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Abstract
This paper presents a visual-inertial dataset gathered in indoor and outdoor scenarios with a handheld custom
sensor rig, for over 80 min in total. The dataset contains hardware-synchronized data from a commercial stereo
camera (Bumblebee R©2), a custom stereo rig and an inertial measurement unit. The most distinctive feature of
this dataset is the strong presence of low-textured environments and scenes with dynamic illumination, which are
recurrent corner cases of visual odometry and SLAM methods. The dataset comprises 32 sequences and is provided
with ground truth poses at the beginning and the end of each of the sequences, thus allowing to measure the
accumulated drift in each case. We provide a trial evaluation of five existing state-of-the-art visual and visual-inertial
methods on a subset of the dataset. We also make available open source tools for evaluation purposes, as well as
the intrinsic and extrinsic calibration parameters of all sensors in the rig. The dataset is available for download at
http://mapir.uma.es/work/uma-visual-inertial-dataset
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1 Introduction

Visual Odometry (VO) and SLAM techniques have greatly
improved over the past years. As a consequence, state-
of-the-art methods such as ORB-SLAM (Mur-Artal et al.
2015), DSO (Engel et al. 2018) or PL-SLAM (Gomez-Ojeda
et al. 2019), for instance, achieve impressive performance
results in real-time. However, there are still open problems
that require further research before these techniques become
robust enough for long-term application (Cadena et al. 2016).

This is the case of low-textured environments and scenes
with dynamic illumination (Figure 1). The main issue with
little textured scenes is the lack of enough salient features
for reliable estimations, which can even lead to a complete
system failure (Figure 1a). On the other hand, the changing
light condition renders the visual tracking more challenging
and thus affects the quality of the estimated trajectory
(Figure 1b).

In this context, Inertial Measurement Units (IMUs) have
proven to be of valuable help to gain robustness and precision
over purely visual techniques (Leutenegger et al. 2015).
Visual-Inertial (VI) fusion requires accurate synchronization
between the sensors (Schubert et al. 2018), but such
synchronization is hard to achieve in practice. Surely, this
is one of the reasons that explains the lack of datasets for
VI-based methods. Table 1 summarizes the most relevant
datasets providing visual and inertial data. Please, note that
only four of them use hardware synchronization for data
acquisition. The PennCOSYVIO (Pfrommer et al. 2017) and
OIVIO (Kasper et al. 2019) datasets are the most similar
to ours since they also consider challenging textures and
lighting. However, the former only provides 4 sequences
(totaling 8.7 min) recorded on the same scene and under
very similar lighting conditions, while the later focuses on

onboard illumination for dark environments (mines, tunnels,
etc). Therefore, we believe that the available datasets are not
sufficient to test and validate VI odometry solutions under
realistic settings.

In this paper we contribute a visual-inertial dataset in
realistic environments with little texture and variable light
conditions. It contains over 80 min of hardware synchronized
IMU measurements and images from two stereo rigs, divided
into 32 sequences. The trajectories for all sequences form
large loops with the start, which allows to easily evaluate the
accumulated drift of VI odometry methods, as proposed in
Engel et al. (2016). Finally, we evaluated the performance of
five start-of-the-art VI and VO solutions on a subset of the
dataset: ORB SLAM2 (Mur-Artal et al. 2017), PL-SLAM
(Gomez-Ojeda et al. 2019), VINS-Mono (Qin et al. 2017),
OKVIS (Leutenegger et al. 2015) and VINS-Fusion (Qin
et al. 2019).

The rest of the paper is organised as follows. In Section 2,
we describe the sensor setup used for data collection as well
as the calibration process carried out to estimate both the
intrinsic and extrinsic parameters of the unit. In Section 3,
we provide an outline of the dataset itself, describe the loop-
closure alignment procedure used to extract the ground truth
information and explain the format in which the data is
presented. We present a trial evaluation of state-of-the-art
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(a) Low-textured frames from the datasets

(b) Frame sequences with fast illumination changes

Figure 1. Our dataset is built from a number of visually challenging sequences, showing low-textured environments and scenes
with dynamic illumination. The goal is to provide a benchmark for the evaluation of visual-inertial odometry algorithms in these
real-world situations.

visual and visual-inertial solutions in Section 4. Finally, the
contributions of this paper are summarized in Section 5.

