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Abstract

Semantic maps augment traditional representations of robot workspaces, typically based on their geometry and/or topology, with
meta-information about the properties, relations and functionalities of their composing elements. A piece of such information could
be: fridges are appliances typically found in kitchens and employed to keep food in good condition. Thereby, semantic maps allow
for the execution of high-level robotic tasks in an efficient way, e.g. “Hey robot, Store the leftover salad”. This paper presents
ViMantic , a novel semantic mapping architecture for the building and maintenance of such maps, which brings together a number
of features as demanded by modern mobile robotic systems, including: i) a formal model, based on ontologies, which defines the
semantics of the problem at hand and establishes mechanisms for its manipulation; ii) techniques for processing sensory information
and automatically populating maps with, for example, objects detected by cutting-edge CNNs; iii) distributed execution capabilities
through a client-server design, making the knowledge in the maps accessible and extendable to other robots/agents; iv) a user
interface that allows for the visualization and interaction with relevant parts of the maps through a virtual environment; v) public
availability, hence being ready to use in robotic platforms. The suitability of ViMantic has been assessed using Robot@Home, a
vast repository of data collected by a robot in different houses. The experiments carried out consider different scenarios with one or
multiple robots, from where we have extracted satisfactory results regarding automatic population, execution times, and required
size in memory of the resultant semantic maps.

Key words: Semantic maps, Robotic Architecture, Mobile Robots, Unity 3D, ROS, Object detection, Detectron2, Robot@Home

1. Introduction 20 the robot workspace, e.g. geometric and/or topological maps,
objects detected in the environment, etc., this results in a se-

Mobile robots are progressively landing in human environ-  mantic map [5, 6].
ments like hotels, hospitals, offices, homes, etc., carrying out In this way, in the scope of mobile robotics, semantic maps
elementary tasks as caregivers, security guards or house clean- are models that include information about spatial elements

ers, among others [1, 2]. A key aspect for their success- = (rooms, objects, etc.) augmented with the semantics required
ful operation in those applications is the ability to model and  for an efficient robot operation (see Figure 1). These maps
manage the information relevant to the tasks to be accom- empower the cognitive capabilities of robots, enabling them
plished. Let’s suppose a scenario where a robot is commanded  to carry out high-level queries (e.g. to retrieve the objects that
to heat the meal. For addressing such a task the robot must are suitable to perform a given a tasks and where they can be
know which world elements could be used to warm up the o found), or to infer new knowledge (e.g. the type of a room ac-
food (e.g. stoves, microwaves, ovens, etc.), where they can be cording to the objects detected inside) [7-9].

found, and how to interact with them. This high-level infor- In order to be operative in modern mobile robotic systems, a
mation of the world is also called semantic knowledge, since it~ semantic map has to exhibit certain features as well as mech-
provides meta-information about the elements in the environ- anisms for its management, which are provided by semantic

ment regarding their relations, characteristics, and functional- &s  mapping architectures. They include:
ity, that is, their semantics [3, 4]. An example of this knowl-

nge could be that stoves are appliances, typicglly placed in o A well defined model representation. A key component
kitchens, that can warm up food. When semantic knowledge is a formalized and clear model for accommodating the
is used to enhance the traditionally available information about semantic information, also including mechanisms for its

manipulation, i.e. insertion, modification or query [9-11].

*Corresponding author

Email addresses: davfercha@uma.es (D. Fernandez-Chaves), “ ¢ MOdel poplﬂatlon: The ChOSGI.l model has to be automa.t-
jotaraul@uma.es (J.R. Ruiz-Sarmiento), n. petkov@rug.nl (N. Petkov), lcally populated with information coming from the envi-
javiergonzalez@uma.es (J. Gonzalez-Jimenez) ronment at hand. For that, they are needed methods that

Preprint submitted to Knowledge-Based Systems July 9, 2021



45

50

55

60

65

70

75

Concept

Conceptual Hierarchy Instances

,

[E‘. Appliance ‘ . F‘. Microwave ‘

= @ Object

*® Fumiture \

Fooe |

Knowledge Related To

A T . Virtual Environment

TV (0,85)
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‘Tv1’ rotation “(90.0,310.0,0.0)”
‘Tvl’ size “(0.3, 0.2, 0.2)”

‘Tv1’ nDetections “3”

‘Tv1’ position “(0.1, 1.2, 0.5)”
‘Tv1’ score “0.8925956”

Data property assertions:
‘Bed1’ rotation “(90.0,120.0,0.0)”
‘Bed1’ size “(1.3, 0.5, 0.8)"
‘Bedl’ nDetections “5”
‘Bed1’ position “(-0.2, 0.5, 0.3)”
‘Bed1’ score “0.8273445”

Figure 1: Example of a simple semantic map built by ViMantic . It includes a conceptual hierarchy modeling the properties of the elements appearing in the domain
at hand as well as their relations, instances of those elements and their observed features, and a screenshot of the GUI designed to show part of that information to

the user.

transform robot sensory data into high level information,
for example images into recognized objects [5, 12, 13].

80
e Distributed execution. As these architectures are to be

ran in mobile robots, which usually exhibit heavily con-
strained resources, a valuable feature is to provide mecha-
nisms to operate in a distributed fashion. This permits the
externalization of the building/management of the map,
enabling a robot to retrieve just the information needed to
complete its tasks from a centralized device, as well as the
utilization of the map by other agents or intelligent devices
sharing the same workspace [14-16].

e Suitable interfaces. Additionally, for robots collaborating *
with people, the architecture must provide an interface to
interact with humans in different ways, e.g.to show and
retrieve high-level information from the map [17, 18].

¢ Quality control. Another desirable feature is the measure-
ment of the quality of the resultant maps, i.e. how success-
ful the architecture is when building these representations.
This also enables a comparison of different state-of-the-art

methodologies for semantic mapping [19, 20].
100
e Public availability. The architecture should be “ready to

use”, meaning that its implementation has to be public and
easily integrable in most robotic platforms.

Although there are numerous works in the literature provid-
ing some of these features and mechanisms [15, 21, 22], to the
best of our knowledge, there is no a solution providing all of
them.

In this paper, we contribute a comprehensive semantic map-
ping architecture including both, state-of-the-art techniques and,
dedicated components, ready to be integrated in mobile robotic
platforms. The proposed solution, coined ViMantic, satisfies
the common issues previously posed, i.e. model definition, au-
tomatic population, distributed execution, human-robot inter-
face, quality control, and public availability. For that, ViMan-
tic has been designed as a client-server architecture that can run

in different devices, then ready to be adapted to the emergent
paradigm of edge computing [23]. Briefly, the server, which
could operate on the own robot or on an external device (e.g. a
tablet, a smartphone, a personal computer, or a laptop, among
others), is in charge of building and managing the semantic
map, while providing a virtual representation of it to support
a friendly user interaction. The client, in its turn, runs on the
robot itself (multiple clients can run at the same time in dif-
ferent robots) and aims at sensing the environment, detecting
elements of interest in it (e.g. objects, rooms, etc.) and shar-
ing such information with the server. An implementation of the
contributed architecture, along with directions for installing and
using it, has been made publicly available as a GitHub reposi-
tory!.

On the one hand, the server resorts to ontologies to represent
the model that accommodates the semantic information relevant
to the problem at hand [24-26]. Ontologies are hierarchical
representations that formally define the elements in the prob-
lem as concepts with properties, which are structured accord-
ing to a subsumption ordering, e.g. microwaves are a subclass
of appliances that have a box-shape (see Figure 1). These struc-
tures contain all the knowledge of a collected semantic map. To
measure the quality of a semantic map, ViMantic provides the
functionality for computing a number of metrics when compar-
ing two ontologies, where one of them could be an ontology
codifying ground truth information. The server is implemented
on Unity 3D [27], being the previous model a component of it
(see Figure 2). Unity 3D is a video game engine that allows us
to build a 3D virtual environment incorporating the elements of
the semantic map, which can be visualized by means of friendly
graphical user interfaces that also enable interaction with them.

