Specially relevant here are the 3D re
tions since, as commented in Section 4.6, they are in
the virtual environment so it looks more appealing to785

6.2. Experimental Setup

In order to employ ViMantic , some of its compone
be instantiated and configured. This includes: the CN
Object Recognition module, the ontology in the Ontol
ager , and the configuration parameters in the server.790

Regarding the CNN, we have opted for an instanc
tectron 2 pre-trained with the COCO dataset [46].
dataset includes categories of everyday objects typica
in houses like chair, sofa, potted plant, bed, dining-t
let, or tv, among others. As for the ontology, the795

ject categories considered in COCO for indoor envi

9http://mapir.isa.uma.es/work/robot-at-home-data
10http://wiki.ros.org/rosbag
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Table 2: Server configuration parameters used in the experiments.
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Value
ore threshold for an object to be inserted 0.8
tance between the robot and the object to 2 m.

tance between two object detections shar-
be merged

0.1 m.

ber of object detections needed to insert it
nvironment

2

ed to concepts and, by human elicitation, clas-
ee major groups: Furniture, Appliance and
ct. Figure 3 shows the resultant hierarchy of
ell as the properties used to describe each object

ration parameters in the server have also to be
lues used in these experiments are shown in Ta-
ere chosen empirically to: i) notoriously reduce
wrong object detections that result in virtual ob-
s, and ii) increase the number of detections that
ly merged. It is worth mentioning that every
n is recorded in the ontology, independently of

ual object is instantiated or not. It is also specific
ation in which device the server is executed. In
ts described below it was launched in a computer
robots, following the idea of edge computing.
, two computers were used during the experi-
first one, running the server side of ViMantic ,
ore i7-5700HQ processor at 2.70 GH, a RAM
2x8 GB DDR3 at 800 MHz, and a graphic card
rce GTX 960M with a memory of 2 GB. The sec-

, running one or multiple instances of the client
chitecture, is equipped with an Intel Core i7-
sor at 2.20 GH, a 2x8 GB DDR4 RAM memory
and a graphic card NVIDIA GeForce GTX 1070
y of 8 GB.

nts: putting ViMantic to work

ng sections describe the experiments carried out
e instantiated ViMantic architecture, which also
lustrate its modus operandi. Concretely, we
d an experiment where a robot explores different
orking with a server, builds their respective se-
see Section 6.3.1). In a second experiment, two
rate in the building of such maps (Section 6.3.2).
eports and discusses on the obtained results.

ent one: building maps with a single robot.
eriment considers a scenario where a single mo-

tantiating the ViMantic client visits four houses
Home, namely alma, anto, pare and rx2. In each
es, the robot navigates until every room is vis-
hering both RGB-D images and 2D laser scan-
rth mentioning that the robot has no other pur-
ander and passively capture data. On the one

ns are used by the Robot Localization component

are processed by the Object Recognition component in
detect the objects appearing in them (see Figure 6),
Object Information Packer extracts additional inform845

their spatial extensions and poses (Section 5.1). Th
locations and packed detections are sent to the server
integration in the semantic map.

Then, such information is processed in the server
ured as described in Section 6.2) by: the General M850

which synchronizes the robot avatar location with
ing ones, and the Object Manager , which accordingl
and updates virtual objects in the virtual environment.
shows the resultant virtual environments of the four h
visualized in the graphical user interface, populated855

detected objects and the robot avatar (represented by
oval). Thereby, the user can view at a glance relevan
the semantic map and interact with it. Recall that ea
detection processed by the Object Manager is sent to t
ogy Manager for its inclusion in the ontology, even th860

a confidence score under the considered threshold, or
have not yet been detected an enough number of tim
inserted in the virtual environment. Figure 9 depicts a
of the ontology content once the robot visited the an
showing on the right side a number of instances of o865

tections as provided by the Object Manager .
Thus, each semantic map built, as defined in Sec

composed of: the formal representation of the conce
home domain, the linking of those concepts with th
(detected) elements in the house, and the virtual mode870

environment. Section 6.4 provides some use cases t
vantage of these maps.