2 Sensor Unit Description

2.1 Sensor Setup
We designed a custom VI sensor unit for data collection
purposes. Our VI sensor consists of two stereo rigs and
a three-axis inertial unit, as depicted in Figure 2. The
individual characteristics of each sensor are described next
and briefly summarized in Table 2.

• The Bumblebee R©2 (BB2-08S2C-25) stereo camera
provides stereo, Bayer encoded color images with
1024×768 px resolution with auto control of the
exposure time and sensor gain. The cameras have a
1/3” Sony ICX204 CCD sensor with global shutter
and a 2.5 mm lens with 96◦ Horizontal Field of View
(HFoV) each. The stereo camera has a 12 cm baseline,
and synchronous stereo images were recorded at
12.5 Hz.
• The custom stereo rig was built from two IDS uEye

UI-1226LE-M cameras, each providing 752×480 px
monochrome images with hardware auto-exposure.
The cameras have a 1/3” Mobisense MT9V032STM
CMOS sensor with global shutter and a 3.5 mm
lens with 60◦ HFoV. The custom stereo rig has a
25.5 cm baseline, and synchronous stereo images were
recorded at 25 Hz.
• The IMU is a XSens MTi-28A53G35 3D motion

sensor, providing angular rates and specific force
measurements in three perpendicular axes. The device
is intrinsically calibrated from factory to output
corrected measurements, which we logged at 250 Hz.

The data from the sensors were recorded with a consumer-
grade Acer Travelmate P259 series laptop into a high speed
Samsung 970 EVO solid-sate drive. The Bumblebee R©2
cameras were connected to the laptop through a shared
FireWire 400 bus, while the uEye cameras and the XSens
IMU were connected through USB 3.0 and 2.0 connections,
respectively.

For synchronization purposes, first we configured all
sensors to run in external trigger mode for data acquisition.
Then, we programmed an ATmega328P microcontroller to
generate the trigger signals at the specified rates, for each
sensor individually. Even though each sensor has its own
trigger signal, we guarantee accurate time synchronization
by using the same clock to generate all triggers. The
remaining small, constant time delays specific to each sensor
are further calibrated for additional accuracy.

2.2 Calibration
The dataset contains raw data, intrinsic and extrinsic
calibration parameters as well as temporal offsets. In the
following we describe how these parameters were estimated.
We also provide the corresponding calibration sequence,
allowing custom calibration methods to be used with our
dataset.

2.2.1 Stereo Camera Calibration The intrinsic parame-
ters (the projection parameters of each camera as well as
the relative spatial transformation between the two cameras
of each stereo setup) were calibreated for each stereo rig
independently. For that purpose, we recorded the calibration
pattern (an AprilTag grid Olson 2011) while slowly moving
the VI sensor unit in front of it. The final calibration param-
eters were estimated using the calibration toolbox Kalibr∗,
presented in Furgale et al. (2013).

2.2.2 IMU Noise Calibration For VI sensor fusion, the
noise of the IMU measurements has to be characterized.
Typically, it is assumed that IMU measurements are
perturbed by white noise and a slowly varying bias (random
walk). We estimated these parameters from the Allan
deviation function of our VI sensor resting for a long period
(more than 100 h), as described in Schubert et al. (2018).

2.2.3 Camera-IMU Extrinsics and Time Delays We
calibrated the extrinsics as well as the time-sinchronization
offsets for each camera with respect to the IMU. For that
purpose, we again recorded the calibration pattern (AprilTag
grid Olson 2011) while moving the VI sensor unit in front

∗https://github.com/ethz-asl/kalibr
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Table 1. Comparison of existing datasets for Visual-Inertial Odometry/SLAM.
Dataset Environment Motion Type Sensor Configuration Ground-truth