On the other hand, the client side relies on the Robot Op-
erating System (ROS) framework [28], which provides off-the-
shelf solutions for navigation, metric map building, gathering of
sensory data, etc. To address the automatic population require-
ment, the client incorporates an object detection component for

"https://github.com/DavidFernandezChaves/
ViMantic-Unity3DNode



115

120

125

130

135

140

145

150

155

160

165

identifying the elements in the robot workspace, with a Convo-
lutional Neural Network (CNN) at its heart [7, 29], although iti7
could be replaced or complemented by any other tool extract-
ing relevant information from sensory data. Detected objects
are packed with their location in the robot frame and shared
with the server, which is in charge of their processing and inte-
gration into the semantic map. 175

In order to validate our proposal, we carried out different
experiments with the Robot@Home dataset [30]. This repos-
itory was collected by a robot during a number of raids in dif-
ferent houses, including data from sensors typically found in
robotic platforms like laser scanners and RGB-D cameras. Iniso
addition, the dataset provides reconstructions of such environ-
ments in the form of point clouds, which helps us to improve
the visualization of different outputs from the proposed archi-
tecture (e.g. localization of the detected objects, assigned cat-
egories, etc.). This contributes to further validate the ViMan-1es
tic suitability for the building and managing of semantic maps.
We also describe two use cases showing different ways to ex-
ploit the information provided by these maps.

The following section puts our work into context with the
related literature. Then, Section 3 generally describes the se-1so
mantic map model adopted in this work. Section 4 explains the
architecture components on the server side, while Section 5 de-
scribes those on the client side. We introduce the experiments
carried out in Section 6, along with a discussion on the obtained
results and two use cases exploiting semantic maps. Finally,ises
Section 7 provides the main conclusions and achievements of
the work presented in the paper.

2. Related Work

200
Over the last decades, a menagerie of proposals for the
building and utilization of semantic maps have appeared in the
robotics field (see Table 1). Galindo et al. [10] presented one of
the earliest and most influential works in this respect, in which
they proposed a multi-hierarchical representation that relatesos
the concepts included in an ontology with spatial elements ob-
tained from sensors. Such a representation was adopted and
exploited in posteriors works, like in Galindo et al. [6] for
task planning, or in Galindo and Saffiotti [31] for autonomous
goal generation. Later, this approach was extended by Ruiz-z10
Sarmiento et al. [9], who presented the multiversal semantic
map concept. In that novel model, each universe is a com-
bination of possible links between the aforementioned hierar-
chies, which takes into account the uncertainty coming from
processes involved in the map building (e.g. object detection orzis
room categorization). The work by Zender et al. [32], contem-
porary of the one by Galindo et al. [10], proposed a similar
approach with a single hierarchy. Such a representation cod-
ifies maps based on sensors’ data and conceptual abstractions
such as “Corridor”, “Kitchen” or “Coffee Machine”. The cod-zz
ification is done into an ontology by means of the Web Ontol-
ogy Language (OWL). In such work, they resorted to a SIFT-
based object recognition system to automatically populate the
ontology. In this regard, other works proposed alternative meth-
ods such as classifiers using Convolutional Neural Networkszes

3

(CNN) [16] or Probabilistic Graphical Models (PGMs) [39] to
automatically populate the ontology, that is, without requiring
human intervention during the process.

A significant number of papers in the literature have reck-
oned on ontologies as formal models to encode semantic knowl-
edge exploitable by robots. For instance, Tenorth et al. [33] pro-
posed a system called KnowRob-map that employs Bayesian
Logic Networks (BLNs) to predict object types according to
their description in an ontology (e.g. a flat surface with four
legs, located in a kitchen, is probably a table). Pangercic et
al. [34] explored the building of semantic maps of kitchens us-
ing an ontology to classify different types of furniture according
to their physical characteristics. Interestingly, this work takes
into account the handles observed in such pieces of furniture
for their categorization, for example, a tall planar surface with
two long handles is likely to be a refrigerator. Glinther et al. [12]
also categorized furniture according to its description in an on-
tology. In contrast to other works, the authors focused on the
flat regions of the furniture and their relations. For example, a
horizontal plane could be part of a chair or of table, but if it is
related with a vertical one, the chair hypothesis gains strength.
Another example is the research by Reinaldo et al. [35], where
they proposed an intelligent navigation system based on rec-
ognized objects and their semantics. This system permits mo-
bile robots to assume different behaviors according to the rec-
ognized objects and their properties. Other proposals, such as
those by Pronobis and Jensfelt [11] or Qi et al. [36], combine
ontologies with topological maps, enabling them to also clas-
sify areas in the environment according to their type (e.g. office,
kitchen, corridor, etc.).

Less attention, however, has been given to the collabora-
tive/distributed building and management of semantic maps. In
this regard, Prestes et al. [14] proposed a centralized ontology
where different robots or other intelligent agents could simulta-
neously add or query semantic information. As a consequence,
the knowledge of an environment was available to every robot
operating within it, avoiding the maintenance of duplicate data.
Subsequently, Riazuelo et al. [15] expanded this concept, re-
porting an architecture called RoboEarth Semantic Mapping
that uses a cloud ontology to encode semantic knowledge, while
a Simultaneous Localization and Mapping (SLAM) algorithm
is employed to build geometric maps. In this architecture, other
agents can access the data in the cloud in order to retrieve rele-
vant information to complete their tasks. At this point it is worth
mentioning the comprehensive review conducted by Kostavelis
and Gasteratos [22], where the authors surveyed available se-
mantic mapping approaches for dealing with mobile robotic
tasks.

As far as Human-Robot Interaction (HRI) is concerned, pro-
posals such as that of Cosgun and Christensen [37], or the pre-
viously mentioned one by Zender et al. [32], consider human
assistance during the semantic mapping. According to them,
this allows us to avoid the utilization of object categorization
algorithms, given the many challenges they entail. Another ex-
ample including humans in the loop is the work by Bastianelli et
al. [21], subsequently extended in Gemignani et al. [38], where
authors describe an interactive semantic mapping approach that
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Table 1: List of most relevant semantic mapping models/architectures proposed in the literature and the features they provide.
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considers a person guiding the robot by voice commands. How-
ever, they themselves maintain that their proposal can be im-
proved by means of the integration of state-of-the-art catego-
rization techniques.

Recently, virtual environments have been uncovered aszss
promising tools for HRI. In this sense, there are appearing pre-
liminary works exploring their possibilities in robotics, as the
one by Navarro et al. [18]. This work proposes virtual envi-
ronments to perform an immersive teleoperation of robots. For
that, the authors reconstruct the robot’s 3D environment in a vir-z7o
tual space using point clouds obtained from RGB-D cameras.
Users can interact and control the robot from the virtual envi-
ronment, either through a screen or using a virtual reality de-
vice to immerse themselves in the virtual environment. Roldan
et al. [17] is another example in this line, where the operationrs
interface with the robot takes place in a virtual environment,
also adding the possibility that different robots operate simulta-
neously in the same workspace.

As discussed, there is a large body of literature proposing
semantic mapping models, architectures for their management,zs
and ways to exploit them. However, semantic mapping tech-
niques must exhibit a number of features in order to be flexi-
bly integrated in modern mobile robotic systems (see Table 1).
Our proposal, coined ViMantic, satisfies such needs by rely-
ing on a client-server architecture that includes a formal modeless
for accommodating semantic knowledge, techniques for the au-
tomatic population of such model, distributed execution fea-
tures, and a virtual environment-based HRI. ViManticis pub-
licly available, hence any interested researcher can benefit from
1t.

3. Grounding the Semantic Map concept 290
As commented, a semantic map is a representation of
the robot workspace containing information at different lev-
els of abstraction, ranging from the low-level (sensory data,
e.g. images, point clouds, etc.), to the high-level (concepts suchzes

4

as Table, Chair, etc., as well as their properties and relations).
Multiple proposals exist to accommodate and manage such in-
formation, although most of them make similar design deci-
sions regarding the critical components of semantic maps [22].
In this way, we adopt here a consensus model consisting of: i)
a formal representation of the concepts in the domain at hand,
and ii) the linking of those concepts with spatial elements in
the robot environment. Additionally, we augment these compo-
nents with: iii) a virtual model of the environment stating the
(raw and/or processed) sensory information gathered from such
world elements.

Figure 1 yields a toy example of a semantic map and its com-
ponents, where: the conceptual hierarchy corresponds to i), the
formal representation of the concepts; instances of concepts
are linked to spatial elements, also including acquired knowl-
edge like their position or size, hence modeling ii); the vir-
tual environment implementing iii) incorporates the gathered
and processed information from the spatial elements. The fol-
lowing sections describe how these semantic maps are built and
managed in ViMantic , which is divided into two main compo-
nents: the server, described in Section 4, and the client pre-
sented in Section 5. Remark that the proposed architecture has
been carefully designed to cope with the aforementioned is-
sues demanded to modern semantic mapping techniques: model
definition, automatic model population, distributed execution,
human-robot interface, and public availability.