6.3.2. Experiment two: collaborative building.
This second experiment aims to illustrate the build

mantic maps by means of two agents/robots. This pos875

given by the distributed nature of the architecture. Fo
same four houses are considered, where two instanc
ViMantic client are executed into two different robot
robots start moving in the same houses at different
stants, and keep navigating until every room is visite880

both robots are instances of the robot that performed
collection in Robot@Home, they both follow the sam
tory. To obtain new information with the second robot
used the data from the camera looking 90° to the righ
ing in a different point of view of the same scene w.r.t885

robot.
As before, the first robot considers the RGB-D ima

ing from the camera looking ahead to feed the Objec
nition component. However, for the second one, i
such a camera it is considered the one on its righ890

jects are detected from different viewpoints. Again,
scans are used to localize robots, sending both clients
cations along with the detected objects to the serve
processes them by means of the General, Object an
ogy managers. The interested reader can check the f895

11

Jo
ur

na
l P

re
-p

ro
of



Alma

Figure 9: Excerp ierarchy of
concepts was sho

video, which i
cess carried o
https://you

6.3.3. Results
This section900

experiments.

cepts de-
ning the
tation of
the suit-

pects like
e perfor-
ts, or the

Journal Pre-proof
Anto

Rx2 Pare

Figure 8: Views of the virtual environments obtained after the inspection of four houses from the Robot@Home dataset.

t of the content of an ontology after the inspection of the anto house by a mobile robot (instantiating a ViMantic client). The whole h
wn in Figure 3.

llustrates part of the semantic map building pro-
ut in the Anto’s house during this experiment:
tu.be/3MZgAxxBtKY.

.
discusses the results obtained from the previous

As commented, the built semantic maps consist

of links between spatial elements (objects) and con
fined on an ontology, the own ontology formally defi
knowledge within the home domain, and the represen
those elements in a virtual environment. To evaluate905

ability of such maps, we have considered different as
the required size in memory of the final ontology, th
mance achieved by object detection-related componen
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Table 3: Results obtained from the conducted experiments concerning ontolo-
gies and virtual environments.
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Ontology Virtual Environment
Size (KB) # Instances # Objects Success

to 1.082 1.845 29 89,66%
a 693 1.166 21 76,19%

2 543 846 22 77,27%
re 1.006 1.654 40 85,00%

rage 831 1.378 28 82.03%
to 1.346 2.357 35 88,57%
a 985 1.685 35 80,00%

2 725 1.177 33 75,76%
re 1.072 1.844 51 90,20%

rage 1.032 1.766 39 83.63%

time demanded by the ViMantic critical compo-
ults shown have been obtained using the Report
ule, which compared the ontologies obtained af-

different experiments with ontologies encoding
nformation. Next paragraphs go into depth on

lysis. The ontology is the core of the semantic
a file encoding it, it is possible to restore a pre-
ap by loading its ontology through the ViMan-

ser interface, since it also contains the needed in-
recovering the virtual objects in the virtual envi-
way, it is relevant to spend some lines analyzing
memory behaves depending on the workspace
s a starting point in this analysis, the ontology

concepts and their properties has a size of 48 KB.
visited houses, anto and pare are large ones, with
s each, a kitchen, spacious living rooms, and four
r rooms, bedrooms and dressing rooms), while
have a single bathroom, two and one bedrooms
nd open concept kitchens-living rooms. Gener-
r the space, the more objects appear in it.
rts the sizes in memory of the ontologies created

s experiments. We can see how such sizes are in
ouses’ descriptions. The lightest ontology is the
e rx2 house, with a size of ∼0.5 MB and stor-
800 instances. The heaviest one, built in the anto
o robots scenario, exhibits a size of ∼1.3 MB and
than 2300 instances. We can also check that, on
stance requires just ∼0.56 KB to be allocated in
is a reduced size enabling the architecture oper-
ios with thousands of instances, since ontologies
ify such information.
or applications with even larger environments,
ration requirements, or devices with very con-
ry resources, maintenance mechanisms could be
f needed to keep affordable the ontology size. For
lar information could be merged or deprecated
oved [9].

ject detection-related components. The perfor-
object detection-related components within Vi-
al for the building of suitable semantic maps. To

ect detection system with a low recognition suc-

the interaction with the user.
Table 4 shows the performance of these compone

different state-of-the-art CNNs when running in the fo955

of the first experiment. An object inserted in the
map has been considered as right if there is an obje
ground truth of the same type whose distance between
est points of their bounding boxes is less than 20cm.