KITTI (Geiger et al. 2012) Outdoors Car Stereo/IMU/Laser 1 INS/GNSS
Malaga Urban (Blanco-Claraco et al. 2014) Outdoors Car Stereo/IMU 1 GPS
UMich NCLT (Carlevaris-Bianco et al. 2016) Indoors/Outdoors Segway Omni/IMU/Laser 1 GPS/IMU/Laser
EuRoC MAV (Burri et al. 2016) Indoors MAV Stereo/IMU 2 MoCap
Zurich Urban (Majdik et al. 2017) Outdoors MAV Monocular/IMU 1 Visual pose
PennCOSYVIO (Pfrommer et al. 2017) Indoors/Outdoors Handheld Stereo/IMU 1,2 Visual pose (markers)
TUM VI (Schubert et al. 2018) Indoors/Outdoors Handheld Stereo/IMU 2 MoCap (partial)
ADVIO (Cortés et al. 2018) Indoors/Outdoors Handheld Stereo/Depth/IMU1 IMU
KAIST Urban (Jeong et al. 2019) Outdoors Car Stereo/IMU 1 GPS/FOG/Encoder/LiDAR
OIVIO (Kasper et al. 2019) Indoors/Outdoors Handheld Stereo/IMU1,2 Visual Pose (partial)
Ours Indoors/Outdoors Handheld Stereo/IMU 2 Visual pose (partial)
1 software synchronized 2 hardware synchronized

IMU

Bumblebee1 Bumblebee0

uEye0uEye1

Figure 2. The visual-inertial sensor unit used for dataset
collection. It contains a stereo camera (Bumblebee R©2), a
custom stereo rig with two cameras (uEye) and an XSens
Inertial Measurement Unit (IMU). All sensors are
hardware-synchronized by means of a microcontroller.

of it, trying to excite the three axes of the IMU with rotation
and translation movements. The calibration was performed
with good scene illumination and slow motions in order to
minimize motion blur. We used again Kalibr (Furgale et al.
2013) to estimate the extrinsic parameters and time delays of
the cameras.

2.2.4 Photometric Calibration In order to enable direct VI
methods to be tested with our dataset, we also calibrated
the sensor’s response function and lens vignetting map for
the uEye monochrome cameras. To calibrate the response
function, we recorded a static scene with different exposure
times (ranging from 0.07 to 20 ms with the smallest steps
allowed by the sensor). For the vignette calibration, we
recorded a known marker (ArUco tag Garrido-Jurado et al.
2014) on a white planar surface while moving the VI sensor
in order to observe it from different angles. The photometric
calibration was carried out using a modified version† of the
code provided by the TUM MonoVO dataset (Engel et al.
2016).

3 Visual Inertial Dataset

3.1 Dataset description
We recorded 32 sequences for the evaluation of VI motion
estimation methods, totalling ∼80 min of data. The dataset
covers challenging conditions (mainly illumination changes
and low textured environments) at different degrees and

Table 2. Summary of the main features of each sensor.
Sensor Model Rate Features

Stereo Camera PointGrey
Bumblebee R©2

12.5 Hz Color, 1024×768,
Auto-exposure, auto-gain

Stereo Rig 2 x IDS uEye
UI-1226LE-M

25 Hz Grayscale, 752×480,
Auto-exposure

IMU XSens
MTi-28A53G35

250 Hz 3D Accelerometer,
3D Gyroscope

a wide range of scenarios (including corridors, parking,
classrooms, halls, etc) from two different buildings at the
University of Malaga. In general, we deliver at least two
different sequences within the same scenario, with different
illumination conditions or following different trajectories.
All sequences were recorded with our VI rig handheld,
including a few during which the person holding the rig was
mounted on a moving car. An overview of the sequences
included in the dataset is presented in Table 3.

We grouped the evaluation sequences into different
categories, depending on the type of challenges that they
address:

• Low-texture: indoor sequences showing environ-
ments lacking distinctive features or with repetitive
textures

• Indoor: sequences containing dark and light areas in
indoor scenarios

• Outdoor: sequences containing natural illumination
changes present in outdoor environments

• Indoor-Outdoor dynamic illumination: sequences
containing the typical illumination changes of
indoors/outdoors transitions

• Indoor with illumination changes: indoor sequences
with forced artificial lightning changes (spotlights,
lights on and off)

• Sun overexposure: challenging sequences with a
blinking effect in the uEye cameras caused by direct
exposure to the sunlight, which saturates the imaging
sensors and causes rapid fluctuations in the exposure
time