4. Server side: representing, managing and exchanging in-
formation

The components on the server side are in charge of: 1) defin-
ing the formal model behind the semantic map, ii) providing
services for modifying/querying it according to requests from
clients, iii) offering a visual representation supporting the inter-
action with the user and iv) comparing the semantic map with
another previously built or ground truth information, which can
be used to measure its quality. To develop those components
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we have resorted to Unity 3D, a popular video game engine.
Among other features, Unity 3D offers tools to handle multi-
ple multi-platform connections, work with three-dimensional
models, or design visually appealing interfaces [17, 18]. We__
have chosen this game development engine because, in addi-
tion to the mentioned features, it has a smooth learning curve
and the community that supports it is overwhelmingly large,
not only for game development, but also in other application ar-
eas, such as intelligent agents [27]. Moreover, this framework360
provides a repository of ready-to-use plugins implementing dif-
ferent algorithms, e.g. encapsulating Artificial Intelligence (AI)
behaviours for agents, or managing collisions between virtual
objects, which can be helpful in robotic applications.

The server is made up of a number of components, as shown,,,
in Figure 2, which implement different functionalities and are
able to freely exchange information among them. Briefly, its
main components are: i) the General Manager, which is in
charge of managing the flow of data by creating connections
with robots/agents, and also handles the system configuration
(see Section 4.1), ii) the Object Manager that processes the ob-s7
ject detections coming from the robot workspace and creates or
updates objects in a virtual environment (also called virtual ob-
Jjects) (Section 4.2), iii) the Ontology Manager, which handles
the model codifying the semantic information and provides ac-
cess to it, for example, to accommodate the information coming,,,
from the previous component (see Section 4.3), iv) the Graph-
ical User Interface (Section 4.4) that supports human-robot in-
teraction through buttons, messages, input fields, etc. and v) the
Report Manager (Section 4.5) which generates reports compar-
ing the semantic map obtained at the end of a run with another,,
semantic map given. The WebSocket standard [40] is used to
communicate the components on the server side with those in
the clients (robots and agents). Next sections give more details
about these modules and the information they exchange.

The aforementioned virtual environment deserves furthersss
discussion, as it is at the core of Unity 3D (see the blue box
in Figure 2). This environment contains all the needed infor-
mation to virtually represent the world being modeled. In our
case, this includes representations of the knowledge acquired
and produced by the robots (e.g. gathered images, laser scans,ss0
built geometric maps, detected objects, etc.), as well as seman-

tic information (e.g. object labels and confidence scores).

Note that our proposal for autonomous semantic mapping
works under the assumption that the world is static. Although
there are many objects such as toilets, beds, sinks, etc. which
are not usually moved, others such as chairs or flower pots can
change their location. In this architecture, these changes can be
managed through user supervision and the graphical interface.

The chosen modular design allows for the addition of new
components or plugins in a straightforward way. Thereby, de-
velopers can make use of this mechanism to access the infor-
mation in the semantic map and implement more complex and
efficient behaviors for robots/agents. We provide more infor-
mation about this feature in Section 4.6.

4.1. General Manager

This component deals with general tasks in the virtual en-
vironment such as loading or saving configuration settings
(e.g. path to the ontology file, semantic map identifier, differ-
ent parameters for dealing with object detections, etc.), or han-
dling the display/occlusion of the different menus in the inter-
face (e.g. main view, settings window, or new connection win-
dow). Additionally, the General Manager also establishes con-
nections between physical robots (or agents) and the server as
demanded by the user.

To accomplish that, it is just needed to introduce the robot IP
address. Then, the General Manager instantiates an avatar for
that robot in the virtual environment (also called virtual robot).
The virtual robot is set up according to its associated configu-
ration settings (see Table 2), and a WebSocket connection is es-
tablished linking it with its respective physical robot. From that
point onwards, all the messages received from that IP address
will be associated with this avatar, unambiguously identifying
it and enabling the existence of multiple, simultaneous avatars
working within the same semantic map.

4.2. Object Manager

The Object manager is the component in charge of process-
ing the object detections originated from clients. These detec-
tions come in the form of messages, which can contain one
or multiple detections, and that encapsulate: the objects’ cate-
gories as predicted by the recognition system (see Section 5.1),
their associated confidence scores, and their bounding boxes
(defined by their spatial extensions and poses with respect to
the robot).

Once a new message carrying object detections is received,
the Object Manager transforms the local coordinates of the ob-
jects’ poses, which are relative to robot poses, to their global
coordinates in the reference system of the virtual environment.
This is done by composing the pose Oy of each object with the
pose Ry of its associated robot avatar in global coordinates, re-
sulting in the global object pose Oy, that is Oy = Ry & Okg.
Once properly positioned, they are inserted in the virtual envi-
ronment as 3D bounding boxes with their respective size (see
green boxes in Figure 8). These boxes are also called virtual
objects.

In order to group detections belonging to the same physical
object, we have exploited the physics provided by Unity 3D
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to detect when any of these virtual objects is close to another
(as set by a given distance threshold) or even in contact. Inus
case of collision, if they additionally share the same object cat-
egory, we merge their information giving rise to a virtual parent
object that encapsulates: the object category and the average
confidence score, the number of virtual objects that have been
merged (equivalent to the number of detections of the samesso
physical object), and the union of the children bounding boxes.
Once the message containing such object detections is pro-
cessed, the resulting information about new/updated virtual ob-
jects is sent to the Ontology manager (see Section 4.3). In this
way, each virtual object is represented in the ontology as anass
instance of its associated category or concept. Both, virtual ob-
jects and instances, incorporate an unique identifier in order to
unequivocally identify them during this information exchange.

4.3. Ontology Manager 460

As previously mentioned, a semantic mapping architecture
has to provide a formal model that accommodates the se-
mantic information. For addressing this, we have resorted
to ontologies [41]. An ontology is a formal representation
of the knowledge concerning a domain of discourse throughuss
a number of predicates O = {P1,...,P,}. This representa-
tion usually takes the form of a hierarchy of concepts sorted
according to a subsumption ordering, which is built using
the is-a predicate. Examples of those concepts could be
Object, Appliance or Microwave, and the aforementionedszo
predicate is used to establish that is-a(Object,Appliance)
and is-a(Appliance,Microwave). Ontologies also include
instances of those concepts, also called individuals, which rep-
resent abstract or physical elements within a certain environ-
ment. For example, when a new TV is detected, an instance
of the concept TV is created and named TV-1. Such an in-
stance can be further characterized through custom predicates, s
which are particular to each application. Examples of predi-
cates could be size, which expresses the dimensions of an ob-
ject (e.g. size(TV-1,[0.2,0.2,0.3]), or score, which cod-
ifies the certainty of the neural network about the TV detection
(e.g. score(TV-1,0.9)). 480

To deal with ontologies within Unity 3D we have resorted to
RDFSharp?. This is an open source C# framework which al-
lows us to manage ontologies coded using the Web Ontology
Language (OWL?). OWL is a language that aims to facilitate
the representation and processing of rich and complex knowl-4ss
edge through the previously mentioned resources (concepts, in-
stances, and properties). OWL ontologies can be codified by
means of RDF*, acronym for Resource Description Framework,

a family of specifications from the World Wide Web Consor-
tium (W3C) that standardizes the data coding for informationasso
exchange in the semantic web, and that is supported by RDF-
Sharp.

In this way, we have designed an ontology containing a
number of object categories/concepts of interest that can be
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*https://www.w3.org/2001/sw/wiki/RDFSharp
Shttps://www.w3.org/TR/owl-features/
“https://www.w3.org

found in human-like environments as offices or houses (see
Figure 3). These concepts, their properties and relations are
also called prior knowledge, and has been acquired through hu-
man elicitation [9]. The construction of the proposed seman-
tic map involves populating this model with the objects de-
tected in the environment. For that, for each detected object,
an instance of its respective concept is generated, e.g. TV-1,
Microwave-3, Table-2, etc. These instances have associ-
ated properties specified by means of predicates: identifier,
position, orientation, size, score (its confidence score)
and nDetections (the number of times that the object it rep-
resents has been detected). It should be noted that, when an
object previously perceived is detected again, the properties of
its corresponding instance in the ontology are accordingly up-
dated (recall Section 4.2). In its turn, for having a record of
detections, each one is introduced as an instance linked to the
first one by means of the is-part-of predicate.

Thereby, the ontology contains both, prior knowledge, and
information acquired from the robot perception system and pro-
cessed by the Object Manager. This model, codified through
RDF, enables the execution of logical reasoning engines like
Pellet [42] or FaCT++ [43] that can perform profitable tasks
for an efficient robot operation. For example, they can check
the consistency of the codified information [31], infer new in-
formation that is not explicitly provided, or perform high-level
queries, e.g. finding an appliance able to keep food in good con-
dition [9].