CenterNet [61] with 240 detected objects was the960

with the most detections, while Detectron2 [50] with
an average precision of 0.83 achieved the best trade-off

success and number of detected objects. The numbe
objects yielded by each CNN is a good indicator of i
tion rate and how prone it is to detect erroneous or poo965

(with few detections). For example, Faster-RCNN [60]
and produced 201 objects in total, but after filtering suc
only 14 of them were considered in the semantic map.
objects with multiple detections are more likely to be
when their associated bounding boxes are large, so C970

return small detections (mostly due to blurred images
fects and other problems) are more likely to perform w

It is important to point out that the number of detecte
shown in Table 4 is filtered by the confidence thresh
detection to be inserted in the map (in our case 0.8975

some CNNs are more conservative than others, success
increased by lowering this threshold, especially for tho
that have obtained a low average f1 score (e.g. Faste
with an average f1 score of 0.19), as this implies that
a high recall.980

We observe that the objects successfully recognise
single detection do not represent 10% of the total n
objects recognised in any case, being Faster-RCNN
9.95% the CNN with more objects successfully detect
respect. Moreover, in all cases these objects represent985

est percentage of wrong detections with respect to
number of them. However, as the number of detec
creases, so does the the percentage of them that are
all cases, objects with more than 9 detections have th
performance.990

The reason for this is that single detections tend to
blurred images or abrupt lighting changes, and such art
no further detected in the next frames by the CNN. T
we found it useful to set a threshold (γ) to the number
that an object has to be detected in order to be insert995

virtual map, where the user can interact with it (recall
In Table 4, we can check the success of the sema

building when filtering out objects that received on
two detections (γ = 2). Despite the differences found
the networks, the final success rate of the maps is q1000

at around ∼82% without user influence. It is worth m
that human revision, despite the high reliability of the
tion provided by the semantic maps in ViMantic , cou
further improve their quality.

Notice that, although not shown in the virtual envi1005

every detection is stored in the ontology so new dete
previously observed objects can be identified. It is wor
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Table 4: Results obtained from the first experiment using five different state-of-the-art CNNs. The Objects row yields the total number of reported objects in all
the considered houses, grouping them according to the number of times that they have been detected. In order to compare how profitable each group of objects is
for the global performance, the percentage of right/wrong objects (computed by dividing the number of right/wrong objects in a given group by the total number of
detections in all g columns on
the right show the ions or less
(gamma = 2).

Average
f1-score

Detectron2 [50 0.73

Yolo3 [58 0.53

SSD [59 0.53

Faster-RCNN [60 0.19

CenterNet [61 0.33

that such a th
detections. Th
wrong detectio1010

as well as thos

In the same
viously mentio
ify the level of
populated sem1015

the success rat
objects. Never
could be furthe
tion obtained,
systems, by re1020

adding multip
as mentioned
map at any mo
could be enha
uncertain dete1025

a certain thres
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periments, the
vironments m1030

of right detec
in both cases,
ering two rob
ronments sign
while the per1035

slightly increa
is mainly due t
went unnotice
from a differe
previously obs1040

old γ. In conc
map proved to
and leads us t

f ViMantic .

r
s)

s)

.

th study-
d to pro-
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Hz. From
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real time
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e Object
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process
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Journal Pre-proof
roups) is provided in the rows % Rigth objects w.r.t. the total (%ROT) and % Wrong objects w.r.t. the total (%WOT). The final three
success, average precision and average f1-score obtained respectively in the semantic maps after filtering out objects with two detect

1 2 3 4 5 6 7 8 9 >9 Total
Semantic map

success
(γ = 2)

Average
Precision

]
Objects 107 24 18 9 5 8 3 3 4 25 206 75

0.83%ROT 7,28% 5,83% 6,80% 3,88% 2,43% 2,91% 0,97% 0,49% 1,46% 11,17% 43,20% 82,67%
%WOT 44,66% 5,83% 1,94% 0,49% 0,00% 0,97% 0,49% 0,97% 0,49% 0,97% 56,80% 17,33%

]
Objects 98 39 10 11 6 1 7 1 0 10 183 46

0.85%ROT 7,10% 6,56% 4,92% 4,37% 2,73% 0,55% 2,73% 0,55% 0,00% 4,92% 34,43% 82,61%
%WOT 46,45% 14,75% 0,55% 1,64% 0,55% 0,00% 1,09% 0,00% 0,00% 0,55% 65,57% 17,39%