†https://github.com/AlbertoJaenal/mono_dataset_
code
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Table 3. Overview of the sequences included in the dataset.
Sequence type Number of sequences Time

Calibration sequences

Cam calibration 3 for uEye, 3 for Bumblebee 29.3 min
IMU/Cam calibration 3 for uEye, 3 for Bumblebee 8.6 min
Photometric calibration (uEye) 2 for response, 2 for vignette 14.4 min
IMU static 1 sequence 141.3 h

Evaluation sequences

Low-texture 5 sequences 7.9 min
Indoor 5 sequences 8.4 min
Outdoor 6 sequences 20.4 min
Indoor-Outdoor dynamic illumination 5 sequences 15 min
Indoor with illumination changes 5 sequences 10 min
Sun overexposure 6 sequences 18.3 min

3.2 Loop-Closure Alignment

Due to the specific characteristics of our dataset (long
trajectories with indoor-outdoor changes within a single
sequence), it is not feasible to track the position of our VI
sensor unit with an independent external reference system
(such as a Vicon mo-cap) to obtain the ground truth data.
For this reason, we decided to compute partial‡ ground truth
data from visual input, following the approach proposed
in Engel et al. (2016). The approach consists of designing
looped trajectories with the same start and end point. The
sequences begin and end observing the same, well-textured,
easy-to-track scene with smooth motions for approximately
10 s. This way, the ground truth poses for the start and
end segments of each trajectory can be computed through
3D reconstruction techniques and then used to evaluate the
accumulated drift of an odometry solution, as in Schubert
et al. (2018); Kasper et al. (2019) (see Figure 3). As
noted in Engel et al. (2016), the loop-closure module of the
algorithms to be evaluated should be disabled.

The 3D reconstruction was performed with the Structure-
from-Motion (SfM) pipeline COLMAP (Schonberger and
Frahm 2016). For simplicity, we used only one of the two
stereo rigs to compute the reference poses of the start and
end segments. We choose the Bumblebee R©2 stereo camera
over the custom stereo rig mainly due to its larger FoV.
Since COLMAP does not explicitly support stereo cameras,
the reconstructions are computed from two independent
monocular cameras, and then the metric scale is recovered
by imposing the calibrated baseline in a final optimization
step.

3.3 Evaluation Metrics

We measure the accumulated tracking inaccuracies of a
trajectory using the alignment error proposed in Engel et al.
(2016). This metric reflects the overall performance of the
method in a single value, and it is equally affected by the
accumulated drifts in scale, rotation and translation over the
whole trajectory. Additionally, it allows to compare in a
direct way methods with different observability modes (like
monocular, stereo or visual-inertial).

To determine the alignment error, first we need to compute
the transformations that best align the estimated trajectory
to the reference start and end segments independently (see

(a) The 3D reconstruction used as the (partial) ground truth

(b) The well-textured, easy-to-track scene

Figure 3. Example of the loop-closure alignment between the
first (start segment, in red) and the last 10 s (end segment, in
blue) of a sequence performed with COLMAP (Figure 3a). To
improve the accuracy of the reconstruction, we included the
calibration pattern in the loop-closure (Figure 3b).

Figure 4):

T gt
s , argmin

T∈Sim(3)

∑
i∈S

(
p̂i − T ⊕ pi

)2
(1)

T gt
e , argmin

T∈Sim(3)

∑
i∈E

(
p̂i − T ⊕ pi

)2
(2)

where S ⊂ [1, . . . , n] and E ⊂ [1, . . . , n] represent the
subsets of frame indices for the start and end segments
of a sequence with n stereo frames in total, and p̂i, pi ∈
IR3 the ground truth and estimated positions for the i-th
frame, respectively. The ⊕ operator refers to the pose-point
composition operator (Blanco-Claraco 2010).