4.4. Graphical User Interface

The proposed architecture also contemplates a mechanism
for human robot interaction, aiming to enhance their collabora-
tion. For that, it has been designed a Graphical User Interface
(GUI) consisting of three main elements: i) floating windows,
ii) the main interface, and iii) the visualization of the virtual
environment. The combination of these elements turns out to
be a powerful tool for user interaction, allowing the storage and
display of information within the semantic map.

The first of these elements encapsulates options that are set
just one or a few times by the user, so there is no need to fix
its visualization in the main screen. Currently there are two of
these windows: a first one that permits the user to introduce
the information needed to establish a connection with a phys-
ical robot (recall Section 4.1), and a second window showing
a number of advanced configuration options of the architecture
(e.g. confidence score threshold to process an object detection,
distance threshold to consider that two detections belong to the
same object, etc., see left part of Figure 4).

The main interface consists of a side bar that provides differ-
ent functionalities. First, it displays, in an editable text field, the
name of the current semantic map. If this name is replaced by
one belonging to an existing map, it is loaded in the architec-
ture/GUI. Two more buttons enable the user to save the map to
disk and to open a new robot connection window. Bellow them,
it is shown a list with the currently connected robots/agents,
also permitting the user to cancel those connections. Besides,
a small button is also displayed on the upper right side of the
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Figure 3: Left, excerpt of the proposed ontology exhibiting a hierarchy of concepts. Right, properties associated with instances of those concepts (inside a green

box).
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Figure 4: Graphical User Interface designed to support human-robot interaction including buttons, text fields, and a visualization of the virtual environment with
different mechanisms for its modification. Down left, a screenshot of the floating window permitting an advanced configuration of the system.

GUI, providing access to the aforementioned system configura-

tion window. o

As for the interface with the virtual environment, its permits
the visualization of pieces of the knowledge acquired from theszo
workspace, and also enables some ways to interact with it. For
example, Figure 4-right shows virtual objects placed in a previ-
ously built point cloud representation of an environment. Each
virtual object is linked to a small floating panel with a button
and a label. The button permits the user to remove that objectses
from both the virtual environment and the ontology (see Sec-
tion 4.3), thus eliminating the robot’s knowledge associated to
it. Regarding the label, it shows the category and confidence
score of the represented object, helping the user to review at
a glance relevant parts of the knowledge acquired from thesso
workspace.

4.5. Report Manager

Due to the lack of standard indicators to assess the qual-
ity of a semantic map, ViMantic integrates a report manager
that carries out this task. Concretely, this module compares
the ontologies codifying the information within two different
semantic maps (see Section 4.3). Since the ontologies popu-
lated with ViMantic are formal representations of the informa-
tion contained in semantic maps, in this context comparing on-
tologies is equivalent to comparing semantic maps. This en-
ables the evaluation of the quality of a generated map w.r.t. the
ground truth, or even its relative comparison with a previously
built one. The reports generated supply the following general
results: i) number of detections, ii) number of right objects in
the map, iii) number of wrong objects in the map, iv) number of
detected objects, and v) number of undetected objects. Notice
that iv) fuses possible multiple detections of the same object in
i). For an object prediction to be considered right, there has
to be an object of the same type in the reference semantic map
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whose distance between the nearest points of their bounding
boxes is lower than a given threshold. In addition, in order to
provide further debugging capabilities the report includes, for
each predicted object in the first semantic map, its properties
and the distance to the nearest same-type object in the second
one.

4.6. Plugins

Plugins are optional components that can be added to the ar-
chitecture to exploit and/or expand its functionality. In this way,
any instance of ViMantic could include an arbitrary number of
additional plugins, depending on the requirements of each par-
ticular application.

An example of optional component adding extra features
could be the “Robot@Home plugin”, which permits us to load
information of houses from the Robot@Home dataset [30].
This information includes point clouds representing those
houses, which are embedded in the virtual environment and
graphically shown, helping the user to understand the data
acquired by the robot through an immersive experience (re-.,
call Figure 4).

Another example of useful plugin could be an “Object
Finder”. Let’s suppose a scenario where a robot operating in
a house receives the order “bring me a bottle”. In this context,

a plugin could query the Ontology Manager the position of pre-,,
viously detected bottles, and send the location of the closest
one to the robot in order to navigate there. A more sophisti-
cated approach could employ the detection score associated to
each object instance to optimize the possibility to truly find a
bottle [44]. If no bottle appears in the semantic map, the plugin,,
could also query their most likely positions (e.g. over planar,
horizontal surfaces like tables and counters) and command the
robot to visit those promising locations to find them [6].

It should be noted that Unity 3D can host complex systems
to control robots, hence turning them into mere task executors.
For example, plugins could implement a high-level decision-
making and task execution system, with access to the available
semantic knowledge and capable of controlling the actions of
one or more robots [6]. Continuing with the previous exam-
ple, a plugin could decompose the “bring me a bottle” com-,,
mand into a number of simpler tasks affordable by the robot
(e.g. navigation, fetch and carry, etc.) and, in applications with
multiple robots, it could also optimally assign such tasks to
robots according to their position, battery level, etc. (see Sec-
tion 6.4.2).
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5. Client side: robots sensing and acting

This section describes the side of the architecture to be run
on robots/agents, aiming to support and empower their sensing
and actuation skills. Its core components are shown in Figure 5.,
For their development we have relied on the widely used Robot
Operating System (ROS) [28]. ROS is an open-source collec-
tion of tools, libraries and conventions that simplify the task
of building complex and robust robotic behaviors, being the de-
fault choice in the robotics community for software developing.

ROBOT
= Object Recognition |
S ] .
(1] 40-5 '4%
g Object Info Packer |—> £l |
2 S Eles| =
B Robot Localizati |—»g E| |5
g obot Localization = E
n o
< Q
2 Actuation Skills -

Figure 5: Overview of the proposed client side of the architecture showing its
main components and their interconnections. White boxes are components,
while the blue one represents sensors capturing data.

Briefly, the Object Recognition component is in charge of
sensing the robot’s surroundings and detecting objects within it
(see Section 5.1). The output of this component feeds the Ob-
Jject Information Packer one, which packs relevant information
about each detected object (Section 5.2). Such information in-
cludes: object category, size, 3D position w.r.t. the robot frame,
orientation, and confidence score. The resultant packages are
sent to the server via WebSocket communication [40], which is
managed by the rosbridge_suite package®. In its turn, the Robot
Localization component is responsible for localizing the robot
within a previously built geometric map and sharing such infor-
mation with the server (see Section 5.3). Finally, and depend-
ing on the capabilities of each robot/agent, the architecture also
considers an Actuation Skills component that permits it to carry
out action orders as commanded by the server, e.g. navigation
to a given location in the map, fetch and carry an object, etc.
(Section 5.4). Next sections further describe these components.

It is worth mentioning that, although in our discourse we
keep the spotlight on robots, the architecture is designed to ac-
cept/provide information from/to any smart device connected to
the internet and instantiating a ViMantic client. This means that
any intelligent agent (running such a client) like smart sensors
(e.g. IP cameras, presence or humidity sensors, etc.) or devices
like intelligent light bulbs, smart TVs, smartphones, or tablets,
could generate new information to be inserted in the semantic
map, or perform queries about its content.

To enable the implementation of this architecture in a practi-
cal way, we have created a library that implements the com-
munication of many of the common message types in ROS.
This library can also be used as a template for implement-
ing other custom messages needed in specific applications.
The interested reader can find it at: https://github.com/
DavidFernandezChaves/ROSUnityCore

5.1. Object Recognition

The purpose of this component is the detection of objects in
the robot’s workspace from the information provided by its on-
board sensors. Convolutional Neural Networks (CNNs) have
proved to be particularly useful for this purpose in multiple

Shttp://wiki.ros.org/rosbridge_suite
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Figure 6: Object detections as reported by Detectron 2, part of the proposed,,,
recognition component. On the left, the CNN recognized a dining table with

a confidence score of 0.702, a partially observed chair (0.935) and, even under
bad lighting conditions, a potted plant (0.745). On the right, it detected a par-
tially observed sink as well as a toilet with 0.736 and 0.979 confidence scores,
respectively.
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object detection challenges, e.g. PASCAL [45] or COCO [46].
This is mainly due to their robustness against challenging
factors like changing lighting conditions, occlusions, varying
viewpoints, or high intraclass variability (objects belonging to
the same category but exhibiting different shapes, colors, sizes,”™
etc.).