]
Objects 115 22 12 9 3 3 0 1 1 4 170 33

0.77%ROT 2,94% 3,53% 5,29% 2,94% 1,18% 1,18% 0,00% 0,59% 0,59% 2,35% 20,59% 72,73%
%WOT 64,71% 9,41% 1,76% 2,35% 0,59% 0,59% 0,00% 0,00% 0,00% 0,00% 79,41% 27,27%

]
Objects 174 13 3 4 3 0 2 0 1 1 201 14

0.92%ROT 9,95% 2,49% 1,00% 1,99% 1,00% 0,00% 1,00% 0,00% 0,50% 0,50% 18,41% 85,71%
%WOT 76,62% 3,98% 0,50% 0,00% 0,50% 0,00% 0,00% 0,00% 0,00% 0,00% 81,59% 14,29%

]
Objects 195 17 11 6 4 0 2 0 0 5 240 28

0.91%ROT 5,83% 2,50% 3,75% 2,50% 1,25% 0,00% 0,42% 0,00% 0,00% 2,08% 18,33% 85,71%
%WOT 75,42% 4,58% 0,83% 0,00% 0,42% 0,00% 0,42% 0,00% 0,00% 0,00% 81,67% 14,29%

reshold also disregard a small number of right
ereby, it sets a trade-off between the number of
ns that are visualized in the virtual environment,
e right that are omitted.

way, ViMantic uses this parameter and those pre-
ned (recall Section 5.2 and Section 4.2) to mod-
filtering of the detections, allowing to build very
antic maps with less success rate, or to increase
e at the cost of detecting fewer (but probably true)
theless, the success of the semantic map building
r improved by increasing the amount of informa-

for example by using dedicated active perception
visiting rooms to certify their knowledge, or by

le cameras. At this point it is worth recalling that,
in Section 4.4, the user can review the semantic
ment and remove wrong detections. This process
nced by the automatic proposal by ViMantic of
ctions to be reviewed (e.g. those with score under
hold).

he threshold γ to 3, we obtain the results shown
This table reports, for the two conducted ex-

number of objects inserted in the virtual en-
odeling each house along with the percentage
tions. The achieved success is remarkably high

ranging from ∼76% to ∼90%. When consid-
ots, the number of objects in the virtual envi-
ificantly increases (11 new objects on average),
centage of right detections remains similar or
ses–the average improvement is of 1.60%–. This
o the detection by the second robot of objects that
d by the first one, since it inspected the houses
nt point of view, or to additional detections of a
erved object but that did not overcome the thresh-
lusion, the collaborative building of the semantic
be profitable for achieving more right detections,
o believe that a similar effect could be achieved

Table 5: Computational time required by the critical components o

Client
Object recognition Object Info Packe

Avg. (ms) Std (ms) Avg. (ms) Std (m
105.16 29.99 1.59 0.80

Server
Object Manager Objects Union

Avg. (ms) Std (ms) Avg. (ms) Std (m
2.98 8.35 5.03 6.06

by further explorations of the houses by a single robot

Analysis of computational time. Another factor wor1045

ing is how efficient ViMantic is, that is, the time neede
cess new information and incorporate it into the sema
In this respect, it is interesting for the architecture to
semantic map in real time, that is, it should be able t
arriving information at the same (or at a higher) rate1050

it is available. In our case, such information comes
RGB-D cameras and the 2D laser scanner.

Regarding laser scans, the Robot Localization com
able to process information coming from sensors wi
frequency (e.g. 40 Hz) to estimate the robot’s pose. In1055

the used laser scanner has a working frequency of 10
the server side, new robot locations just imply the u
the robot avatar position, so the information coming
2D laser scanner doesn’t impose limitations for such
operation.1060

As for RGB-D images, the Object Recognition co
spends on average 105 ms. detecting objects. Then, th
Information Packer extracts additional information an
to the server, requiring less than 2 ms. for that. On
server, the Object Manager employs about 3 ms. to1065

it, while the time required by the Ontology Manager
new instances or update the already existing ones is n
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It is also worth mentioning the 5 ms. demanded to merge the
detections belonging to the same object, which is triggered by
Unity 3D with1070