Finally, the alignment error is defined to be the
translational root-mean-square-error between the estimated

‡Since our dataset aims to capture different visual challenges, we are unable
to provide ground truth data from visual input for the whole trajectory.
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Ground truth trajectory

Start-aligned
estimated trajectory

End-aligned
estimated trajectory

Figure 4. Example of the trajectory alignment approach used
for evaluation. The reference, ground truth trajectory p̂i is
represented in black, the estimated trajectory aligned to the
start segment T gt

s ⊕ pi in blue (dotted) and the estimated
trajectory aligned to the end segmentT gt

e ⊕ pi in red (dashed).
Only the poses whose index i ∈ S ∪ E are highlighted.

trajectory itself when aligned to the start and end segments:

ealign ,

√√√√ 1

n

n∑
i=1

∥∥T gt
s pi − T gt

e pi
∥∥2
2

(3)

Additionally, the accumulated drift Tdrift can be
computed from the start and end alignment transformations:

Tdrift , T gt
e ⊕ (	T gt

s ) (4)

where 	 represents the inverse pose operator (Blanco-
Claraco 2010). Then the rotation, translation and scale drift
can be easily extracted from Tdrift as:

er = arccos
( trace(Rdrift)− 1

2

)
(5)

et = ‖tdrift‖ (6)

es = sdrift (7)

where (Rdrift, tdrift, sdrift) = Tdrift ∈ Sim(3). Note that
these drift values can also be used for a detailed performance
evaluation.

3.4 Data Format
Each sequence is packed into a single zip file containing the
data gathered with our VI unit. The layout of the zip files is
depicted in Figure 5, and it is very similar to the layout used
in the EuRoC dataset (Burri et al. 2016). The data of each
sensor is divided into sub-folders. The specific contents for
each type of sensor are described next.

• Camera: the observations from cameras are repre-
sented as images, stored in the data sub-folder in
PNG lossless format. The Bumblebee R©2 cameras
are referred to as cam0 and cam1 (left and right,
respectively), while the uEye cameras as cam2 and
cam3 (left and right, respectively). In the former, they
are stored as RGB color images§, while as grayscale
images in the latter. In both cases, the images provided
are unrectified (as they were captured). Addition-
ally, the data.csv file contains plain text image-
timestamp¶ associations as well as their respective
acquisition exposure times (in ns), as Comma Sepa-
rated Values (CSV).

<sequence id>
cam0

data
1549036653683940058.png
1549036653763940058.png
...

data.csv
cam1

data
...

data.csv
cam2

...
cam3

...
imu0

data.csv
bias priors.csv

imu0 trajectory.csv

Figure 5. Example path layout for a single sequence.

• IMU: the inertial measurements and their acquisition
timestamps are stored in the file data.csv as plain
text (CSV). Each row contains: timestamp (in ns),
gyroscope (in rad/s) and accelerometer (in m/s2).
The file bias priors.csv contains gyroscope and
accelerometer bias priors in a similar format as the
IMU measurements, estimated for each trajectory with
Leutenegger et al. (2015).

• Ground truth: the partial ground truth trajectory
(for the start and end segments) is provided in the
imu0 trajectory.csv as plain text (CSV). This
is the reference trajectory, as described by the IMU
and computed from the Bumblebee R©2 camera as
described in Section 3.2 (applying the calibrated
extrinsic parameters and time delay). Note that the
ground truth trajectory is provided at the camera rate
(12.5 Hz). Each row contains: timestamp (in ns),
translation (in m) and rotation (as a Hamiltonian unit
quaternion).

3.5 Calibration Data
The calibration parameters of our VI unit (estimated as
described in Section 2.2) are provided in a separate zip
package. The parameters are stored in plain text YAML
format. The package contains the following files:

• bumblebee camchain.yaml: intrinsic and
extrinsic parameters for the Bumblebee R©2 stereo
camera. The extrinsic parameters with respect to the
IMU are also included.

§The raw color images from the Bumblebee R©2 stereo camera are
captured with a Bayer pattern. For practical reasons, the images provided
in the dataset have already been converted to the three-channel RGB
representation.
¶These are raw acquisition timestamps, without delay or exposure
compensation.

Prepared using sagej.cls
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• ueye camchain.yaml: intrinsics and extrinsics
for the uEye stereo rig, and the extrinsics with respect
to the IMU.
• xsens imu.yaml: noise density and random walk

intrinsic parameters of the IMU.

Additionally, the per-pixel attenuation factors of
vignetting calibration are provided for the uEye cameras in
PNG format.