The progress in object detection networks is vertiginous, ap-
pearing novel designs every year improving the performance of
previous works. There are a number of well known networks
providing a high detection success, like YOLOv3 [47], Faster®®
R-CNN [48], or Mask R-CNN [49]. In this work we opted
for Detectron 2 [50], which integrates an improved version of
Mask R-CNN, and that achieved a notorious performance in our
previous research [13, 16]. The input of this CNN is an inten-
sity image (RGB), and the output is a set of detected objects.
Specifically, a detected object includes: the object category, a
bounding box containing the object, a mask over the pixels in
the image belonging to the object, and a confidence score codi-
fying how confident the network is about the detection. Figure 6
shows some examples of these detections, illustrating the poten-
tial of these network for successfully recognizing objects. To
incorporate this CNN into ROS we have created a Detectron2
wrapping node, which is publicly available for any interested
reader®.

Aiming to be as modular as possible, the architecture has
been designed in such a way that the neural network used by
the Object Recognition component can be replaced by any other
technique consuming sensory information and producing a list
of detected objects without affecting the other components.
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5.2. Object Information Packer 705

In order to insert the detected objects in the semantic map, it
is needed to transform the output from the CNN, expressed in
the 2D image plane, into the robot three-dimensional coordinate
frame. Once this transformation is done, the detected object can
be placed in the map as described in Section 4.2. The Object In-710
formation Packeris in charge of doing that by: 1) retrieving the

https://github.com/DavidFernandezChaves/Detectron2_ros

spatial extensions and 3D poses in the robot frame, ii) packag-
ing together the derived information from each object detected
in the same frame, and iii) sending it to the server. This com-
ponent defines how and which information is forwarded to the
server, helping to the previously mentioned modularity.

To calculate the 3D pose and spatial extension of each object,
the Object Information Packertransforms the masks of pixels
received from the CNN into point clouds. For that we rely on
sensory information coming from RGB-D cameras, which pro-
vide depth information of the scene in addition to intensities.
However, in cases where only intensity information is available,
novel techniques are appearing that estimate 3D point clouds or
meshes of objects from such data [S1]. Let’s define the coor-
dinates of a pixel in the intensity image belonging to the mask
of a detected object as p = [u,v]. Then, the intrinsic param-
eters of the RGB-D camera can be used to obtain the coordi-
nates of its corresponding 3D point in the sensor frame, that is
Ps = [Xs, Ys,Zs] (see Zuniga Noél et al. [52] for more details).
Once expressed in the sensor frame, such a point can be trans-
formed into the robot frame by means of the sensor extrinsic
parameters, obtaining Pg = [Xg, Yg, Zg] [53]. This process is
repeated for each pixel in the mask, resulting in a point cloud
representing the object. Such point cloud is further processed to
remove spurious points as well as erroneous points that do not
belong to the object, typically caused by objects with holes or
inaccurate object masks. Thus, a filter is applied that removes
points not satisfying the condition: u —2 o < Zg < u + 20,
where 1 is the mean depth of the point cloud and o its standard
deviation. The remaining points represent the space occupied
by the object, and are used to retrieve the position of the object
centroid in the robot frame, as well as to fit a 3D bounding box
delimiting its extension.

Once the objects detected within an image have been pro-
cessed, the Object Information Packer creates a package con-
taining their categories, 3D poses, spatial extensions and confi-
dence scores. This package is sent to the server in order to be
processed, hence fully incorporating the gathered information
into the semantic map (recall Section 4.2).

5.3. Robot Localization

Another type of information needed to properly build the se-
mantic map is such of the localization of the robot at each time
instant. Such localization is expressed w.r.t. a given geometric
map of the workspace, and permits the server to properly locate
the robot avatar in the virtual environment (recall Section 4.1)
as well as the detected objects (Section 4.2). The building of the
geometric map is out of the scope of this work, but it is worth
mentioning that ROS offers tools for that, like gmapping’, a
ROS wrapper for OpenSlam’s Gmapping [54].

Robot localization is a widely researched topic in the robotics
community, and ROS provides robust localization packages al-
ready built in. Concretely, we have resorted to the AMCL pack-
age®, which implements a localization technique based on the

Thttp://wiki.ros.org/gmapping
$http://wiki.ros.org/amcl
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popular Adaptive Monte Carlo Localization method proposed
by Fox [55]. Such package relies on measurements from sen-
sors typically mounted on mobile robots: 2D laser scanners, to
locate the robot within a previously built geometric map. In this
way, in the context of the proposed architecture, laser scans are
processed by such package and the obtained robot locations are
sent to the server through the WebSocket connection.

5.4. Actuation Skills

The previous sections describe components where
the robots/agents play the role of sensors: they gather
raw/processed information and send it to the server. However,
agents could also perform actions in the environment, and
the Actuation Skills component is in charge of encapsulating
them. The content of this component is agent-specific, since it
depends on their capabilities.

In the case of mobile robots, their essential capability is to
navigate, but they could be also able to fetch and carry objects,
interact with other devices (e.g. pushing a button), play soundses
(including words), etc. [24, 56]. For that they are needed motor-
ized wheels, robotic arms, speakers, etc., which can be present
or not in a given robotic platform. In this way, the Actuation
Skills component acts as a bridge between the server and the
available actuators. 770

Although the client side could incorporate components to en-
dow the robot to perform tasks of certain complexity, in our
proposal this is left to the server side. The server, through the
aforementioned plugins, implements the needed logic so a robot
could carry out the needed high-level tasks for the application”’s
at hand. An example of this is the “Object Finder” plugin (re-
call Section 4.6), which sends navigation commands to the Ac-
tuation Skills component in order to find a given object. An-
other example could be a plugin in charge of gaining in confi-
dence about uncertain object recognition results. Such a plugin7e
could query about the low-scoring detections to the ontology,
and send navigation commands to the robot in order to revisit
them. Looking at those objects from different points of view

clearly helps to disambiguate the validity of their detections.
785

6. Evaluation

The purpose of this section is to demonstrate the suitability
of the proposed architecture for the building of semantic maps.
For that, we have carried out a number of experiments using
the Robot@Home dataset as testbed (see Section 6.1). Such a
data repository permits us to consider one or multiple robots
collecting data from the same environment, hence enabling the
testing of multi-agent scenarios. Section 6.2 describes how the795
different components/parameters in ViMantic have been set up
to perform such experiments. In Section 6.3 we comment on
the conducted experiments as well as on the reported results.
Finally, Section 6.4 discusses two possible use cases of seman-
tic maps built with our architecture.
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Figure 7: Mobile robot used to collect the Robot@Home dataset along with
some samples of the data it provides.

6.1. Dataset: Robot@ Home

Robot@Home [30] is a publicly available repository® of raw
and processed data collected by a mobile robot Giraff [57] while
visiting cluttered houses (see left part of 7). For collecting the
dataset, Giraff was equipped with a rig of 4 RGB-D cameras
(model Asus XTion Pro Live) and a 2D laser scanner (model
Hokuyo URG-04LXUGO1). Those sensors gathered 87,000
raw observations divided into 83 sequences (see central part of
7). From them, we have selected the sequences where the robot
fully visited four different houses, since they allow us to deeply
test our proposal. Additionally, we only considered the images
gathered by the RGB-D camera looking ahead, given that it is
a more common configuration in robotic platforms. To exper-
iment with realistic sequences of robot operation, we take ad-
vantage of the fact that the dataset sequences are also available
in the timestamped rosbag format, so by means of the rosbag
package '° the sequences can be reproduced making sensors’
data available at the right time.

Regarding the processed data in the dataset, it includes 2D
geometric maps and 3D reconstructions of the visited houses
(see right part of 7), both annotated with ground truth categories
of the objects appearing therein, as well as the categories of the
inspected rooms. Specially relevant here are the 3D reconstruc-
tions since, as commented in Section 4.6, they are inserted in
the virtual environment so it looks more appealing to users.

6.2. Experimental Setup

In order to employ ViMantic , some of its components must
be instantiated and configured. This includes: the CNN in the
Object Recognition module, the ontology in the Ontology Man-
ager, and the configuration parameters in the server.

Regarding the CNN, we have opted for an instance of De-
tectron 2 pre-trained with the COCO dataset [46]. Such a
dataset includes categories of everyday objects typically found
in houses like chair, sofa, potted plant, bed, dining-table, toi-
let, or tv, among others. As for the ontology, the same ob-
ject categories considered in COCO for indoor environments

http://mapir.isa.uma.es/work/robot-at-home-dataset
Ohttp://wiki.ros.org/rosbag
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Table 2: Server configuration parameters used in the experiments.