required by th
tational time o
of 8.7 Hz. RG
in many appli
vides a huge1075

cessed online.
sidering the ro
vides redunda
the limited rob
ages in the Ro1080

ranging from
a real time op
times are need
tion componen
placed by a f1085

Hz [47]).
This analys

formation to t
clients affects
time required1090

number of clie
remains the s
demands an ex

Since both,
means of a W1095

could result i
semantic map
cess such info
quickly recove

6.4. Use case1100

This section
narios involvin
tion of semant
efficiently perf

6.4.1. Inferrin1105

As introduc
posed architec
the addition of
could do, let’s
from the one1110

where, in add
the environme
rooms where t
room, kitchen
that, human el1115

senting the ro
objects that ca
kitchens and t

In a previo
ploit such prio1120

room to belong
jects detected

bability for
room, etc.).
ide. In this

the lack of

m 1

is the best
e bathroom
hile colors
each robot

informa-
obability
igure 10
inside a

r belong-
bedroom,
in could

ending to
onclusive
cts or the
ted ones,

e choice.
tiple col-
an order,

Journal Pre-proof
in the Object Manager . Summing up all the time
ese components we retrieve an average compu-
f ∼114 ms, which implies a working frequency
B-D cameras usually work at 30 Hz, however,

cations this frequency is decreased, since it pro-
amount on information that can hardly be pro-
That is the case of object detection where, con-

bot speed, the processing of images at 30 Hz pro-
nt detection results and unnecessarily overloads
ot computational resources. Indeed, RGB-D im-
bot@Home dataset was gathered at a frequency
1 Hz up to 11 Hz, so ViMantic is able to reach
eration in it. Nevertheless, if lower execution
ed, the network used inside the Object Recogni-
t (which is clearly the bottleneck) could be re-

aster one (e.g. YOLOv3, which works at 20-45

is has been done using a single client sending in-
he server. To estimate how the addition of more
the computational time on the server side, the

by the Object Manager must be multiplied by the
nts, while the time needed for fusing detections

ame. In this way, the addition of a client only
tra execution time of 3 ms.
clients and server, exchange information by

ebSocket connection, delays in such connection
n delays while integrating information into the
. However, since the server side is able to pro-
rmation at a high frequency (∼124 Hz), it could
r from temporal delays.

s
describes two use cases that pose different sce-

g robots and semantic maps. In them, the utiliza-
ic maps built by ViMantic enables such robots to
orm high-level tasks.

g room categories.
ed in Section 4.6, the functionality of the pro-
ture can be extended in a straightforward way by
plugins. As a first example of what such plugins
consider a plugin able to infer new knowledge

already existing in the map. Suppose a scenario
ition to the categories of the objects detected in
nt, it is also needed to know the categories of the
hey appear, namely bedroom, living room, bath-
, corridor, etc (see next use case). For achieving
icitation could be used to define concepts repre-
om types, and to describe them by codifying the
n be typically found therein, e.g. microwaves in

oilets in bathrooms [62].
us work [16], we designed a plugin able to ex-
r knowledge, calculating the probability for each
to the considered categories according to the ob-

therein and their confidence scores. Such a plugin

Dressing room

Inconclusive result for only 1 
object detected inside.

Figure 10: Use case of ViMantic where a plugin calculates the pro
the room to belong to a certain category (bathroom, kitchen, living
This is done according to the objects that have been detected ins
case, the result obtained for the dressing room is inconclusive due to
detected objects.

Bedroom 1

Bedroom 2

Bedroom 3

Bathroo

Bathroom 2

Robot 1

Robot 2

Figure 11: Example of a use case where a plugin decides which
suited robot for accomplishing the command “Check the tap in th
near the bedrooms”. The discontinuous lines delimit the rooms, w
represent their categories. The continuous lines show the path that
should follow to reach the target.

works in a passive way, just processing the available
tion, hence there are situations where the reported pr
is inconclusive due to the lack of detected objects. F1125

shows an example where only one chair was detected
dressing room. In that case, the retrieved probability fo
ing to categories where chairs typically appear like
dressing room or living room is the same. This plug
be extended to exhibit a proactive behaviour, e.g. by s1130

an agent an order to inspect a certain room with inc
results. This would permit the detection of new obje
enhancement of the knowledge about previously detec
helping to properly categorize the room.

6.4.2. Towards efficient operation: multiple robots, on1135

The second use case supposes a scenario with mul
laborative robots/agents. Thus, if the user gives
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e.g. “Please, check the sink in the bathroom near the bedrooms”,
a logical question arises: which robot will be best suited for ef-
ficiently comp1140

venient to rely
available robo
purpose, the i
great utility.