4 Evaluation of Existing Methods

We present a trial evaluation of state-of-the-art methods, in
which we evaluated the accumulated drift in a representative
subset of the dataset, covering all different categories. We
selected five methods with different observability modes:
ORB SLAM2 (Mur-Artal et al. 2017) and PL-SLAM
(Gomez-Ojeda et al. 2019) as pure visual stereo systems;
VINS-Mono (Qin et al. 2017) as a monocular visual-inertial
solution and OKVIS (Leutenegger et al. 2015) and VINS-
Fusion (Qin et al. 2019) as stereo visual-inertial approaches.

The results are summarized in Tables 4 and 5, showing
the mean over 5 executions of the alignment errors as well
as the accumulated translational, rotational and scale drift
for the uEye and Bumblebee R©2 rigs, respectively. For the
monocular case, we used only the left camera of the stereo
rigs. The evaluation shows that ORB SLAM2 is hardly able
to complete the sequences and PL-SLAM presents more
robustness to visual tracking failure since it relies on both
points and line segments features. This suggests that visual
systems may require extra information to cope with such
challenges. On the other hand, the results indicate general
performance improvements when using an IMU in addition
to the visual system. The monocular VI case (VINS-Mono)
exhibits large drifts in some cases, while the stereo VI
methods are robust enough to complete these sequences.

5 Conclusions

We have presented a new indoor-outdoor Visual-Inertial
dataset that aims to provide means for the evaluation
of odometry and SLAM methods in real-world, visually
challenging situations. The dataset focuses on changing light
conditions and low-textured scenes in a wide variety of
environments. Every sequence contains a large loop-closure
at the end that allows to measure the accumulated drift. The
sequences were recorded with a handheld custom VI sensor
unit. Our sensor unit consists of four cameras, divided in
two stereo rigs and an IMU, all hardware-synchronized by
a microcontroller. We evaluated the performance of state-
of-the-art methods in a subset of the dataset, showing the
challenge that it represents for pure visual systems and
even for VI approaches. Open source evaluation tools, as
well as the calibration parameters of the whole VI unit
are available for download at http://mapir.uma.es/
work/uma-visual-inertial-dataset
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Table 4. Translational, rotational and scale drift results for uEye cameras. L refers to sequences where the tracking got lost and D
refer to excessively drifted sequences. The most accurate results in each group are highlighted, i.e. closest to zero in general and
closest the unity for es.

Dataset category ORB SLAM2 PL-SLAM VINS-Mono VINS-Fusion OKVIS

ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es

Low-texture L 3.72 5.38 60.88 0.52 11.55 11.21 35.7 0.92 1.50 0.50 7.30 1.02 2.31 0.61 21.75 0.98

Indoor L L D 0.77 0.29 5.53 0.99 7.94 0.78 13.74 0.97

Outdoor L D 2.55 1.35 6.57 0.99 0.33 0.29 0.57 1.00 2.48 0.42 10.14 1.00

Indoor-Outdoor L L D D 1.07 0.79 2.60 1.01
Illumination changes L L 1.24 0.38 5.96 0.84 0.32 0.25 3.07 1.01 0.75 0.72 1.88 0.96

Sun overexposure L L 22.64 7.57 60.22 0.32 2.97 1.05 9.69 1.02 2.51 2.38 3.22 1.05

Table 5. Translational, rotational and scale drift results for Bumblebee R©2 cameras. Sequences marked with * lost tracking in more
than 80% of executions. The most accurate results in each group are highlighted, i.e. closest to zero in general and closest the
unity for es .

Dataset category ORB SLAM2 PL-SLAM VINS-Mono VINS-Fusion OKVIS

ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es ealign (m) et (m) er (◦) es

Low-texture 8.88* 6.43* 31.15* 1.01* 7.11 3.97 43.7 0.62 L 0.74 0.71 4.92 1.01 2.49 0.42 25.58 0.97
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Illumination changes L L 1.53 0.96 6.46 0.86 0.51 0.18 5.14 1.00 0.89 0.92 0.99 0.94

Sun overexposure L L 9.88 6.53 21.57 0.82 1.38 1.18 4.20 1.00 2.91 1.43 8.59 1.10
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