# Parameter Value
Confidence score threshold for an object to be inserted 0.8
Maximum distance between the robot and the object to | 2 m.

be inserted 845
Maximum distance between two object detections shar- | 0.1 m.

ing category to be merged
Minimum number of object detections needed to insert it 2
in the virtual environment

850

where converted to concepts and, by human elicitation, clas-
sified into three major groups: Furniture, Appliance and
Common object. Figure 3 shows the resultant hierarchy of
concepts, as well as the properties used to describe each object855
instance.

The configuration parameters in the server have also to be
fixed. The values used in these experiments are shown in Ta-
ble 2. They were chosen empirically to: i) notoriously reduce
the number of wrong object detections that result in virtual ob-
jects’ instances, and ii) increase the number of detections that™"
are successfully merged. It is worth mentioning that every
object detection is recorded in the ontology, independently of
whether a virtual object is instantiated or not. It is also specific
to each application in which device the server is executed. In
the experiments described below it was launched in a computer865
external to the robots, following the idea of edge computing.

In this way, two computers were used during the experi-
ments. The first one, running the server side of ViMantic,
has an Intel Core i7-5700HQ processor at 2.70 GH, a RAM
memory with 2x8 GB DDR3 at 800 MHz, and a graphic card””
NVIDIA GeForce GTX 960M with a memory of 2 GB. The sec-
ond computer, running one or multiple instances of the client
side of the architecture, is equipped with an Intel Core i7-
8750H processor at 2.20 GH, a 2x8 GB DDR4 RAM memory
at 1333 MHz, and a graphic card NVIDIA GeForce GTX 1070
with a memory of 8 GB.

875

6.3. Experiments: putting ViMantic to work

The following sections describe the experiments carried out
to validate the instantiated ViMantic architecture, which also
help us to illustrate its modus operandi. —Concretely, wesso
have conducted an experiment where a robot explores different
houses and, working with a server, builds their respective se-
mantic maps (see Section 6.3.1). In a second experiment, two
robots collaborate in the building of such maps (Section 6.3.2).
Section 6.3.3 reports and discusses on the obtained results. s

6.3.1. Experiment one: building maps with a single robot.

The first experiment considers a scenario where a single mo-
bile robot instantiating the ViMantic client visits four houses
from Robot@Home, namely alma, anto, pare and rx2. In eachsso
of these houses, the robot navigates until every room is vis-
ited while gathering both RGB-D images and 2D laser scan-
ners. It is worth mentioning that the robot has no other pur-
pose than to wander and passively capture data. On the one
hand, laser scans are used by the Robot Localization componentsss
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to locate the robot within the provided geometric map of the
house (recall Section 5.3). On the other hand, RGB-D images
are processed by the Object Recognition component in order to
detect the objects appearing in them (see Figure 6), while the
Object Information Packer extracts additional information like
their spatial extensions and poses (Section 5.1). Then, robot
locations and packed detections are sent to the server for their
integration in the semantic map.

Then, such information is processed in the server (config-
ured as described in Section 6.2) by: the General Manager,
which synchronizes the robot avatar location with the arriv-
ing ones, and the Object Manager , which accordingly creates
and updates virtual objects in the virtual environment. Figure 8
shows the resultant virtual environments of the four houses as
visualized in the graphical user interface, populated with the
detected objects and the robot avatar (represented by a white
oval). Thereby, the user can view at a glance relevant parts of
the semantic map and interact with it. Recall that each object
detection processed by the Object Manager is sent to the Ontol-
0gy Manager for its inclusion in the ontology, even those with
a confidence score under the considered threshold, or those that
have not yet been detected an enough number of times to be
inserted in the virtual environment. Figure 9 depicts an excerpt
of the ontology content once the robot visited the anto house,
showing on the right side a number of instances of object de-
tections as provided by the Object Manager .

Thus, each semantic map built, as defined in Section 3, is
composed of: the formal representation of the concepts in the
home domain, the linking of those concepts with the spatial
(detected) elements in the house, and the virtual model of such
environment. Section 6.4 provides some use cases taking ad-
vantage of these maps.

6.3.2. Experiment two: collaborative building.

This second experiment aims to illustrate the building of se-
mantic maps by means of two agents/robots. This possibility is
given by the distributed nature of the architecture. For that, the
same four houses are considered, where two instances of the
ViMantic client are executed into two different robots. These
robots start moving in the same houses at different time in-
stants, and keep navigating until every room is visited. Since
both robots are instances of the robot that performed the data
collection in Robot@Home, they both follow the same trajec-
tory. To obtain new information with the second robot, we have
used the data from the camera looking 90° to the right, result-
ing in a different point of view of the same scene w.r.t. the first
robot.

As before, the first robot considers the RGB-D images com-
ing from the camera looking ahead to feed the Object Recog-
nition component. However, for the second one, instead of
such a camera it is considered the one on its right, so ob-
jects are detected from different viewpoints. Again, 2D laser
scans are used to localize robots, sending both clients their lo-
cations along with the detected objects to the server, which
processes them by means of the General, Object and Ontol-
ogy managers. The interested reader can check the following
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Figure 8: Views of the virtual environments obtained after the inspection of four houses from the Robot@Home dataset.
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Object Is Part Of  Score Position (m) Rotation (2) Size #Detections

Furniture Bed-1 0.85 (0.5, 0.9, -2.3) (0.0, 279.1, 0.0) (3.2, 0.6, 4.5) 8
Toilet Bed-2 Bed-1 0.84 (0.6, 0.9, -2.2) (0.0, 278.9, 0.0) (0.4, 0.2, 0.3)
Bed-3 Bed-1 0.91 (0.2, 0.9, -2.2) (0.0, 279.0, 0.0) (0.6, 0.4, 0.6)

Appliance
Mic rowave

Bed-4 0.73 (-3.0, 0.8, 0.3) (0.0, 221.7, 0.0) (2.3, 0.4, 4.1) 5

Bed-5 Bed-4 0.90 (-3.0, 0.2, 0.3) (0.0, 220.9, 0.0) (1.0, 0.2, 0.5)

Figure 9: Excerpt of the content of an ontology after the inspection of the anto house by a mobile robot (instantiating a ViMantic client). The whole hierarchy of

concepts was shown in Figure 3.

video, which illustrates part of the semantic map building pro-
cess carried out in the Anfo’s house during this experiment:

https://youtu.be/3MZgAxxBtKY.

6.3.3. Results.

This section discusses the results obtained from the previous
experiments. As commented, the built semantic maps consist

of links between spatial elements (objects) and concepts de-
fined on an ontology, the own ontology formally defining the
knowledge within the home domain, and the representation of

o5 those elements in a virtual environment. To evaluate the suit-

ability of such maps, we have considered different aspects like
the required size in memory of the final ontology, the perfor-
mance achieved by object detection-related components, or the
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Table 3: Results obtained from the conducted experiments concerning ontolo-
gies and virtual environments.

Ontology Virtual Environment
Size (KB) # Instances # Objects  Success
anto 1.082 1.845 29 89.66% g5
alma 693 1.166 21 76,19%
IRobot s 543 846 2 77.27%
pare 1.006 1.654 40 85,00%
Average 831 1.378 28 82.03%
anto 1.346 2.357 35 88,57%
alma 985 1.685 35 80,00%
2Robots 5 725 1.177 33 75.76% %
pare 1.072 1.844 51 90,20%
Average 1.032 1.766 39 83.63%

computational time demanded by the ViMantic critical compo-g4
nents. The results shown have been obtained using the Report
Manager module, which compared the ontologies obtained af-
ter each of the different experiments with ontologies encoding
ground truth information. Next paragraphs go into depth on
them. 970

Ontology analysis. The ontology is the core of the semantic
map. Having a file encoding it, it is possible to restore a pre-
viously built map by loading its ontology through the ViMan-
tic graphical user interface, since it also contains the needed in-
formation for recovering the virtual objects in the virtual envi-""°
ronment. This way, it is relevant to spend some lines analyzing
how its size in memory behaves depending on the workspace
dimensions. As a starting point in this analysis, the ontology
codifying the concepts and their properties has a size of 48 KB.
Regarding the visited houses, anto and pare are large ones, with®™
two bathrooms each, a kitchen, spacious living rooms, and four
rooms (master rooms, bedrooms and dressing rooms), while
alma and rx2 have a single bathroom, two and one bedrooms
respectively, and open concept kitchens-living rooms. Gener-
ally, the bigger the space, the more objects appear in it.

Table 3 reports the sizes in memory of the ontologies created
in the previous experiments. We can see how such sizes are in
line with the houses’ descriptions. The lightest ontology is the
one built in the rx2 house, with a size of ~0.5 MB and stor-
ing more than 800 instances. The heaviest one, built in the anto™
house in the two robots scenario, exhibits a size of ~1.3 MB and
contains more than 2300 instances. We can also check that, on
average, an instance requires just ~0.56 KB to be allocated in
memory. This is a reduced size enabling the architecture oper-
ation in scenarios with thousands of instances, since ontologies995
efficiently codify such information.