The aforem1145

bathroom nea
gation plus in
commands wo
the robot can
be implemente1150
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become more
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7. Conclusion
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chitecture perm
gins/compone

We have reported a number of experiments and use cases
supporting the suitability of ViMantic for the building and ex-

d on the
s and 2D
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Journal Pre-proof
lete the task?. In such scenario, it would be con-
on a plugin able to optimally choose among the

ts according to their conditions. Towards such
nformation coded into semantic maps results of

entioned example: “Please, check the sink in the
r the bedrooms”, could be interpreted as a navi-
spection tasks. A system for interpreting human
uld have to translate them into instructions that
carry out. Next, another system, which could
d as a plugin to this architecture, would have to
ost appropriate robot to perform the tasks. Fig-
tes this scenario, with two robots operating in the

antic map helps here by providing the locations
o robots, and two previously detected sinks. No-
s point, it serves as a communication channel be-
and the architecture in terms that both are able to

g. check, tap, bathroom or bedroom. The seman-
be also used to extract new information needed
the task. An example of this was illustrated in

se case, permitting the architecture to categorize,
o rooms as bathrooms and three of them as bed-
way, to carry out the commanded tasks, the plu-

ck the distance from each bathroom to the cat-
ooms, obtaining Bathroom-2 as the closest one
s the navigation goal. Finally, by considering the
robots have to follow to reach such a goal, the

ecide which one is closer to the sink (Robot-2)
igation command to it. This selection criteria can
sophisticated by also considering the score of the
ts/rooms, the robots’ workload, the level of their
44].

s

le we have presented ViMantic , a novel archi-
antic mapping by mobile robots. It provides a

tures demanded by modern mobile robotic sys-
g map model definition, automatic population,
cution, human-robot interface, and public avail-
at, the architecture relies on a client-server de-
one hand, the server side, built upon Unity 3D,
n the own robot or an external device. It is in
ding and managing the semantic map, also keep-
epresentation of the environment that allows the
t in a friendly way. On the other hand, the client
d in the ROS framework, can be run on one or
s/agents simultaneously. It includes components
information from sensory data (detected objects,
ion, etc.) as well as for acting in the physical en-
vigate, play sounds, fetch and carry objects, etc.).
change information by standardized WebSocket
n channels. For the sake of modularity, the ar-
its developers to straightforwardly add new plu-

nts depending on their needs.

ploitation of semantic maps. For that, we have relie1195

Robot@Home dataset, which provides RGB-D image
laser scans from different houses collected by a mob
Concretely, we have performed two experiments: the
considers a robot operating in such houses, while th
experiment poses a collaborative scenario with two.1200

cases, we have described the most relevant parts of th
tic maps building process, the generated information
performance of critical components. We conclude th
on the results obtained in this experiments, ViMantic
architecture for semantic mapping that meets the exp1205

of our proposal. To exemplify possible uses, we have a
mented on two possible use cases exploiting the outco
proposed architecture for categorizing rooms, and for
selecting the most suitable robot for performing a task

In the future we plan to further leverage and develo1210

tures of ViMantic . For example, the detection of obje
take advantage of contextual relations to give a sen
herence to its results, for example, that microwaves
cally found on top of tables and counters but not on
We also aim to incorporate the capability to update th1215

order to consider dynamic objects, i.e. those objects
be moved from the place from which they were previ
served (chairs, bottles, etc.). Another possible extens
be the utilization of the virtual environment for virtu
purposes, e.g. to provide an immersive experience in1220

maps to the user.
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[5] A. Nüchter, J. Hertzberg, Towards semantic maps for mo
Robots and Autonomous Systems 56 (11) (2008) 915–926.

16

Jo
ur

na
l P

re
-p

ro
of



[6] C. Galindo, J. Fernandez-Madrigal, J. Gonzalez, A. Saffiotti, Robot
task planning using semantic maps, Robotics and Autonomous Systems
56 (11) (2001250

[7] A. Garcia-G
J. Garcia-R
semantic se

[8] L.-C. Chen,
tic image se1255

CRFs, in: In
2015.

[9] J. R. Ruiz-S
versal sema
tems 119 (21260

[10] C. Galindo,
Madrigal, J
robotics, in
Robots and
1545511.1265

[11] A. Pronobis
with hetero
2012 IEEE

[12] M. Günther
object maps1270

Conference
2228–2233.

[13] D. Fernand
Jimenez, In
maps of ind1275

vances in C
Cham, 2019

[14] E. Prestes,
R. Madhav
A. Chibani,1280

for robotics
(2013) 1193

[15] L. Riazuelo
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