However, for applications with even larger environments,
long term operation requirements, or devices with very con-
strained memory resources, maintenance mechanisms could be
implemented if needed to keep affordable the ontology size. For""
example, similar information could be merged or deprecated
knowledge removed [9].

985

0

Results of object detection-related components. The perfor-
mance of the object detection-related components within Vitoos
Mantic is critical for the building of suitable semantic maps. To
rely on an object detection system with a low recognition suc-
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cess would lead to unreliable object instances in the ontology
and virtual objects in the virtual environment, hence clouding
the interaction with the user.

Table 4 shows the performance of these components using
different state-of-the-art CNNs when running in the four houses
of the first experiment. An object inserted in the semantic
map has been considered as right if there is an object in the
ground truth of the same type whose distance between the near-
est points of their bounding boxes is less than 20cm.

CenterNet [61] with 240 detected objects was the network
with the most detections, while Detectron2 [50] with 206 and
an average precision of 0.83 achieved the best trade-off between
success and number of detected objects. The number of total
objects yielded by each CNN is a good indicator of its execu-
tion rate and how prone it is to detect erroneous or poor objects
(with few detections). For example, Faster-RCNN [60] runs fast
and produced 201 objects in total, but after filtering such objects
only 14 of them were considered in the semantic map. Note that
objects with multiple detections are more likely to be detected
when their associated bounding boxes are large, so CNNs that
return small detections (mostly due to blurred images, light ef-
fects and other problems) are more likely to perform worse.

It is important to point out that the number of detected objects
shown in Table 4 is filtered by the confidence threshold for a
detection to be inserted in the map (in our case 0.8). Since
some CNNSs are more conservative than others, success could be
increased by lowering this threshold, especially for those CNNs
that have obtained a low average f1 score (e.g. Faster-RCNN
with an average f1 score of 0.19), as this implies that they have
a high recall.

We observe that the objects successfully recognised with a
single detection do not represent 10% of the total number of
objects recognised in any case, being Faster-RCNN [60] with
9.95% the CNN with more objects successfully detected in this
respect. Moreover, in all cases these objects represent the high-
est percentage of wrong detections with respect to the total
number of them. However, as the number of detections in-
creases, so does the the percentage of them that are right. In
all cases, objects with more than 9 detections have the highest
performance.

The reason for this is that single detections tend to occur in
blurred images or abrupt lighting changes, and such artifacts are
no further detected in the next frames by the CNN. This way,
we found it useful to set a threshold () to the number of times
that an object has to be detected in order to be inserted in the
virtual map, where the user can interact with it (recall Table 2).

In Table 4, we can check the success of the semantic map
building when filtering out objects that received only one or
two detections (y = 2). Despite the differences found between
the networks, the final success rate of the maps is quite solid
at around ~82% without user influence. It is worth mentioning
that human revision, despite the high reliability of the informa-
tion provided by the semantic maps in ViMantic, could help to
further improve their quality.

Notice that, although not shown in the virtual environment,
every detection is stored in the ontology so new detections of
previously observed objects can be identified. It is worth noting
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Table 4: Results obtained from the first experiment using five different state-of-the-art CNNs. The Objects row yields the total number of reported objects in all
the considered houses, grouping them according to the number of times that they have been detected. In order to compare how profitable each group of objects is
for the global performance, the percentage of right/wrong objects (computed by dividing the number of right/wrong objects in a given group by the total number of
detections in all groups) is provided in the rows % Rigth objects w.r.t. the total (%ROT) and % Wrong objects w.r.t. the total (%WOT). The final three columns on
the right show the success, average precision and average f1-score obtained respectively in the semantic maps after filtering out objects with two detections or less

(gamma = 2).
Semantic map Average  Average
1 2 3 4 5 6 7 8 9 >9 Total success .
y=2) Precision  fl-score
Objects 107 24 18 9 5 8 3 3 4 25 206 75
Detectron2 [50] %ROT | 7,28%  583% 6,80% 3,88% 243% 291% 097% 049% 146% 11,17% 43,20% 82,67 % 0.83 0.73
%WOT | 44,66% 583% 194% 049% 0,00% 097% 049% 097% 049% 097%  56,80% 17,33%
Objects 98 39 10 11 6 1 7 1 0 10 183 46
Yolo3 [58] %ROT | 7,10%  6,56% 4,92% 437% 2,73% 0,55% 2,73% 0,55% 0,00% 4,92% 34,43% 82,61% 0.85 0.53
%WOT | 4645% 14,75% 0,55% 1,64% 0,55% 0,00% 1,09% 0,00% 0,00% 0,55% 65,57% 17,39 %
Objects 115 22 12 9 3 3 0 1 1 4 170 33
SSD [59]  %ROT | 294%  3,53% 529% 294% 1,18% 1,18% 0,00% 0,59% 0,59% 2,35% 20.59% 72,73% 0.77 0.53
%WOT | 64,71% 941% 1,76% 235% 0,59% 0,59% 0,00% 0,00% 0,00% 0,00%  79,41% 27,27%
Objects 174 13 3 4 3 0 2 0 1 1 201 14
Faster-RCNN [60] %ROT | 995% 249% 1,00% 199% 1,00% 0,00% 1,00% 0,00% 0,50% 0,50% 18.41% 85,71% 0.92 0.19
9%WOT | 76,62% 3,98% 0,50% 0,00% 0,50% 0,00% 0,00% 0,00% 0,00% 0,00% 81,59% 14,29%
Objects 195 17 11 6 4 0 2 0 0 5 240 28
CenterNet [61] %ROT | 583%  250% 3,75% 2,50% 125% 0,00% 042% 0,00% 0,00% 2,08% 18,33% 85,71% 091 0.33
%WOT | 7542% 4,58% 0,83% 0,00% 042% 0,00% 042% 0,00% 0,00% 0,00% 81,67% 14,29%

that such a threshold also disregard a small number of right
detections. Thereby, it sets a trade-off between the number of
wrong detections that are visualized in the virtual environment,
as well as those right that are omitted.

In the same way, ViMantic uses this parameter and those pre-
viously mentioned (recall Section 5.2 and Section 4.2) to mod-
ify the level of filtering of the detections, allowing to build very
populated semantic maps with less success rate, or to increase
the success rate at the cost of detecting fewer (but probably true)
objects. Nevertheless, the success of the semantic map building
could be further improved by increasing the amount of informa-
tion obtained, for example by using dedicated active perception
systems, by revisiting rooms to certify their knowledge, or by
adding multiple cameras. At this point it is worth recalling that%045
as mentioned in Section 4.4, the user can review the semantic
map at any moment and remove wrong detections. This process
could be enhanced by the automatic proposal by ViMantic of
uncertain detections to be reviewed (e.g. those with score under

a certain threshold). s

By setting the threshold y to 3, we obtain the results shown
in Table 3. This table reports, for the two conducted ex-
periments, the number of objects inserted in the virtual en-
vironments modeling each house along with the percentage
of right detections. The achieved success is remarkably highoss
in both cases, ranging from ~76% to ~90%. When consid-
ering two robots, the number of objects in the virtual envi-
ronments significantly increases (11 new objects on average),
while the percentage of right detections remains similar or
slightly increases—the average improvement is of 1.60%—. Thisoe
is mainly due to the detection by the second robot of objects that
went unnoticed by the first one, since it inspected the houses
from a different point of view, or to additional detections of a
previously observed object but that did not overcome the thresh-
old y. In conclusion, the collaborative building of the semantigoes
map proved to be profitable for achieving more right detections,
and leads us to believe that a similar effect could be achieved
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Table 5: Computational time required by the critical components of ViMantic .

Client
Object recognition Object Info Packer
Avg. (ms)  Std (ms) Avg. (ms)  Std (ms)
105.16 29.99 1.59 0.80
Server
Object Manager Objects Union
Avg. (ms)  Std (ms) Avg. (ms)  Std (ms)
2.98 8.35 5.03 6.06

by further explorations of the houses by a single robot.

Analysis of computational time. Another factor worth study-
ing is how efficient ViMantic is, that is, the time needed to pro-
cess new information and incorporate it into the semantic map.
In this respect, it is interesting for the architecture to build the
semantic map in real time, that is, it should be able to process
arriving information at the same (or at a higher) rate at which
it is available. In our case, such information comes from the
RGB-D cameras and the 2D laser scanner.

Regarding laser scans, the Robot Localization component is
able to process information coming from sensors with a high
frequency (e.g. 40 Hz) to estimate the robot’s pose. In our case,
the used laser scanner has a working frequency of 10 Hz. From
the server side, new robot locations just imply the update of
the robot avatar position, so the information coming from the
2D laser scanner doesn’t impose limitations for such real time
operation.

As for RGB-D images, the Object Recognition component
spends on average 105 ms. detecting objects. Then, the Object
Information Packer extracts additional information and sends it
to the server, requiring less than 2 ms. for that. Once in the
server, the Object Manager employs about 3 ms. to process
it, while the time required by the Ontology Managerto insert
new instances or update the already existing ones is negligible.
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It is also worth mentioning the 5 ms. demanded to merge the
detections belonging to the same object, which is triggered by
Unity 3D within the Object Manager . Summing up all the time
required by these components we retrieve an average compu-
tational time of ~114 ms, which implies a working frequency
of 8.7 Hz. RGB-D cameras usually work at 30 Hz, however,
in many applications this frequency is decreased, since it pro-
vides a huge amount on information that can hardly be pro-
cessed online. That is the case of object detection where, con-
sidering the robot speed, the processing of images at 30 Hz pro-
vides redundant detection results and unnecessarily overloads
the limited robot computational resources. Indeed, RGB-D im-
ages in the Robot@Home dataset was gathered at a frequency
ranging from 1 Hz up to 11 Hz, so ViManticis able to reach
a real time operation in it. Nevertheless, if lower execution
times are needed, the network used inside the Object Recogni-
tion component (which is clearly the bottleneck) could be re-
placed by a faster one (e.g. YOLOvV3, which works at 20-45
Hz [47]).

This analysis has been done using a single client sending in-
formation to the server. To estimate how the addition of more
clients affects the computational time on the server side, the
time required by the Object Manager must be multiplied by the
number of clients, while the time needed for fusing detections
remains the same. In this way, the addition of a client only
demands an extra execution time of 3 ms.

Since both, clients and server, exchange information by
means of a WebSocket connection, delays in such connection
could result in delays while integrating information into the
semantic map. However, since the server side is able to pro-
cess such information at a high frequency (~124 Hz), it could
quickly recover from temporal delays.

6.4. Use cases

This section describes two use cases that pose different sce-
narios involving robots and semantic maps. In them, the utiliza-
tion of semantic maps built by ViMantic enables such robots to
efficiently perform high-level tasks.

6.4.1. Inferring room categories.

As introduced in Section 4.6, the functionality of the pro-
posed architecture can be extended in a straightforward way by
the addition of plugins. As a first example of what such plugins

could do, let’s consider a plugin able to infer new knowledgess

from the one already existing in the map. Suppose a scenario
where, in addition to the categories of the objects detected in
the environment, it is also needed to know the categories of the
rooms where they appear, namely bedroom, living room, bath-

room, kitchen, corridor, etc (see next use case). For achievingiso

that, human elicitation could be used to define concepts repre-
senting the room types, and to describe them by codifying the
objects that can be typically found therein, e.g. microwaves in
kitchens and toilets in bathrooms [62].

In a previous work [16], we designed a plugin able to ex-

ploit such prior knowledge, calculating the probability for eachrss

room to belong to the considered categories according to the ob-
jects detected therein and their confidence scores. Such a plugin
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Figure 10: Use case of ViMantic where a plugin calculates the probability for
the room to belong to a certain category (bathroom, kitchen, living room, etc.).
This is done according to the objects that have been detected inside. In this
case, the result obtained for the dressing room is inconclusive due to the lack of
detected objects.
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Figure 11: Example of a use case where a plugin decides which is the best
suited robot for accomplishing the command “Check the tap in the bathroom
near the bedrooms”. The discontinuous lines delimit the rooms, while colors
represent their categories. The continuous lines show the path that each robot
should follow to reach the target.

works in a passive way, just processing the available informa-
tion, hence there are situations where the reported probability
is inconclusive due to the lack of detected objects. Figure 10
shows an example where only one chair was detected inside a
dressing room. In that case, the retrieved probability for belong-
ing to categories where chairs typically appear like bedroom,
dressing room or living room is the same. This plugin could
be extended to exhibit a proactive behaviour, e.g. by sending to
an agent an order to inspect a certain room with inconclusive
results. This would permit the detection of new objects or the
enhancement of the knowledge about previously detected ones,
helping to properly categorize the room.

6.4.2. Towards efficient operation: multiple robots, one choice.
The second use case supposes a scenario with multiple col-
laborative robots/agents. Thus, if the user gives an order,
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e.g. “Please, check the sink in the bathroom near the bedrooms”,

a logical question arises: which robot will be best suited for ef-
ficiently complete the task?. In such scenario, it would be coniss
venient to rely on a plugin able to optimally choose among the
available robots according to their conditions. Towards such
purpose, the information coded into semantic maps results of
great utility.

The aforementioned example: “Please, check the sink in thezw
bathroom near the bedrooms”, could be interpreted as a navi-
gation plus inspection tasks. A system for interpreting human
commands would have to translate them into instructions that
the robot can carry out. Next, another system, which could
be implemented as a plugin to this architecture, would have tozos
identify the most appropriate robot to perform the tasks. Fig-
ure 11 illustrates this scenario, with two robots operating in the
house. The semantic map helps here by providing the locations
of both, the two robots, and two previously detected sinks. No-
tice that, at this point, it serves as a communication channel be-z1o
tween the user and the architecture in terms that both are able to
understand, e.g. check, tap, bathroom or bedroom. The seman-
tic map could be also used to extract new information needed
for completing the task. An example of this was illustrated in
the previous use case, permitting the architecture to categorizeszis
in this one, two rooms as bathrooms and three of them as bed-
rooms. In this way, to carry out the commanded tasks, the plu-
gin could check the distance from each bathroom to the cat-
egorized bedrooms, obtaining Bathroom-2 as the closest one
and setting it as the navigation goal. Finally, by considering theze
paths that both robots have to follow to reach such a goal, the
plugin could decide which one is closer to the sink (Robot-2)
and send a navigation command to it. This selection criteria can
become more sophisticated by also considering the score of the
detected objects/rooms, the robots’ workload, the level of their
batteries, etc [44].

. 1225
7. Conclusions

In this article we have presented ViMantic, a novel archi-
tecture for semantic mapping by mobile robots. It provides a
number of features demanded by modern mobile robotic sys-
tems, including map model definition, automatic population}*
distributed execution, human-robot interface, and public avail-
ability. For that, the architecture relies on a client-server de-
sign. On the one hand, the server side, built upon Unity 3D,
can operate on the own robot or an external device. It is in
charge of building and managing the semantic map, also keep-
ing a virtual representation of the environment that allows the
user to interact in a friendly way. On the other hand, the client™
side, developed in the ROS framework, can be run on one or
multiple robots/agents simultaneously. It includes components
for gathering information from sensory data (detected objects,
robot localization, etc.) as well as for acting in the physical en
vironment (navigate, play sounds, fetch and carry objects, etc.).
Both sides exchange information by standardized WebSocket
communication channels. For the sake of modularity, the ar.
chitecture permits developers to straightforwardly add new plu-
gins/components depending on their needs.
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We have reported a number of experiments and use cases
supporting the suitability of ViMantic for the building and ex-
ploitation of semantic maps. For that, we have relied on the
Robot@Home dataset, which provides RGB-D images and 2D
laser scans from different houses collected by a mobile robot.
Concretely, we have performed two experiments: the first one
considers a robot operating in such houses, while the second
experiment poses a collaborative scenario with two. In both
cases, we have described the most relevant parts of the seman-
tic maps building process, the generated information, and the
performance of critical components. We conclude that, based
on the results obtained in this experiments, ViManticis a good
architecture for semantic mapping that meets the expectations
of our proposal. To exemplify possible uses, we have also com-
mented on two possible use cases exploiting the outcome of the
proposed architecture for categorizing rooms, and for optimally
selecting the most suitable robot for performing a task.

In the future we plan to further leverage and develop the fea-
tures of ViMantic . For example, the detection of objects could
take advantage of contextual relations to give a sense of co-
herence to its results, for example, that microwaves are typi-
cally found on top of tables and counters but not on the floor.
We also aim to incorporate the capability to update the map in
order to consider dynamic objects, i.e. those objects that can
be moved from the place from which they were previously ob-
served (chairs, bottles, etc.). Another possible extension could
be the utilization of the virtual environment for virtual reality
purposes, e.g. to provide an immersive experience in semantic
maps to the user.
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